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On-line Learning of Mutually Orthogonal Subspaces
for Face Recognition by Image Sets
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Abstract—We address the problem of face recognition by
matching image sets. Each set of face images is represented by a
subspace (or linear manifold) and recognition is carried out by
subspace-to-subspace matching. In this paper, 1) a new discrim-
inative method that maximises orthogonality between subspaces
is proposed. The method improves the discrimination power of
the subspace angle based face recognition method by maximizing
the angles between different classes. 2) We propose a method for
on-line updating the discriminative subspaces as a mechanism for
continuously improving recognition accuracy. 3) A further en-
hancement called locally orthogonal subspace method is presented
to maximise the orthogonality between competing classes. Exper-
iments using 700 face image sets have shown that the proposed
method outperforms relevant prior art and effectively boosts its
accuracy by online learning. It is shown that the method for online
learning delivers the same solution as the batch computation at
far lower computational cost and the locally orthogonal method
exhibits improved accuracy. We also demonstrate the merit of the
proposed face recognition method on portal scenarios of multiple
biometric grand challenge.

Index Terms—Face recognition, image sets, manifold-to-man-
ifold matching, mutually orthogonal subspace, on-line learning,
subspace.

I. INTRODUCTION

W HEREAS considerable advances have been made in
face recognition in controlled environments, recogni-

tion in unconstrained and changing environments still remains
a challenging problem. Face recognition by image sets has
been increasingly popular because of their greater accuracy
and robustness as compared with the approaches exploiting
a single image as input [2]–[8], [21]. Image set harvested in
either a video or a set of multiple still-shots captures various
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facial appearance changes and thus provides more evidence
on face identity than a single image alone. Prior video-based
attempts [18]–[20] have shown that including a strong temporal
constraint deteriorates recognition performance when persons
move arbitrarily in a testing video sequence. Moreover, tem-
poral continuity assumption between consecutive face images
is often invalid when subjects do not face a camera and move
abruptly. In this paper, we consider a general scenario where
an image set is a more pertinent input than video.

Of the methods that compare an image set to an image set,
subspace (or manifold) matching based methods have been
shown superior to other approaches such as aggregation of
multiple nearest neighbour vector-matches [6] and proba-
bility-density based methods [4], [5] in many studies, e.g., [1],
[2], [7], and [21]. Subspace representation of image sets allows
interpolation of data vectors, thus yielding a robust matching
of new data in the subspaces. Conventionally, when a face
image is given as a vector, distance of the face vector to each
model subspace is measured and the nearest subspace is picked
for its class. Now that we want to classify a subspace instead
of a single vector (i.e., subspace-to-subspace matching), the
distance is no longer valid but angles between subspaces (called
canonical angles, principal angles or canonical correlations)
become a reasonable measurement. The subspace angle method
also yields an economical matching in time and memory com-
pared to aggregation of all pairwise vector matches of two
sets [6]. Methods beyond the subspace angles have also been
explored: a generalised form called Grassmannian distance is
proposed for face recognition in, e.g., [3] where the principal
angle has been shown as one of the Grassmannian distances. In
[2], a nonlinear manifold is obtained as a set of subspaces and
the angles between pairwise subspaces are exploited for mani-
fold-to-manifold matching. Prior to [2], a mixture of subspaces
for manifold principal angles have similarly been proposed in
[31]. More traditionally, a kernel version of principal angles
has also been proposed to deal with nonlinear manifolds, e.g.,
in [8].

Since Hotelling [22], Canonical Correlation Analysis (CCA)
has been a standard tool to inspect linear relations between two
random variables. Goloub’s formulation [14] for subspace an-
gles is mathematically equivalent to Hotelling’s. CCA has re-
ceived increasing attention in related literature: Yamaguchi et al.
have adopted the standard CCA for face recognition byimage-
sets [7] [called Mutual Subspace Method (MSM)] and subse-
quently proposed the constrained subspace which improves the
discrimination power of the manifold-angle method [9], [10],
[12] (called Constrained Mutual Subspace Method). Bach and
Jordan [23] have proposed a probabilistic interpretation, and
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Fig. 1. Proposed method. The similarity between linear manifolds (or subspaces) is computed as the sum of principal angles and is used for NN classification.
Once a query set has been classified, it can be included in the model by online updating the existing manifold.

Wolf and Shashua [8] a kernel version to capture nonlinear man-
ifolds. Kim, Kittler, and Cipolla have proposed discriminative
learning for CCA and have shown superior accuracy to other
CCA-based methods [21].

In practice, a complete set of training images is not given in
advance and the execution of the batch-computation1 is required
whenever new images are presented. This is too expensive in
both time and space. An efficient model update would be greatly
desired to accumulate the information conveyed by new data so
that the method’s future accuracy is enhanced, e.g., once a face
image set is classified by matching subspaces, the image set
could be exploited to update the existing subspaces, as shown
in Fig. 1. Time-efficient recognition and update by the method
proposed in this paper facilitates interaction between users and
a system.

Numerous algorithms have been developed to update
eigenspace as more data samples arrive. The computational
cost of an eigenproblem is cubic in the size of the respective
scatter matrix. In [16], the size of the matrix to be eigendecom-
posed is reduced by using the sufficient spanning set,2 greatly
speeding up the computation of the eigenproblem for update.
The method also allows update over a set of new vectors at a
time. Methods for incremental learning of discriminative sub-
spaces have also been proposed. Gradient-based incremental
learning of a modified LDA was proposed by Hiraoka et al.
[25]. This, however, requires setting of a learning rate. Ye et al.
[24] have proposed an incremental version of LDA, which can
include a single new data point in each time step. An impor-
tant limitation is the computational complexity of the method
when the number of classes C is large. In [17], an incremental
LDA has been achieved by updating the components of both
the between class scatter and total class scatter matrix, thus
remaining efficient regardless of the number of classes. At each
update, the sufficient spanning set is exploited to reduce the
size of the scatter matrix yielding a speed up similarly to [16].
While it is worth noting the existence of efficient algorithms
for kernel PCA and LDA [26], [27], the computational cost of
feature extraction of new samples in these methods is high for
a large-size recognition problem.

1All existing images are re-used with new images for computing a new model.
2It is a reduced set of basis vectors spanning the space of most data variation.

Existing discriminative methods for subspace-to-subspace
matching are limited in the aspect of on-line learning: Con-
strained Mutual Subspace Method (CMSM) [9], [10] requires
manual setting for the dimensionality of the constrained sub-
space and its accuracy is dependent on the dimension, which
precludes automatic on-line learning. Iterative optimization
required in Kim et al.’s method [21] is computationally costly,
making on-line update difficult. Nonliner extensions of CMSM
[12] comprise kernel parameters to set and require high com-
putational cost in both matching and model learning.

This paper presents a method of on-line learning of discrimi-
native subspaces for principal-angle based face recognition. The
earlier version of this work [30] has been rewritten for clari-
fication and conciseness. More comparisons and experiments
have also been added. 1) The discriminative subspace was first
proposed in the earlier version of this study [30] by generali-
saing Oja and Kittler’s formulation [13] (the proposed method
has been later adopted in, e.g., [28] and [29]). The method en-
forces orthogonality between subspaces and, hence, improves
the discrimination power of the subspace angle based classifi-
cation method. 2) The mutually orthogonalised subspaces are
incrementally learnt by updating components of the numerator
and denominator of the objective function respectively. Each
update is benefited in both time and space by the concept of the
sufficient spanning set used for the incremental Principal Com-
ponent Analysis (PCA) in [16]. The proposed method yields an
identical solution to that of the batch-mode computation but at a
far lower computational and space cost. The on-line method also
allows multiple sets of vectors to be added in a single update,
thus avoiding frequent updates. 3) Finally, recognition accuracy
of the discriminative subspace method is improved by max-
imising the orthogonality between rival classes, which is seen as
an extension to nonlinear manifolds in a sense (see Section V).
In this paper, we mainly explain our method for subspaces, i.e.,
linear manifolds but the proposed method may be further gen-
eralised to nonlinear manifolds by representing a manifold as a
set of linear manifolds similarly to [2] and [31].

The next section reviews the subspace-angle method and the
Oja and Kittler’s formulation. The proposed orthogonalisation
between subspaces is explained in Section III. The on-line
learning method of the orthogonal subspaces is proposed in
Section IV and the method to improve the discrimination
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power in Section V. Sections VI and VII provide comparative
evaluations and conclusions respectively.

II. BACKGROUND

A. Subspace Angles

Canonical correlations [14], which are cosines of principal
angles between any two -dimensional linear manifolds (or sub-
spaces) and , are uniquely defined as

(1)

subject to .
If denote basis matrices of the two subspaces, canon-
ical correlations are conveniently obtained as singular values of

, only taking

(2)

where are orthogonal matrices.3 Similarity of two sub-
spaces is then defined as the average of the canonical corre-
lations and Nearest Neighbor (NN) classification is performed
based on the subspace similarity [7], [8], [21], [28], [29].

B. Orthogonality Between Subspaces

We revisit Oja and Kittler’s class-wise feature extraction
method [13]. The method finds the class-specific components
on which class data have maximum variance while those of all
other classes have zero variance. Then, a new vector is classified
by conventionally measuring the distance of the vector to the
class-specific subspaces. The method is as follows, replacing
their vector notations with matrices.

Denote the correlation matrices of classes by
, where and is the number of

data points, , of th class. The total correlation matrix is defined
as where denotes class priors. The
total correlation matrix is eigen-decomposed s.t.

. We then have by . This means
that matrices and have the same
eigenvectors and the respective eigenvalue sum must be equal
to one: let be the eigenvector matrix of the th class having
the eigenvalues equal to unity in the transformed space by s.t.

(3)

then

for all (4)

where is a zero matrix and every matrix
is positive semi-definite. If we have the eigenvector matrix of

3An orthogonal matrix is a square matrix whose transpose is its inverse:
. Note that this is different from the orthogonality between

subspaces in Section II-B.

unity eigenvalues of the th class s.t. , by
(4)

(5)

Two linear manifolds spanned by are mutually orthog-
onal since all the vectors of each space are orthogonal to those
of the other space.

III. GENERALISED MUTUALLY ORTHOGONAL SUBSPACES

Clearly, canonical correlations of mutually orthogonal sub-
spaces are zero by (2) and (5) (put in the place of ). The
decision is simply made to label a query set as the same class if
the canonical correlations are nonzero and a different class oth-
erwise. However, in practice, the eigenvectors having the eigen-
values which are exactly equal to one in (3), do not often exist.
We propose using the eigenvectors corresponding to the largest
few eigenvalues. The mutual orthogonal subspace (3) is thus
generalized into

(6)
where (and other notation) as defined in the
previous section and is the diagonal matrix corresponding to
the largest few eigenvalues. Clearly, the method seeks the most
important basis vectors of each class that are at the same time
the least significant basis vectors of the ensemble of the rest of
the classes. If we write , where the orthogonal basis
matrix of th class model is denoted by , the problem can be
written as

(7)

From (6)

the proposed orthogonalisation improves the discrimination
power of the subspace-angle method (see Section VI). The
solution is given by successively diagonalising matrices as
in Section IV. Interestingly, the principle of the Orthogonal
Subspace Method (OSM) is very close to that of CMSM [9].
Both methods find the components which maximally represent
the class data while minimizing the variances of all the other
classes. However, OSM provides the optimal way to choose
the number of such components based on the eigenvalues,
while CMSM requires an empirical setting for the number of
the components, which is practically unfavorable for on-line
learning.

The similarity of two orthogonal subspaces is given
as where is the singular value matrix in (2) (Put in
the place of ). Nearest Neighbor (NN) classification is then
performed based on the similarity measure.
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IV. INCREMENTAL LEARNING OF ORTHOGONAL SUBSPACES

There are many previous studies for incremental PCA, but the
involvement of matrix inverse and product in in the Or-
thogonal Subspace Method (OSM) makes incremental learning
not straightforward from prior methods. Among the existing
methods for on-line discriminative subspaces discussed in Sec-
tion I, the framework of [17] is the most appropriate for the OSM
that needs an efficient update for both numerator and denomi-
nator of the OSM criterion. Following the three step framework
of [17], we define new sufficient spanning sets and a new online
method for the OSM.

The incremental OSM solution we propose involves the fol-
lowing three steps: update the principal components of each
class correlation matrix , update the principal components
of the total correlation matrix and compute the orthogonal
components using the updated sets of principal components.
The method using a sufficient spanning set for incremental PCA
[16] is conveniently applied to each step to reduce the size of
the matrices to be eigendecomposed. The proposed method pro-
vides the same solution as the batch-mode OSM with far lower
computational cost. When a new data point or set is added to
an existing data set, existing orthogonal subspaces

are updated to as follows.

A. Updating Principal Components of Class Correlation
Matrix

The update is defined as

(8)

where the number of samples, eigenvector and eigenvalue
matrices corresponding to the first few eigenvalues of the
th class correlation matrix in an existing data set are

respectively. The set denotes
those of a new data set. This update is applied only to the
classes that have new data points. For all other classes,

. The proposed update is similar
to [16] except that correlation matrices are used instead of
covariance matrices. The updated class correlation matrix
is where

. The sufficient spanning set of is given
as , where is an orthonormalisation
function of column vectors (e.g., QR decomposition) followed
by removing zeros vectors. The updated principal components
are then written as , where is a rotation matrix.
By this representation, the eigenproblem of the updated class
correlation matrix is changed into a new low dimensional
eigenproblem as

(9)

where are eivenvector and eigenvalue matrices of
. Note that the new eigenvalue problem requires only

computations, where is the number of columns
of . The total computational cost of this stage takes

, where is the dimen-
sion of input space and is the number of classes in the new

data set given. The latter term is for computing
from the new data set in order to perform the update.

B. Updating Principal Components of Total Correlation
Matrix

The subsequent update is described as

(10)

where and represents the number of classes
of the new data. and are the first
few eigenvector and eigenvalue matrices of the total correlation
matrix of the existing data. The updated total correlation matrix
is

(11)

where , . The sufficient span-
ning set of is obtained as

(12)

and , where is a rotation matrix. Note that the
sufficient spanning set is independent of class prior . Accord-
ingly, the new low dimensional eigenproblem to solve is

(13)

The computation requires , where is the number of
components of . Note that all have already been produced
at the previous step.

C. Updating Orthogonal Components

The final step exploits the updated principal components of
the previous steps, which are defined as

(14)

Let , then the denominator term in (7)
. The remaining problem is to find the compo-

nents which maximise the variance of the numerator term in
the projected subspace, i.e., . The sufficient spanning
set of the projected data is given by Then,
the eigenproblem to solve is

(15)
where are eigenvector and eigenvalue matrix respec-
tively. The final orthogonal components are given as

. This computation only takes ,
where is the number of columns of . Note usually ,
where is the number of columns of .

1) Batch OSM versus Incremental OSM for Time and
Space Complexity: See Fig. 2 for the computational cost.
The batch computation of OSM for the combined data
costs , where the
former term is for the diagonalization of the total correla-
tion matrix and the latter for the projected data of the
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Fig. 2. Computation cost for update. is the dimension of input vectors,
are the number of vectors in total and th class of the combined data.

is the number of vectors of th class of the new set. The number of classes
of the combined and the new set are denoted by . are the number
of components of the sufficient spanning set of th class and the total set.

classes (refer to Section II for the batch-mode computa-
tion). The batch computation also requires all data vectors
or correlation matrices to be updated. By contrast,
the proposed incremental solution is much more time-ef-
ficient with the costs of ,

and for the three steps respectively. Note
. The proposed incremental

algorithm is also very economical in memory costs, which
corresponds to the data .

V. LOCALLY ORTHOGONAL SUBSPACES

The pairwise class prior is proposed to improve the
discriminatory power of the method. The locally orthogonal
method defines

where (16)

The pairwise class prior , if th class subspace is close to
th class subspace in terms of the subspace similarity,

otherwise. That is, the method finds the component that max-
imises the variance of th class and minimises the variance of
neighboring classes. The use of a set of total correlation matrices

, which are locally defined, instead of a single total correla-
tion matrix , is more appropriate to capture nonlinear mani-
folds of entire data vectors. Note, however, that in the proposed
method each class data is still modeled as a single subspace. This
may be further extended to a set of subspaces when each class
exhibits highly nonlinear manifolds. The similar ideas have ap-
peared in [2] and [31].

A. Normalization

When classifying a query set, the locally orthogonal compo-
nents of the query set are computed with respect to th model
class using for . NN recognition is then per-
formed in terms of the normalised subspace similarity as

where is the subspace similarity between the query
and th model and are the mean and standard deviation of
subspace similarities of validation image sets with the th class
model. As each class exploits a different total correlation matrix,
the score normalization process is required for classification.

B. Time-Efficient Classification

Batch computation of the locally orthogonal subspaces
of a query set for classification is time-consuming, i.e., taking

, where is the number of vectors in
the query set. This computational cost is reduced using the up-
date function in Section IV, where
are the eigenvector and eigenvalue matrices of the correlation

Fig. 3. Data set. (Top) Frames from a typical video sequence from the data-
base used for evaluation. The motion of the user was not controlled, leading
to different poses. (Bottom) The seven different illumination conditions in the
database.

matrix of the query set and of the class specific total
correlation matrix , respectively. Note that this only requires

, where is the number of columns of . The sub-
sequent canonical correlation matching with models is not
computationally expensive. It only costs (refer to
Section II-A), where is the dimension of the orthogonal sub-
spaces.

C. Incremental Update of LOSM

Incremental update of the locally OSM may be similarly done
as described in previous sections. The three steps in Section IV
are remained as the same except that the total correlation ma-
trix is replaced with the class specific total correlation matrices
defined above with . Thus, when a new data set is added to
the th class, the total correlation matrices that have nonzero
need to be updated, which increases the time complexity of the
previous step up to fold. In each update, the sufficient span-
ning set of the total correlation matrix remains the same as (12),
since it is independent of the weight terms.

VI. EVALUATION

A. Data Set

We used the face video database of 100 subjects. For each
person, seven video sequences of the individual in arbitrary mo-
tion were collected. Each sequence was recorded in a different
illumination setting for 10 s at 10 fps and 320 240 pixel reso-
lution (see Fig. 3). Following automatic localization using a cas-
caded face detector [15] and cropping to the uniform scale, im-
ages of faces were histogram equalized. Each sequence is then
represented by a set of raster-scanned vectors of the normalized
images.

B. Batch OSM versus Incremental OSM in Accuracy and Time
Complexity

The incremental OSM yielded the same solution as the batch-
mode OSM for the data merging scenario, where the 100 se-
quences of 100 face classes of a single illumination setting were
initially used for learning the orthogonal subspaces. Then, the
sets of the 100 face classes of other illumination settings were
additionally given for the update. We set the total number of
updates including the initial batch computation to be 6 and the
number of images to add at each iteration around 10,000. The
dimension of the uniformly scaled images was 2,500 and the
number of orthogonal components was around 10. The latter
was set to capture more than 99% of the energy from the eigen-
value plot. We used all ten canonical correlations for classi-
fication. See Fig. 4(a) for the example orthogonal component

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on July 26,2010 at 19:34:19 UTC from IEEE Xplore.  Restrictions apply. 



1072 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 4, APRIL 2010

Fig. 4. Batch versus Incremental OSM-1. (a) Example orthogonal components,
which are computed by the incremental and the batch-mode, are very alike.
(b) Insensitivity of the incremental OSM to the dimensionality of the subspace
of the total correlation matrix. The incremental solution yields the same solution
as the batch-mode, provided the dimensionality of the subspace is high enough.

Fig. 5. Batch versus Incremental OSM-2. (a) Accuracy improvement of the
incremental OSM for the number of updates. (b) Computational costs of the
batch and incremental OSM.

computed by the proposed incremental algorithm and the batch-
mode. The figure shows the element values ( -axis) of the 400-
dimensional ( -axis) basis vectors. The errors compare favor-
ably with the working precision of our machine. Fig. 4(b) shows
the insensitivity of the incremental OSM to the dimension of the
subspace of the total correlation matrix. The incremental OSM
yields the same accuracy as the batch-mode OSM, provided the
retained dimensionality of the subspace is sufficient. The sub-
space dimensionality was automatically chosen from the eigen-
values plots of the correlation matrices at each update. Fig. 5(a)
shows the accuracy improvement of the incremental OSM ac-
cording to the number of updates. It efficiently updates the ex-
isting orthogonal subspace models with new evidence contained
in the additional data sets, giving increasing accuracy. The com-
putational costs of the batch OSM and the incremental OSM are
compared in Fig. 5(b). Whereas the computational cost of the
bath-mode is largely increased as the data is repeatedly added,
the incremental OSM keeps the cost of the update low.

C. Accuracy Comparison With Prior Arts

Another experiment was designed for comparing the accu-
racy of several other methods with the proposed orthogonal and
locally orthogonal subspace methods. The training of all the al-
gorithms was performed with the data acquired in a single illu-
mination setting and testing with a single other setting. An inde-
pendent illumination set comprising both training and test sets

Fig. 6. Accuracy comparison.

was used for the validation. We compared the performance of
Mutual Subspace Method (MSM) [7], where the dimension of
each subspace is 10, representing more than 99% energy of the
data, CMSM [10] used in a state-of-the-art commercial system
FacePass [11], where the dimension of the constrained subspace
was set to be 360, which yielded the best accuracy for the val-
idation set, Discriminative Canonical Correlations (DCC) [21],
Orthogonal Subspace Method (OSM), and Locally Orthogonal
Subspace Method (LOSM), where the class priors were set by a
threshold returning a half of the total classes as the neighboring
classes. The component numbers of the total correlation matrix
and the orthogonal subspaces of OSM and LOSM were 200 and
10 respectively. Fig. 6 compares the recognition accuracy of
all methods, where the experiment numbers correspond to the
combinations of the training/test lighting sets. OSM was supe-
rior to CMSM and similar/or inferior to DCC except in experi-
ment 4 and 6. The proposed locally orthogonal subspace method
(LOSM) outperformed all the other methods.

D. Portal Scenario of Multiple Biometric Grand Challenge

We have participated in the portal challenge of Multiple
Biometric Grand Challenge [32]. The task is to match a query
video captured at portal with still gallery images like passport
photos, i.e., a single image per person for face verification.
The data set has in total 110 still images in gallery set and
140 videos in query set. The still images were captured in a
studio quality (i.e., a good lighting, frontal facial pose and high
resolution condition) and the videos in a poor indoor lighting
including various head poses, scales and illumination changes.
The challenge involves two experiments (called mask 1 and
mask 2) taking different combinations of gallery and query
subjects. See [32] for details. We have augmented 50 face
gallery images by random affine transformations obtaining a
set of face images per person. The other set of face images,
typically composed of 150–200 images, was extracted from
each query video, thus comprising set-to-set matching. Each
face image is represented by multiscale local binary pattern
(LBP) histograms [33] (see Fig. 7). For cropped face images
of 142 120 pixels, 10 LBP operators of the radius from one
to ten were used. The number of nonoverlapped regions was
81 or 100. We have proposed the three methods: the first is to
compute the similarity score of each query image with a gallery
image in the PCA+LDA space (leant by the augment gallery
images) and to combine the similarity scores over the images
of a query video. The second method is to match a query set to
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Fig. 7. Multiscale local binary pattern histograms. Multiscale LBP images
are divided into several nonoverlap regions. Each region is represented as a
histogram.

Fig. 8. MBGC Face verification results. *Denotes number of components in
LBPs.

a gallery set by OSM based on LBPs: OSM is applied to each
local component and the subspace similarities are summed
over components. The third one is obtained by fusion of the
two methods. Fig. 8 shows the accuracy comparison by equal
error rate (%). Increasing the number of components in LBPs
improved the accuracy. The image frame based method with
100 components exhibited better accuracy than the image set
based method OSM with 81 components in Mask1 but poorer in
Mask2. The fusion method improved the best single method for
both Masks. Note that the proposed subspace method worked
well on the sparse representation of LBP.

VII. CONCLUSION

In the object recognition task involving image sets, the de-
velopment of an efficient incremental learning method for han-
dling increasing volumes of image sets is important. Image data
emanating from environments dramatically changing from time
to time is continuously accumulated. The proposed incremental
solution of the orthogonal subspaces and the locally orthog-
onal subspaces facilitates a highly efficient learning to adapt to
new data sets. The same solution as the batch-computation is
obtained with far lower complexity in both time and space. In
the recognition experiments using 700 face image sets, the pro-
posed LOSM delivered the best accuracy over all other relevant
methods.
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