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a b s t r a c t

The objective of this work is to authenticate individuals based on the appearance of their faces. This is a
difficult pattern recognition problem because facial appearance is generally greatly affected by the
changes in the way a face is illuminated, by the camera viewpoint and partial occlusions, for example
due to eye-wear. We describe a fully automatic algorithm that systematically addresses each of these
challenges. The main novelty is an algorithm for decision-level fusion of two types of imagery: one
acquired in the visual and one acquired in infrared electromagnetic spectrum. Specifically: we examine:
(i) the effects of preprocessing of data in each domain, (ii) the fusion of holistic and local facial
appearance, and (iii) propose an algorithm for combining the similarity scores in visual and thermal
spectra in the presence of prescription glasses and significant pose variations, using a small number of
training images (5–7). Our system achieved a high correct identification rate of 97% on a freely available
data set containing extreme illumination changes.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For decades, the personal identification task had shown
progress by employing technological means like secret knowl-
edge, such as personal identification numbers, and by using
personal possessions, such as identity cards and radio frequency
identification chips. As opposed to these means which are
generally easy targets for fraud, biometric modalities like facial
geometry, ear form and iris are universal and relatively consistent
over time. As the cost of biometric sensors, visible and thermal
imagers, microphones, and motion sensors continues to sink due
to higher demand, biometric systems have the tendency to
employ more than a single sensor to identify an individual upon
as many as non-redundant biometric modalities. In recent years
there have been largely three categories of approaches to face
recognition for obtaining complementary information that can be
loosely termed multi-sample, multi-sensor and multi-modal. This
paper presents a multi-sensory multi-sample face biometric
fusion methodology for personal identification.

1.1. Problem challenges and proposed methodology

Variations in head pose and illumination are the most
challenging aspects of face recognition. In practice, the effects of

changing pose are usually less problematic and can oftentimes be
overcome by acquiring data over a time period e.g. by tracking a
face. Consequently, image sequence or image set matching has
recently gained a lot of attention in the literature [1–3], as a
practical way of obtaining multi-view appearance information. In
this paper we too consider the image set matching paradigm. In
contrast to pose, illumination changes are much more difficult to
deal with for face recognition algorithms: the illumination setup
in which a face is imaged is in most cases not possible to control,
its physics difficult to accurately model and training data
containing typical appearance variability is usually not available.

Thermal spectrum imagery is useful in this regard as it is
virtually insensitive to illumination changes, see Fig. 1. On the
other hand, it lacks much of the individual, discriminating facial
detail contained in visual images. In this sense, the two modalities
can be seen as complementing each other. The key idea behind
the system presented in this paper is that robustness to extreme
illumination changes can be achieved by fusing the two. This
paradigm will further prove useful when which we consider the
difficulty of recognition in the presence of prescription glasses,
which are a major problem for recognition using thermal
spectrum imagery.

1.2. Paper organization

The remainder of this paper is organized as follows. In the next
section we review relevant previous work on face recognition in
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visual and thermal spectra, as well as multi-sensory techniques.
Section 3 describes each of the main components of the proposed
system in detail: baseline face set matching is covered first
(Section 3.1), followed by sections on data preprocessing and
extraction (Section 3.3), recognition using only a single modality
(Section 3.4), the proposed modality fusion (Section 3.5) and,
finally, dealing with occlusions caused by prescription glasses
(Section 3.6). Our empirical evaluation methodology, data sets
used and the performance of the proposed algorithm are reported
and discussed in Section 4. The paper is concluded with a
summary and an outline of promising directions for future
research.

2. Previous work

2.1. Mono-sensor based techniques

2.1.1. Optical sensors
By far the most widely used type of sensors in face recognition

systems are optical sensors, as a result of their high availability
and low cost. An optical camera records the energy of incident
light in the visible spectrum reflected from the face surface. Thus,
it implicitly captures the variation in the surface shape and
reflectance. However, it is also dependent on the lighting
conditions in which the images are acquired. In order to overcome
this problem, a larger number of face recognition algorithms has
been proposed which can be broadly into two well-known
categories: statistical appearance-based and model-based meth-
ods [4].

Appearance-based methods, as their name suggests, perform
recognition directly from the way faces appear in images,
interpreting them as ordered collections of pixels. Faces are
typically represented as vectors in the image space; discrimina-
tion between individuals is then performed by employing
statistical models that explain inter- and/or intra- personal
appearance changes.

The main limitation of purely appearance-based recognition is
that of limited generalization ability, especially in the presence of
greatly varying illumination conditions. On the other hand, an
appealing property of this group of algorithms is that they can be
typically extended to recognize using sets or sequences of faces.
Eigenfaces, for example, can be used on a per-image basis, with
recognition decision cast using majority vote [5]. A similar voting
approach was also successfully used with local features in [6],
which were extracted by tracking a face using a Gabor Wavelet
Network [6–8]. In [9] video information is used only in the

training stage to construct person-specific PCA spaces, self-
eigenfaces, while verification was performed from a single image
using the Distance from Feature Space criterion. Classifiers using
different eigenfeature spaces were used in [10] and combined
using the sum rule [11]. Better use of training data is made with
various discriminative methods such as Fisherfaces, which can be
used to estimate database-specific optimal projection [12]. An
interesting extension of appearance correlation-based recognition
to matching sets of faces was proposed by Yamaguchi et al. [13].
The so-called mutual subspace method (MSM) has since gained
considerable attention in the literature. In MSM, linear subspaces
describing appearance variations within sets or sequences are
matched using canonical correlations [14,15].

However, all of the aforementioned appearance-based meth-
ods poorly generalize in the presence of large illumination
changes. Thus, model-based methods have been proposed to deal
with this problem. These formulate models of image formation
with the intention of recovering: (i) mainly person-specific
(e.g. face albedo or shape) and (ii) extrinsic, nuisance variables
(e.g. illumination direction, or head yaw). The key challenge lies
in coming up with models for which the parameter estimation
problem is not ambiguous or ill-conditioned.

The active appearance model [16], for example, was proposed
for describing objects that vary both in shape and appearance. A
deformable, triangular mesh is fitted to an image of a face, guided
by combined statistical models of shape and shape-free appear-
ance, so as to best explain the observed image. The 3D Morphable
Model can be seen as a 3D extension of this approach. This model
consists of albedo values at the nodes of a 3-dimensional
triangular mesh describing face geometry. Model fitting is
performed by combining a Gaussian prior on the shape and
texture of human faces with photometric information from an
image [17].

An attractive feature of model-based approaches is that they
explicitly model both intrinsic and extrinsic variables. On the
other hand, they suffer from convergence problems in the
presence of background clutter or facial occlusions such as
glasses, unlike the method proposed in this paper. Furthermore
and importantly for this work they often require high quality
image input and struggle with non-Lambertian effects or multiple
light sources.

2.1.2. Thermal infrared-sensor based techniques
A number of studies suggests that face recognition in the

thermal spectrum offers some distinct advantages over that in the
visible spectrum, including invariance to ambient illumination

Fig. 1. Illumination changes have a dramatic effects on images acquired in the visible light spectrum (top row). In contrast, thermal imagery (bottom row) shows
remarkable invariance.
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changes [18–21]. This is due to the fact that a thermal infrared
sensor measures the energy of heat radiation emitted by the face
rather than the reflected light. In outdoor environments, and
particularly in direct sunlight, illumination invariance only holds
true to good approximation for the long-wave infrared (LWIR:
8214mm) spectrum, which is fortunately measured by the less
expensive uncooled thermal infrared camera technology. Human
skin has high emissivity in the medium-wave infrared (MWIR:
325mm) spectrum and even higher emissivity in the LWIR
spectrum making face imagery by and large invariant to
illumination variations in these spectra.

Appearance-based face recognition algorithms applied to
thermal infrared imaging consistently performed better than
when applied to visible imagery under variable lighting
conditions [22,23,19,24]. Further performance improvements
can be achieved using decision-based fusion [19]. In contrast to
other techniques, Srivastana and Liu [25], performed face
recognition in the space of Bessel function parameters. First, they
decompose each infrared face image using Gabor filters. Then,
they represent the face by modelling the marginal density of
the Gabor filter coefficients using Bessel functions. This approach
has further been improved by Buddharaju et al. [26]. Recently,
Friedrich and Yeshurun [27] showed that IR-based recognition
is also less sensitive to changes in head pose and facial
expression.

A thermal sensor generates imaging features that uncover
thermal characteristics of the face pattern. Another advantage of
thermal infrared imaging in face recognition is the existence of a
direct relationship to underlying physical anatomy such as
vasculature. Indeed, thermal face recognition algorithms attempt
to take advantage of such anatomical information of the human
face as unique signatures. The use of vessel structure for human
identification has been studied during recent years using traits
such as hand vessel patterns [28,29], finger vessel patterns [30,31]
and vascular networks from thermal facial images [32]. In [33] a
novel methodology that consists of a statistical face segmentation
and a physiological feature extraction algorithm, and a matching
procedure of the vascular network from thermal facial imagery
has been proposed.

The down side of employing near infrared and thermal infrared
sensors is that glare reflections and opaque regions appear in
presence of subjects wearing prescription glasses, plastic and sun
glasses. For a large proportion of individuals the regions around
the eyes—that is an area of high interest to face recognition
systems—become occluded and therefore less discriminant
[34,35].

2.2. Multi-sensor based techniques

In the biometric literature several classifiers have been used to
concatenate and consolidate the match scores of multiple
independent matchers of biometric traits [36–40]. In [41] a
HyperBF network is used to combine matchers based on voice and
face features. Ross and Jain [42] use decision tree and linear
discriminant classifiers for classifying the match scores pertaining
to the face, fingerprint and hand geometry modalities. In [43]
three different color channels of a face image are independently
subjected to LDA and then combined.

Recently, several successful attempts have been made to fuse
the visual and thermal infrared modalities to increase the
performance of face recognition [44,45,21,46,47,22,41,42,48,49].
Visible and thermal sensors are well-matched candidates for
image fusion as limitations of imaging in one spectrum seem to be
precisely the strengths of imaging in the other. Indeed, as the
surface of the face and its temperature have nothing in common,

it would be beneficial to extract and fuse cues from both sensors
that are not redundant and yet complementary.

In [44] two types of visible and thermal fusion technique have
been proposed. The first fuses low-level data while the second
fuses matching distance scores. Data fusion was implemented by
applying pixel-based weighted averaging of co-registered visual
and thermal images. Decision fusion was implemented by
combining the matching scores of individual recognition modules.

The fusion at the score level is the most commonly considered
approach in the biometric literature [50]. Cappelli et al. [51] use a
double sigmoid function for score normalization in a multi-
biometric system that combines different fingerprint matchers.
Once the match scores output by multiple matchers are
transformed into a common domain they can be combined using
simple fusion operators such as the sum of scores, product of
scores or order statistics (e.g., maximum/minimum of scores or
median score). Our proposed method falls into this category of
multi-sensor fusion at the score level. To deal with occlusions
caused by eyeglasses in thermal imagery, Heo et al. [44]
used a simple ellipse fitting technique to detect the circle-like
eyeglass regions in the IR image and replaced them with an
average eye template. Using a commercial face recognition
system, FaceIt [52], they demonstrated improvements in face
recognition accuracy. Our method differs both in the glasses
detection stage, which uses a principled statistical model of
appearance variation, and in the manner it handles detected
occlusions. Instead of using the average eye template, which
carries no discriminative information, we segment out the eye
region from the infrared data, effectively placing more weight on
the discriminative power of the same region extracted from the
filtered, visual imagery.

3. Method details

In the sections that follow we explain our system in detail,
the main components of which are conceptually depicted in
Fig. 2.

3.1. Matching image sets

In this paper we are dealing with face recognition from sets of
images, both in the visual and thermal spectrum. We will
demonstrate that illumination invariance and recognition robust-
ness in the presence of prescription glasses can be achieved using
a combination of simple data preprocessing (Section 3.3), a
combination of holistic and local features (Section 3.4) and the
fusion of the two modalities (see Section 3.5). These stages
normalize for the bulk of appearance changes caused by extrinsic
(non-person-specific) factors. Hence, the requirements for our
basic set-matching algorithm are those of: (i) some pose general-
ization and (ii) robustness to noise. We will show that the two
criteria are successfully met by modelling appearance variations
within an image set using a low-dimensional linear subspace and
then by comparing two such subspaces by finding the most
similar modes of variation within them.

The appearance modelling step is a simple application of
principal component analysis (PCA) without mean subtraction.
Formally, given a data matrix dARD!N (each column representing
a rasterized image), the corresponding subspace is spanned by the
eigenvectors of the matrix C¼ ddT corresponding to the largest
eigenvalues. We used 5D subspaces, as sufficiently expressive to
on average explain over 90% of data variation within intrinsically
low-dimensional face appearance changes within a set.
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3.2. Principal angles

Principal, or canonical, angles 0ry1r # # # ryDrðp=2Þ be-
tween two D-dimensional linear subspaces U1 and U2 are
recursively uniquely defined as the minimal angles between any
two vectors of the subspaces:

ri ¼ cosyi ¼ max
ui AU1

max
vi AU2

uT
i vi ð1Þ

subject to the orthonormality condition:

uT
i ui ¼ vTi vi ¼ 1; uT

i uj ¼ vTi vj ¼ 0; j¼ 1; . . . ; i&1: ð2Þ

We will refer to ui and vi as the i-th pair of principal vectors, see
Fig. 3(a). The quantity ri is also known as the i-th canonical
correlation [15]. Intuitively, the first pair of principal vectors
corresponds to the most similar modes of variation within two
linear subspaces; every next pair to the most similar modes
orthogonal to all previous ones. We quantify the similarity of
subspaces U1 and U2, corresponding to two face sets, by the cosine
of the smallest angle between two vectors confined to them i.e.
r1.

This interpretation of principal vectors motivates the suit-
ability of canonical correlations as a similarity measure when
subspaces U1 and U2 correspond to face images. First, the

Visual imagery (image set) Thermal imagery (image set)

Features

Facial feature detection & registration

Modality and data fusion

Glasses detection

PreprocessingPreprocessing
Trained classifier

Fig. 2. Our system consists of three main modules performing (i) data preprocessing and registration, (ii) glasses detection and (iii) fusion of holistic and local face
representations using visual and thermal modalities.

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5
−4
−3
−2
−1

0
1
2
3
4  u1, v1

u2

 v2

Fig. 3. An illustration of the concept of principal angles and principal vectors in the case of two 2D subspaces embedded in a 3D space. As two such subspaces necessarily
intersect, the first pair of principal vectors is the same (i.e. u1 ¼ v1). However, the second pair is not, and in this case forms the second principal angle of
cos&1 r2 ¼ cos&1ð0:8084Þ ' 363 . The top three pairs of principal vectors, displayed as images, when the subspaces correspond to image sets of the same and different
individuals are displayed in (b) and (c) (top rows corresponds to ui , bottom rows to vi). In (b), the most similar modes of pattern variation, represented by principal vectors,
are very much alike in spite of different illumination conditions used in data acquisition.
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empirical observation that face appearance varies smoothly as a
function of camera viewpoint [1,53] is implicitly exploited: since
the computation of the most similar modes of appearance
variation between sets can be seen as an efficient ‘‘search’’ over
entire subspaces, generalization by means of linear pose inter-
polation and extrapolation is inherently achieved. This concept is
further illustrated in Fig. 3(b and c). Furthermore, by being
dependent on only a single (linear) direction within a subspace,
by employing the proposed similarity measure the bulk of data in
each set, deemed not useful in a specific set-to-set comparison, is
thrown away. In this manner robustness to missing data is
achieved.

An additional appealing feature of comparing two subspaces in
this manner is contained in its computational efficiency. If B1 and
B2 are orthonormal basis matrices corresponding to U1 and U2,
then writing the Singular Value Decomposition (SVD) of the
matrix BT

1B2:

M¼ BT
1B2 ¼URVT : ð3Þ

The i-th canonical correlation ri is then given by the i-th singular
value of M i.e. Ri;i, and the i-th pair of principal vectors ui and vi
by, respectively, B1U and B2V [54]. Seeing that in our case M is a
5! 5 matrix and that we only use the largest canonical
correlation, r1 can be rapidly computed as the largest eigenvalue
of MMT [55].

3.3. Data preprocessing and feature extraction

The first stage of our system involves coarse normalization of
pose and illumination. Pose changes are accounted for by in-plane

registration of images, which are then passed through quasi-
illumination-invariant image filters.

We register all faces, both in the visual and thermal domain, to
have the salient facial features aligned. Specifically, we propose to
explicitly align the eyes and the mouth. This choice of features is
motivated by their characteristic appearance in both thermal and
visual spectra, whichmakes automatic detection very reliable (e.g. see
[56–60]). In this work, we used the method proposed by Arandjelović
and Zisserman [56]. The 3 point correspondences, between the
detected and the canonical features’ locations, uniquely define an
affine transformation which is applied to the original image. Finally,
faces are then cropped to 80! 80 pixels, as shown in Fig. 4.

Coarse brightness normalization is performed by band-pass
filtering the images [56,61]. The aim is to reduce the amount of
high-frequency noise as well as extrinsic appearance variations
confined to a low-frequency band containing little discriminating
information. Most obviously, in visual imagery, the latter are
caused by illumination changes, owing to the smoothness of the
surface and albedo of faces [62].

We consider the following type of a spatial-domain band-pass
filter:

IF ¼ I ( Gs ¼ W1
&I ( Gs ¼ W2

; ð4Þ

which has two parameters—the widths W1 and W2 of isotropic
Gaussian kernels. The optimal values of these are estimated from
a small training corpus of individuals in varying illumination.
Fig. 5 shows the recognition rate across the corpus as the values of
the two parameters are varied. The optimal values were found to
be 2.3 and 6.2 for visual data; the optimal filter for thermal data
was found to be a low-pass filter with W2 ¼ 2:8 (i.e. W1 was found
to be very large). This is indeed expected, as thermal imagery is
not affected by any predominantly low-frequency extrinsic

Fig. 4. Shown is the original image in the visual spectrum with detected facial features marked by yellow circles (left), the result of affine warping the image to the
canonical frame (centre) and the final registered and cropped facial image. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 5. The optimal combination of the lower and upper band-pass filter thresholds is estimated from a small training corpus. The plots show the recognition rate using a
single modality, (a) visual and (b) thermal, as a function of the widths W1 and W2 of the two Gaussian kernels in (4). It is interesting to note that the optimal band-pass
filter for the visual spectrum passes a rather narrow, mid-frequency band, whereas the optimal filter for the thermal spectrum is in fact a low-pass filter.
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factors, but can be seen to contain a rather large amount of high
frequency noise.

Examples of optimally filtered, registered and cropped images
are shown in Fig. 6. It is important to note from Fig. 5 that the
recognition rate varied smoothly with changes in kernel widths,
showing that the method is not very sensitive to their exact
values, which is suggestive of good generalization to unseen data.

Finally, we also propose to further scale the result of filtering of
visual data by the smooth version of its original image:

ÎF ðx; yÞ ¼ IF ðx; yÞ:=ðI ( Gs ¼ W2
Þ; ð5Þ

where := represents element-wise division. The purpose of local
scaling is to equalize edge strengths in dark (weak edges) and
bright (strong edges) regions of the face; this is similar to the self-
quotient image of Wang et al. [63]. This step further improves the
robustness of the representation to illumination changes, as we
demonstrate in Section 4.

3.4. Single modality-based recognition

We compute the similarity of two individuals using only a single
modality (visual or thermal) by combining the holistic face
representation described in Section 3.3 and a representation based
on local image patches. The idea behind using patches is to gain
further viewpoint robustness. Since smaller surface areas of the face
are closer to planar than the entire face, when affine registered they
exhibit a greater degree of appearance invariance. This is supported
by previous empirical accounts in the literature, e.g. see [3,64,65].

As before, we use the eyes and the mouth as the most
discriminative regions by extracting rectangular patches centred
at the detections, see Fig. 7. We treat holistic and local patch-
based similarities as independent, the overall similarity score thus
being obtained by weighted summation:

rv=t ¼oh # rhþom # rmþð1&oh&omÞ # re

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Local patches contribution

; ð6Þ

where rm, re and rh are the scores of separately matching,
respectively, the mouth, the eyes and the entire face regions, and
oh and om the weighting constants.

The optimal values of the weights were estimated from the
offline training corpus. As expected, eyes were shown to carry a
significant amount of discriminative information, as for the visual
spectrum we obtained oe ¼ 0:3. On the other hand, the mouth
region, highly variable in appearance in the presence of facial
expression changes, was found not to improve recognition (i.e.
om ' 0:0).

The relative magnitudes of the weights were found to be
different in the thermal spectrum, both the eye and the mouth
region contributing equally to the overall score: om ¼ 0:1,
oh ¼ 0:8. Notice the rather insignificant contribution of individual
facial features. This is most likely due to inherently spatially
slowly varying nature of heat radiated by the human body.

3.5. Fusing modalities

Until now we have focused on deriving a similarity score
between two individuals given sets of images in either thermal or
visual spectrum. A combination of holistic and local features was
employed in the computation of both. However, the greatest
power of our system comes from the fusion of the two modalities.

Given rv and rt , the similarity scores corresponding to visual
and thermal data, we compute the joint similarity as:

rf ¼ovðrvÞ # rvþ½1&ovðrvÞ+ # rt : ð7Þ

Notice that the weighting factors are no longer constants, but
functions. The key idea is that if the visual spectrum match is very
good (i.e. rv is close to 1.0), we can be confident that illumination
difference between the two images sets compared is mild and
well compensated for by the visual spectrum preprocessing of
Section 3.3. In this case, visual spectrum should be given
relatively more weight than when the match is bad and the
illumination change is likely more drastic. The value of ovðrvÞ can
then be interpreted as statistically the optimal choice of the
mixing coefficient ov given the visual domain similarity rv.
Formalizing this we can write

ovðrvÞ ¼ argmax
o

pðojrvÞ; ð8Þ

or, equivalently

ovðrvÞ ¼ argmax
o

pðo;rvÞ
pðmÞ : ð9Þ

Under the assumption of a uniform prior on the confusion margin,
pðmÞ

pðajmÞppða;rvÞ; ð10Þ

and

ovðrvÞ ¼ argmax
o

pðo;rvÞ: ð11Þ

Fig. 6. Effects of the optimal band-pass filters on registered and cropped faces in (a) visual and (b) thermal spectra.

Fig. 7. In both the visual and the thermal spectrum our algorithm combines the
similarities obtained by matching the holistic face appearance and the appearance
of three salient local features—the eyes and the mouth.
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3.5.1. Learning the weighting function
The function ov ,ovðrvÞ is estimated in three stages: first (i)

we estimate pðov;rvÞ, then (ii) compute oðrvÞ using (11) and
finally (iii) make an analytic fit to the obtained marginal
distribution. Step (i) is challenging and we describe it next.

Iterative density estimate: The principal difficulty of estimating
pðov;rvÞ is of practical nature: in order to obtain an accurate
estimate (i.e. a well-sampled distribution), a prohibitively large
training database is needed. Instead, we employ a heuristic
alternative. Much like before, the estimation is performed using
the offline training corpus.

Our algorithm is based on an iterative incremental update of
the density, initialized as uniform over the domain ov;rvA ½0;1+.
We iteratively simulate matching of an unknown person against a
set gallery individuals. In each iteration of the algorithm, these are
randomly drawn from the offline training database. Since the
ground truth identities of all persons in the offline database is
known, for each ov ¼ kDov we can compute (i) the initial visual
spectrum similarity rp;p

v of the novel and the corresponding
gallery sequences, and (ii) the resulting separation dðkDovÞ i.e. the
difference between the similarities of the test set and the set
corresponding to it in identity, and that between the test set and
the most similar set that does not correspond to it in identity. This
gives us information about the usefulness of a particular value of
ov for observed rp;p

v . Hence, the density estimate p̂ðov;rvÞ is then
updated at ðkDov;rp;pÞ, k¼ 1 . . . . We increment it proportionally
to dðkDovÞ after passing through a y-axis shifted sigmoid
function:

p̂ðkDov;rp;p
v Þ½nþ1+ ¼ p̂ðkDov;rp;p

v Þ½n+ þ½sigðC # dðkDovÞÞ&0:5+; ð12Þ

where subscript ½n+ signifies the n-th iteration step and

sigðxÞ ¼
1

1þe&x
; ð13Þ

as shown in Fig. 8(a). The sigmoid function has the effect
of reducing the overly confident weight updates for the
values of ov that result in extremely good or bad separations
dðkDovÞ. The purpose of this can be seen by noting that we
are using separation as a proxy for the statistical goodness
of ov, while in fact attempting to maximize the average
recognition rate (i.e. the average number of cases for which
dðkDovÞ40). This is one of the main differences of the
described algorithm to that of Arandjelović and Cipolla
proposed in [66].

Fig. 9 summarizes the proposed offline learning algorithm. An
analytic fit to ovðrvÞ in the form ð1þeaÞ=ð1þea=rv Þ is shown in
Fig. 8(b).
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Fig. 8. The contribution of visual matching, as a function of the similarity of visual imagery. A low similarity score between image sets in the visual domain is indicative of
large illumination changes and consequently our algorithm leant that more weight should be placed on the illumination-invariant thermal spectrum: (a) y-axis shifted
sigmoid function and (b) weighting function.

Fig. 9. The proposed fusion learning algorithm, applied offline.
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3.6. Prescription glasses

The appeal of using the thermal spectrum for face recognition
stems mainly from its invariance to illumination changes, in sharp
contrast to visual spectrum data. The exact opposite is true in the
case of prescription glasses, which appear as dark patches in
thermal imagery, see Fig. 6. The practical importance of achieving
recognition robustness in the presence of corrective eyewear can
be seen by noting that in the US in 2000 roughly 96 million people,
or 34% of the total population, wore prescription glasses [67].

In our system, the otherwise undesired, gross appearance
distortion that glasses cause in thermal imagery is used to help
recognition by detecting their presence. If the subject is not
wearing glasses, then both holistic and all local patches-based
face representations can be used in recognition; otherwise the eye
regions in thermal images are ignored as they contain no useful
recognition (discriminative) information.

3.6.1. Glasses detection
We detect the presence of glasses by building representations

for the left eye region (due to the symmetry of faces, a detector for
only one side is needed) with and without glasses, in the thermal

spectrum. The foundations of our classifier are laid out in Section
3.1. Appearance variations of the eye region with out without
glasses are represented by two 6D linear subspaces estimated
from the training data corpus, see Fig. 10 for examples of training
data used for subspace estimations. The linear subspace
corresponding to eye region patches extracted from a set of
thermal imagery of a novel person is then compared with ‘‘glasses
on’’ and ‘‘glasses off’’ subspaces using principal angles. The
presence of glasses is deduced when the corresponding
subspace results in a higher similarity score. We obtain close to
flawless performance on our data set (also see Section 4 for
description), as shown in Fig. 11(a,b). Good discriminative ability
of principal angles in this case is also supported by visual
inspection of the ‘‘glasses on’’ and ‘‘glasses off’’ subspaces; this is
illustrated in Fig. 11(c) which shows the first two dominant
modes of each, embedded in the 3D principal subspace.

The presence of glasses severely limits what can be achieved
with thermal imagery, the occlusion heavily affecting both the
holistic face appearance as well as that of the eye regions. This is
the point at which our method heavily relies on decision fusion
with visual data, limiting the contribution of the thermal
spectrum to matching using mouth appearance only i.e. setting
om ¼ 1:0 in (6).

Glasses
ON

Glasses
OFF

Fig. 10. Shown are examples of glasses-on (top) and glasses-off (bottom) thermal data used to construct the corresponding appearance models for our glasses detector.
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Fig. 11. (a) Inter- and (b) intra- class (glasses on and off) similarities across our data set. (c) Good discrimination by principal angles is also motivated qualitatively as the
subspaces modelling appearance variations of the eye region with and without glasses on show very different orientations even when projected to the 3D principal
subspace. As expected, the ‘‘glasses off’’ subspace describes more appearance variation, as illustrated by the proportionally greater extent of the linear patch representing it
in the plot. (a) Glasses ON, (b) glasses OFF and (c) model subspaces.
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4. Empirical evaluation

We evaluated the described system on the ‘‘Dataset 02: IRIS
Thermal/Visible Face Database’’ subset of the Object Tracking and
Classification Beyond the Visible Spectrum (OTCBVS) database,1

freely available for download at http://www.cse.ohio-state.edu/
OTCBVS-BENCH/. this database contains 30 individuals, 11
roughly matching poses in visual and thermal spectra and large
illumination variations (some of these are exemplified in Fig. 12).
Images were acquired using the Raytheon Palm-IR-Pro camera in
the thermal and Panasonic WV-CP234 camera in the visual
spectrum, in the resolution of 240! 320 pixels.

Our algorithm was trained using all images in a single
illumination in which all three salient facial features could be
detected. This typically resulted in 7–8 images in the visual and
6–7 in the thermal spectrum, see Fig. 13, and roughly 7453 yaw
range, as measured from the frontal face orientation.

The performance of the algorithm was evaluated both in 1-to-
N and 1-to-1 matching scenarios. In the former case, we assumed
that test data corresponded to one of people in the training set
and recognition was performed by associating it with the closest
match. Verification (or 1-to-1 matching, ‘‘is this the same person?’’)
performance was quantified by looking at the true positive
admittance rate for a threshold that corresponds to 1 admitted
intruder in 100.

4.1. Results

A summary of 1-to-N matching results is shown in Table 1.
Firstly, note the poor performance achieved using both raw visual

Fig. 12. Each row corresponds to an example of a single training (or test) set of images used for our algorithm in (a) the visual and (b) the thermal spectrum. Note the
extreme changes in illumination, as well as that in some sets the user is wearing glasses and in some not. (a) Visual and (b) thermal.

1 IEEE OTCBVSWS Series Bench; DOE University Research Program in Robotics
under Grant DOE-DE-FG02-86NE37968; DOD/TACOM/NAC/ARC Program under
Grant R01-1344-18; FAA/NSSA Grant R01-1344-48/49; Office of Naval Research
under Grant #N000143010022.
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as well as raw thermal data. The former is suggestive of
challenging illumination changes present in the OTCBVS data set
(Fig. 14). This is further confirmed by significant improvements
gained with both band-pass filtering and the self-quotient image
which increased the average recognition rate for, respectively,
35% and 47%. The same is corroborated by the receiver–operator
characteristic curves in Fig. 15 and 1-to-1 matching results in
Table 2.

On the other hand, the reason for low recognition rate of raw
thermal imagery is twofold: it was previously argued that the two
main limitations of this modality are the inherently lower
discriminative power and occlusions caused by prescription
glasses. The addition of the glasses detection module is of little
help at this point—some benefit is gained by steering away from
misleadingly good matches between any two people wearing
glasses, but it is limited in extent as a very discriminative region

of the face is lost. Furthermore, the improvement achieved by
optimal band-pass filtering in thermal imagery is much more
modest than with visual data, increasing performance, respec-
tively, by 35% and 8%. Similar increase was obtained in true
admittance rate (42% vs. 8%), see Table 2.

Neither the eyes or the mouth regions, in either the visual or
thermal spectrum, proved very discriminative when used in
isolation, see Fig. 14. Only 10–12% true positive admittance was
achieved, as shown in Table 3. However, the proposed fusion of
holistic and local appearance offered a consistent and statistically
significant improvement. In 1-to-1 matching the true positive
admittance rated increased for 4–6%, while the average correct 1-
to-N matching improved for roughly 2–3%.

The greatest power of the method becomes apparent when the
two modalities, visual and thermal, are fused. In this case the role
of the glasses detection module is much more prominent,
drastically decreasing the average error rate from 10% down to
3%, see Table 1. Similarly, the true admission rate increases to 74%
when data is fused without special handling of glasses, and to 80%
when glasses are taken into account.

5. Summary and conclusions

In this paper we described a system for personal identification
based on a face biometric that uses cues from visual and thermal
imagery. The two modalities are shown to complement
each other, their fusion providing good illumination invariance
and discriminative power between individuals. Prescription
glasses, a major difficulty in the thermal spectrum, are reliably
detected by our method, restricting the matching to non-affected
face regions. Finally, we examined how different preprocessing
methods affect recognition in the two spectra, as well as
holistic and local feature-based face representations. The
proposed method was shown to achieve a high recognition
rate (97%) using only a small number of training images (5–7)
in the presence of large illumination changes (Tables 4
and 5).
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Fig. 13. Shown are histograms of the number of images per person used to train our algorithm. Depending on the exact head poses assumed by the user we typically
obtained 7–8 visual spectrum images and typically a slightly lower number for the thermal spectrum. The range of yaw angles covered is roughly 7453 measured from the
frontal face orientation. (a) Visual and (b) thermal.

Table 1
Shown is the average rank-1 recognition rate using different representations
across all combinations of illuminations.

Representation Recognition

Visual
Holistic raw data 0.58
Holistic, band-pass 0.78
Holistic, SQI filter 0.85
Local+holistic data fusion, SQI filter 0.87

Thermal
Holistic raw data 0.74
Holistic raw w/ glasses detection 0.77
Holistic, low-pass filter 0.80
Local+holistic data fusion, low-pass filter 0.82

Multi-sensory fusion
w/o glasses detection 0.90
w/ glasses detection 0.97

Note the performance increase with each of the main features of our system:
image filtering, combination of holistic and local features, modality fusion and
prescription glasses detection.
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Our results suggest several possible avenues for future work
and improvement. A practically important issue, which was not
addressed in this paper, is that of natural variation of thermal
images e.g. due to post-prandial thermogenesis or increased
sympathetic nervous system activity during excitement. We also
intend to make further use of the thermal spectrum, by not only
detecting the glasses, but also by segmenting them out. This is
challenging across large pose variations, such as those contained
in our test set. Another research direction we would like to pursue
is that of synthetically enriching the training corpus to achieve
increased robustness to pose differences between image sets (c.f.
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Fig. 14. Isolated local features receiver–operator characteristics (ROC): for visual (blue) and thermal (red) spectra. (a) Eyes and (b) mouth. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. Holistic representations receiver–operator characteristics (ROC) for visual (blue) and thermal (red) spectra. (a) Unprocessed, (b) band-pass filtered and (c) self-
quotient image filtered. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
A summary of the comparison of different image processing filters for 1 in 100
intruder acceptance rate.

Representation Visual Thermal

1% intruder acceptance
Unprocessed/raw 0.2850 0.5803
Band-pass filtered (BP) 0.4933 0.6287
Self-quotient image (SQI) 0.6410 0.6301

Both the simple band-pass filter, and even further its locally scaled variant, greatly
improve performance. This is most significant in the visual spectrum, in which
image intensity in the low spatial frequency is most affected by illumination
changes.

Table 3
A summary of the results for 1 in 100 intruder acceptance rate.

Representation Visual (SQI) Thermal (BP)

1% intruder acceptance
Eyes 0.1016 0.2984
Mouth 0.1223 0.3037

Local features in isolation perform very poorly.

Table 4
Holistic and local features—a summary of 1-to-1 matching (verification) results.

Representation Visual (SQI) Thermal (BP)

1% intruder acceptance
Holistic+eyes 0.6782 0.6499
Holistic+mouth 0.6410 0.6501
Holistic+eyes+mouth 0.6782 0.6558
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[68,69]). Finally, we note that empirical evaluation on a larger
data set is needed to clearly identify the limitations and scalability
of the proposed method.

Acknowledgments

We would like to thank Trinity College Cambridge, the Toshiba
Corporation and Delphi Electronics Ltd. for their kind support for
our research, the volunteers whose face videos were entered in
our database and Cambridge Commonwealth Trust.

References
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[56] O. Arandjelović, A. Zisserman, On film character retrieval in feature-length
films, in: Interactive Video: Algorithms and Technologies, Springer, Berlin,
2006, pp. 89–103.

[57] T.L. Berg, A.C. Berg, J. Edwards, M. Maire, R. White, Y.W. Teh, E. Learned-
Miller, D.A. Forsyth, Names and faces in the news, Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, 2004,
pp. 848–854.

[58] D. Cristinacce, T.F. Cootes, I. Scott, A multistage approach to facial feature
detection, Proceedings of IAPR British Machine Vision Conference (BMVC),
vol. 1, , 2004, pp. 277–286.

[59] P.F. Felzenszwalb, D. Huttenlocher, Pictorial structures for object recognition,
International Journal of Computer Vision (IJCV) 61 (1) (2005) 55–79.

[60] L. Trujillo, G. Olague, R. Hammoud, B. Hernandez, E. Romero, Automatic
feature localization in thermal images for facial expression recognition,
Computer Vision and Image Understanding (CVIU) 106 (2-3) 258–269.

[61] A. Fitzgibbon, A. Zisserman, On affine invariant clustering and automatic cast
listing in movies, in: Proceedings of European Conference on Computer
Vision (ECCV), 2002, pp. 304–320.

[62] Y. Adini, Y. Moses, S. Ullman, Face recognition: the problem of compensating
for changes in illumination direction, IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI) 19 (7) (1997) 721–732.

[63] H. Wang, S.Z. Li, Y. Wang, Face recognition under varying lighting conditions
using self quotient image, in: Proceedings of IEEE International Conference on
Automatic Face and Gesture Recognition (FGR), 2004, pp. 819–824.

[64] D.S. Bolme, Elastic bunch graph matching, Master’s Thesis, Colorado State
University, 2003.
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