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Abstract

In this paper, we aim to reconstruct free-form 3D models from only one or few silhouettes by learning the prior

knowledge of a specific class of objects. Instead of heuristically proposing specific regularities and defining parametric

models as previous research, our shape prior is learned directly from existing 3D models under a framework based on

the Gaussian Process Latent Variable Model (GPLVM). The major contributions of the paper include: 1) a framework

for learning the shape prior of the 3D objects, which requires no heuristic of the object, and can be easily generalized to

handle various categories of 3D objects, and 2) novel probabilistic inference schemes for automatically reconstructing

3D shapes from the silhouette(s) in the single view or sparse views. Qualitative and quantitative experimental results

on both synthetic and real data demonstrate the efficacy of our new approach.
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1. Introduction

Reconstructing 3D shapes from 2D images can be a

hard problem if limited inputs are provided. Typical ex-

amples include single view reconstruction (SVR) and

shape-from-silhouettes (SFS) in the sparse-view setting

(see Fig. 1). In these cases, the reconstruction prob-

lem becomes severely under-constrained. Few or no re-

liable image correspondence is available for setting up

the stereo framework, while available geometrical clues,

such as silhouettes, depth maps, and normal maps, are

usually far from enough to obtain an unambiguous re-

construction of the model.

In view of this problem, previous research makes

strong assumptions and proposes shape priors of either

general or specific 3D objects/scenes, e.g., minimizing

overall smoothness [1], planar or ground-vertical scenes

[2], to further constrain the problem. A common ma-

jor drawback of these methods is that those priors are

mainly defined by heuristics and suitable only for spe-

cial cases. Such limitation prevents these methods from

reconstructing those models with more complex and

curved geometry like human faces or human bodies.

Another line of research is to manually define para-

metric models for each specific category, such as 3D

faces [3] and human bodies [4], [5], in order to charac-

terize the variation or the morphing of the 3D shape.

The model parameters can thus be learned from the

training data. The main drawback of these approaches
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Figure 1: Reconstructing the 3D shapes of a mug and a human body

from single 2D image/silhouette inputs. The results are generated by

the approach proposed in the paper.

is that parametric models are only suitable for describ-

ing the shape of limited categories of objects, and it is

hard to generalize the model for reconstructing objects

in other categories.

In this paper, we make an attempt to learn the shape

knowledge from existing 3D models instead of propos-

ing specific reconstruction rules and shape models from

heuristics. We observe that the shapes of the same class

of objects are actually controlled by a small number

of factors notwithstanding the complex geometrical or

topological structures. By manipulating them, we can

then model the 3D shape of the whole class of ob-
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jects with much fewer parameters and the detailed re-

construction can be estimated from the 2D image with

much less difficulty.

Hence, our goal is to extract these factors automat-

ically in the learning process, which is more general-

ized compared with the parametric shape models in the

past literatures, no prior knowledge from the shape is

assumed in the proposed framework, and the latent fac-

tors that control the shape variation of the objects are

also treated unknown in advance. In this paper, Gaus-

sian Process Latent Variable Model (GPLVM) [6] is

used to complete this task, i.e., to extract the unknown

low dimensional embedded information of the object

from high dimensional observations given a relatively

small amount of training samples. The GPLVM and

its variants have been applied to solve computer vision

problems, mainly in the context of human pose estima-

tion [7], [8], [9], [10] and tracking the deformable sur-

face [11]. Compared with widely shape modeling ap-

proaches such as PCA [4], [5], GPLVM not only gives

a much more compact representation, but also captures

the multi-modality of the solution and provides an un-

certainty measurement of the prediction.

Our framework requires little interaction and it can

be generalized to reconstruct various categories of 3D

objects which may have more complex structures. Ex-

periments performed on the synthetic and real examples

show that our new approach is plausible even though

only one or few 2D silhouettes are given as inputs.

The rest of this paper is organized as follows. A

brief review on previous methods on single view recon-

struction is given in Section 2; the framework of our

learning-based reconstruction and detailed techniques

involved are presented in Section 3; experimental re-

sults are provided in Section 4; related discussions are

given in Section 5; and finally, a brief conclusion is

drawn in Section 6.

2. Related Work

Single view reconstruction and shape-from-

silhouettes are popular topics in the area of computer

vision and much investigated in the previous literatures.

Pure geometrical methods are the main streams of

current research on SVR. Much research has been done

on planar outdoor architecture scenes. Criminisi et al.

[12] recover the 3D affine geometry from a single per-

spective image based on vanishing points information

and projective geometry constraints. All the measure-

ments in the scene can be accurately obtained once the

scale factor is determined. Similar constraints are used

by [13], [2]. Hoiem et al. [2] first segment the im-

age into 3 categories: ground, sky, verticals. A coarse

pop-up reconstruction is then obtained based on the seg-

mentation results. Barinova et al. [13] further use a

Conditional Random Field (CRF) model to infer the

ground-vertical boundary parameters. Similar projec-

tive geometry-based approach is also generalized by

Delage et al. [14] to reconstruct indoor scenes. All the

studies above, however, only focus on planar scenes and

also assume a ground verticality for the scene recon-

struction. In contrast, Saxena et al. [15] investigate the

relation between scene depths and image features using

a Markov Random Field (MRF) model. The method,

however, only gives a rough depth estimate of the scene.

Recent work in computer vision and computer-aided

design has looked at the 3D shape reconstruction from

2D sketches or line drawings in the single view [16],

[17], [18]. The objects are represented by edge-vertex

graphs. The common methodology of the research is to

propose regularities manually based on the geometrical

or topological constraints of the line drawings that can

represent a realistic object, and then formulate the re-

construction problem into an optimization problem with

respect to the 3D positions of vertices or edges. Most

of the research is limited to dealing with abstract ob-

jects, which are transparent (with hidden lines visible)

and planar.

Some efforts have also addressed the problem of

reconstructing curved or free-form objects [1], [19].

Zhang et al. [19] introduce several user constraints such

as normal map, depth discontinuities, creases, etc, and

finally formulate the reconstruction problem into lin-

early constrained quadratic optimization problem which

has a closed-form solution. However, their method is

only limited to generate 2.5D Monge patches. Prasad

et al. [1] generalize the scope of the problem to full

3D surfaces. They basically adopt the framework of

constraints-based optimization in [19]. Contour Gener-

ators (CGs) are used for creating curved patches and ob-

jects with more complicated topology are studied. How-

ever, their approach still requires subtle interaction to

mark up the parametric space when the topology of the

3D object becomes complex. Due to the ambiguous na-

ture of SVR problems, all these approaches above often

require considerable amount of interaction from users

and they are usually based on some heuristic regulari-

ties such as minimizing the overall smoothness.

Shape priors like symmetry, geometrical constraints

or other scene cues are usually insufficient to model

more elegant structure and subtle shape variation. In

view of the problem, stronger priors of objects are inves-

tigated, usually through defining the parametric models
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of a specific category, e.g., human bodies. The problem

of reconstructing 3D shapes is transformed into learn-

ing the parameters of the shape model. A represen-

tative parametric model is SCAPE (Shape Completion

and Animation for PEople) [4], which is a data-driven

method for building body shapes with different articu-

lation poses and individual shape variation. This model

has recently been applied to estimating the human body

shape from a monocular image [5], [20]. Sigal et al. [5]

have proposed a discriminative model based on Mix-

ture of Experts to recover the SCAPE model parameters

as well as a generative stochastic optimization which

helps refining the estimation. Their method allows the

discriminative estimation of articulation pose and body

shape directly from monocular and multi-camera image

silhouettes. Guan et al. [20] extend their work on the

SVR problem and improve the reconstruction by includ-

ing the shading cues. The drawbacks of both methods

are that they depend heavily on the accurate pose initial-

ization and a clean segmentation, and also, the optimiza-

tion of the model is based on sampling and searching

in the parameter space, which can be extremely expen-

sive. Compared with this work, our approach differs in

that the proposed framework is targeted to model differ-

ent categories of objects and more general shapes rather

than designed for the specific category.

The problem of inferring the 3D shape of objects

within a learning framework is beginning to receive at-

tention. Representative research includes [21], [22],

[23], [24]. These approaches are quite relevant to

ours. In [24], Torresani et al. try to learn the time-

varying shape of non-rigid 3D object from uncalibrated

2D tracking data, usually monocular video sequences

which record the motion of a specific object. The shape

distribution is assumed and the motion and deformation

of the model are estimated through a generalized EM al-

gorithm. The approach gives satisfying results on syn-

thetic data and are robust to missing data. However,

these algorithms are very slow even for relatively sim-

ple models. The difference between the goal of their

approach and ours is that we focus more on learning the

shape of a class of objects instead of tracking the motion

of a specific object.

Han and Zhu [22] address a two-step Bayesian frame-

work for representing the individual 3D shapes and

modeling the global structure of the scene. Probabilis-

tic inference is done by the Markov Chain Monte Carlo

(MCMC) method with a number of reversible jumping

rules defined. They have handled both man-made block

objects and natural objects. However, there are two

drawbacks of this framework. First, MCMC computa-

tion can be extremely time consuming; second, prob-

abilistic shape priors of different categories of objects

(such as prior models for polyhedra, grass, and trees in

the paper) need to be manually defined before the model

inference can be conducted.

Rother and Saprio [23] formulate the single view re-

construction problem as a belief inference problem on

a hierarchical graphical model, which theoretically han-

dles the pose estimation, recognition and reconstruction

in a unified framework. However, how to obtain the

shape priors of the 3D shapes remain unexplored in the

paper.

Another related work is by Hassner and Basri [21],

where the depth is reconstructed from examples, i.e., 3D

geometries which look similar to the query object from

a database serving as the shape prior. Their method is

non-parametric and the depth of the query is synthesized

with a hard-EM optimization on a target function based

on patch similarities between every database instance

and the query. The method has been proposed to recon-

struct a wide variety of categorized objects, but it re-

quires cleanly-segmented inputs and suffers from slow

computation.

Our approach is similarly based on a learning frame-

work. Different from the previous ones, we aim to learn

the prior knowledge and rules of reconstruction from

existing 3D models using statistical methods instead of

proposing them empirically.

3. Approaches

Fig. 2 illustrates the framework of our approach, and

it includes both procedures for training the shape prior

model and predicting the 3D shape based on the model

obtained. 2D silhouettes and the corresponding depth

scans of 3D objects are used as training data. In the

training stage (Fig. 2(a)), we first use a common shape

template to encode the 2D position and depth infor-

mation for each instance in the database (Section 3.1).

After this, Principal Component Analysis (PCA) (Sec-

tion 3.2) is applied to decorrelate and reduce the dimen-

sion of input data before training the shape prior using

the GPLVM (Section 3.3).

In the prediction (reconstruction) stage, only 2D sil-

houettes are used. We propose two schemes for the

shape recovery. The first scheme is a straightforward

approach (Fig. 2(b)). The same preprocessing steps

of registration and dimension reduction as the training

stage are performed (Section 3.4). Then, depths of the

object and uncertainty measurements are inferred by the

GPLVM, which is trained from the combinational in-

puts of both 2D position and depth information. The
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Figure 3: An illustration of the shape registration. (a) Template matching. Target and template silhouettes are represented by yellow and magenta

curves, respectively; landmarks in the target and templated are marked by cyan and blue dots, respectively; template grid points are marked by

green squares. (b) Depth maps extraction. Each 2D grid point gi is associated with two depth samples d
f

i
(frontal) and db

i
(dorsal).

second scheme is a hierarchical model based on match-

ing silhouettes with the shapes generated from the prior

(Section 3.5). It allows the shape reconstruction from

one or more noisy silhouette inputs and the correction

of camera viewpoints.

3.1. Preprocessing and Registration

Registration of the 2D input and vectorizing the 2D

position and depth information of the objects are neces-

sary steps before the model training. For this purpose,

a template matching scheme is applied in our approach.

For each category of objects, the shape template with a

deformable silhouette and a uniform grid inside is gen-

erated, as shown in Fig. 3. The motivation of using a

template is that we find that the position information en-

coded by the grid is effective and less susceptible to the

imperfectness and local distortion of input silhouettes.

Simply, we generate the template from an arbitrary

instance in the category. In both training and testing

stages, the template is deformed to fit the 2D shape of

each instance by matching the silhouette and warping

the internal grid points accordingly. A method based on

the modified Iterative Closest Points (ICP) is adopted

to efficiently match silhouettes in our approach. Then,

the 2D position and depth information of that object are

encoded by the displacements of these grid points. And

finally, frontal and dorsal depth values are extracted at

each grid point.

3.1.1. Silhouette Matching

We denote the deformable silhouette template in the

t-th iteration as the point set st = {si,t}
Ns

i=1
and the tar-

get silhouette as the point set starget = {s
target

j
}
Nt

j=1
(see

Fig. 3). The update equation at the t-th iteration can be

written as:

si,t+1 = si,t + η(λ1∆sb
i,t + λ2∆sd

i,t + λ3∆sl
i,t), (1)

where the position update consists of the following three

terms.

The first term ∆sb
i,t

, which is simply defined by the

point-wise distance of two silhouettes, enforces the

good matching between the template and the target sil-

houette, as shown in (2).

∆sb
i,t =

∑Nt

j=1
wb

j
(si,t − s

target

j
)

∑Nt

j=1
wb

j

, (2)

where wb
j
= exp(−‖si,t − s

target

j
‖2/σ2), j = 1, 2, · · · ,M.

The second term ∆sd
i,t

regulates that the neighboring

points on the silhouette should maintain their relative
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Figure 2: An overview of our approach: (a) training the shape prior;

(b) reconstruction from single silhouette input.

positions from each other during the deformation. Ide-

ally, they should neither cluster together nor stay far

away from each other after the template deformation.

It is given as:

∆sd
i,t =

∑Ns

j=1
wd

j
(si,t − sj,t − si,0 + sj,0)
∑Ns

j=1
wd

j

, (3)

where wd
j
= exp(−‖si,0 − sj,0‖

2/σ2), j = 1, 2, · · · ,N.

In many 3D shape databases, landmarks are manually

placed on the surface of the object to indicate critical po-

sitions of anthropometric or geometrical characteristics

of the shape category. These landmarks are frequently

used for setting up the correspondences and tracking the

shape variation. The third term ∆sl
i,t

ensures that the sil-

houette deformation should be coincident with the land-

mark registration of the template.

∆sl
i,t =

∑L
j=1 wl

j
(si,t − l

target

j
− si,0 + lj)

∑L
j=1 wl

j

, (4)

where {lj}
L
j=1

are the default positions of the landmarks

in the template silhouette, {l
target

j
}L

j=1
are the correspond-

ing positions of those landmarks in the target silhouette,

and the weighting factors γ j = exp(−‖si,0 − lj‖
2/σ2),

j = 1, 2, · · · , L. The landmark term is optional and valid

only when landmark information is provided. How-

ever, we find it can be quite useful for fast initializ-

ing the positions of template silhouette points by setting

λ1 = λ2 = 0 and λ3 = 1 in the first iteration, and later

guiding a quick and accurate silhouette matching.

The silhouette matching algorithm is run for several

iterations with λ1 = λ2 = λ3 = 1, η = 0.5, σ = 0.02/4t

1. The parameter settings are fixed throughout all exper-

iments.

3.1.2. Grid and Depth Map Generation

With the deformation of the silhouette, we also hope

to establish a one-to-one mapping between the de-

formed template and the original one for all the grid

points lying inside the silhouette.

We assume the grid density is Ng and consider the

i-th sample grid point of the template. Let gi and gi,0

be its after-warping position and its initial position be-

fore warping, respectively. To deform the grid, we first

roughly estimate gi with the silhouette displacement∆gs

and the landmark displacement (if landmark is given)

∆gl, as shown in (5):

gi = gi,0 + λ
′
∆gs + (1 − λ′)∆gl

= gi,0 +

∑Ng

i=1
ws

i
′(si,t − si,0)

∑Ng

i=1
ws

i
′

+

∑L
j=1 wl

j

′
(l

target

j
− lj)

∑L
j=1 wl

j

′ ,

(5)

where {l j}
L
j=1

are the original positions of the landmarks

in the template silhouette; {l
target

j
}L

j=1
are the correspond-

ing positions of those landmarks in the target silhou-

ette; and weighting factors are ws
i
′ = σ′

‖g0−si,0‖
exp(−‖g0 −

si,0‖
2/σ′2), i = 1, 2, · · · ,Ng and wl

j

′
= σ′

‖g0−lj‖
exp(−‖g0 −

lj‖
2/σ′2), j = 1, 2, · · · , L, respectively. Here, we fix

the parameters to be λ′ = 0.2 and σ′ = 0.1. Then,

in order to generate a smoother and more homogeneous

warping, we iteratively average the position of each grid

point by its 4-neighborhood while pinpointing those

grid points on the boundary.

Finally, the depth values are sampled from the 3D

shape at the grid points of the registered template. Since

the depth sampling is done on both sides of the object,

two depth values d
f

i
and db

i
are extracted for the front

and back for each 2D grid point gi. A grid with 2Ng 3D

sample points is generated to represent the 3D shape.

The complete procedure of the silhouette registration is

given in Algorithm 1. We find the described registration

method is efficient for clean but dense silhouettes and

1λ3 = 0 is no landmark is provided.
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Algorithm 1 Template-based silhouette registration al-

gorithm.

1. Initialize the parameters λ1 = λ2 = λ3 = 1, η =

0.5, σ = 0.02, λ′ = 0.2, and σ′ = 0.1.

2. for iteration t = 1 to T1:

(a) If t = 1, set λ1 = λ2 = 0; else, set λ1 = λ2 =

1.

(b) Calculate ∆sb
i,t

, ∆sd
i,t

, and∆sl
i,t

(if any) for each

sample point i.

(c) Update the positions of template silhouette

points si,t, i = 1, 2 · · · ,Ns with equation (1).

(d) Update the parameter σ = 0.02/2t.

3. Compute the internal warping and deform the grid

with equation (5).

4. Smooth the grid by iteratively averaging the grid

points in the 4-neighborhood.

5. Depth sampling at deformed grid points from both

sides of the object.

grids. Empirically, the running time grows linearly with

the resolution of the template grid.

3.2. Dimension Reduction and Decorralation

The raw position and depth data obtained from the

template are not suitable for learning the GPLVM. First,

each dimension of the original data, which corresponds

to the coordinate of grid point, is highly correlated

with the others, i.e., the coordinates of neighboring grid

points. This fact violates the dimension independence

assumption when training a GPLVM (see Section 3.3).

Second, the high dimensionality (around 5000) of the

original data requires huge memory consumption dur-

ing the model training. Because of these problems we

first decorrelate and compress the data using Principal

Component Analysis (PCA).

For each input instance, we obtain the 2Ng-D grid po-

sition vector Gy = [gi]
Ng

i=1
and its corresponding 2Ng-D

depth-map vector Gz = [d
f

i
, db

i
]
Ng

i=1
through the template

matching. 2 They can be approximately represented

into the linear combinations of mean vectors Gy,0 and

Gz,0 of the training set, and the first m eigenvectors

A = [ai]
m
i=1

and B = [bi]
m
i=1

of training-set covariance

2More details of Gy and Gz can be found in Appendix B.

matrices, respectively, as the following equations show.

Gy = Gy,0 +

m
∑

i=1

yiai = Gy,0 + Ay (6)

Gz = Gz,0 +

m
∑

i=1

zibi = Gz,0 + Bz (7)

where the linear coefficients yi and zi can be used to

characterize the 3D shape of the new instance. For our

experiment, we use the first m = 30 principal com-

ponents of both 2D positions and the depth maps, re-

spectively, and they account for over 98% variance of

datasets we investigate.3 For each instance, m-D PCA

feature vectors y = {yi}
m
i=1

and z = {zi}
m
i=1

are then used

as the input data pair for training the GPLVM.

3.3. Training a Shape Model

The GPLVM [6] is known to be an effective approach

for probabilistically modeling high dimensional data

that lies on a low dimensional non-linear manifold. The

motivation of using GPLVM to learn the 3D shape prior

is based on our observation that the shapes of the same

class of objects are usually controlled by a small number

of parameters notwithstanding the complex geometrical

or topological structures. Through manipulating these

factors, we can then model the 3D shape of the whole

class of objects with much fewer values and the detailed

reconstruction from the 2D image can be estimated with

much less difficulty.

In the setting of the reconstruction problem, the train-

ing data includes 2D position features and depth fea-

tures, which are given in pairs. We aim to recover the

underlying low-dimensional sub-manifold structure that

can model such pair-wise relationships. To model this

relationship, we adopt a shared-GPLVM [10], a vari-

ant of GPLVM which handles multiple observations that

share the same latent structure. Our version is slightly

different from the model presented in [10] since we

do not adopt the back-constraints to model this inverse

mapping because it can be unsuitable for predicting the

multiple hypotheses caused by the ambiguity in the sin-

gle view reconstruction problem.

In our problem, N pairs of position and depth fea-

tures: (Y,Z) = [(y1, z1),

(y2, z2), · · · , (yN , zN)] obtained from the previous sub-

section, are given as the training data of the model.

In the shared GPLVM, such a manifold structure

is described by q-dimensional latent variables X =

3The number of eigenvectors m can be set differently for Gy and

Gz. We here use the same m for the convenience purpose.
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[x1, x2, · · · , xN] and each xi simultaneously controls the

corresponding observed PCA feature pair (yi, zi), i =

1, 2, · · · ,N. Observations Y and Z are conditional inde-

pendent given the latent structure X.

With the assumption of dimension independence, the

likelihood of observations can be formulated as the fol-

lowing product of m independent Gaussian processes:

P(Y|X, θY) =

m
∏

i=1

N(Y:,i; 0,KY), (8)

P(Z|X, θZ) =

m
∏

i=1

N(Z:,i; 0,KZ), (9)

where N(∗; ∗, ∗) denotes a Gaussian distribution; Y:,i

and Z:,i denote the N × 1 column vectors constructed

from the i-th dimension of Y and Z, respectively; KY =

[K
(i, j)

Y
]1≤i≤N,1≤ j≤N and KZ = [K

(i, j)

Z
]1≤i≤N,1≤ j≤N are kernel

matrices which are defined as ”RBF+linear” kernels [9]

in this paper:

K
(i, j)

Y
= kY(xi, xj)

= θY,1e−
θY,2

2
(xi−xj)

T (xi−xj) + θ−1
Y,3δi j + θY,4xi

T xj; (10)

K
(i, j)

Z
= kZ(xi, xj)

= θZ,1e−
θZ,2

2
(xi−xj)

T (xi−xj) + θ−1
Z,3δi j + θZ,4xi

T xj. (11)

where δi j is the Kronecker delta function; and θY =

{θY,i}
4
i=1

and θZ = {θZ,i}
4
i=1

refer to the hyper-parameters

in KY and KZ, respectively.

And we assume the prior of the latent variables X to

be the product of independent Gaussian distributions on

each latent dimension xi:

P(X) =

N
∏

n=1

N(xn; 0, I). (12)

Such a prior formulation can pose a regularity and pe-

nalize extremely large latent coordinates.

The model minimizes the negative log joint marginal

posterior L with respect to both the latent coordinates X

of the training data and the hyper-parameters θY and θZ
of the kernels KY and KZ, where

L = − log P(X,Y,Z|θY, θZ)

= − log P(Y|X, θY)P(Z|X, θZ)P(X)

=
1

2
tr(K−1

Y YYT ) +
1

2
tr(K−1

Z ZZT ) +
1

2
‖X‖2

+
m

2
log |KY| +

m

2
log |KZ| + const. (13)

Generally speaking, there is no closed-form solution

to the optimization problem in (13) when general non-

linear kernels KY and KZ are given and there are likely

to be multiple local optima [6]. We use the scaled conju-

gate gradient (SCG) method [25] to minimize (13) with

an Isomap [26] initialization on the latent positions X

and a random initialisation on θY and θZ in our imple-

mentation. Derivatives required to compute the gradi-

ents of 13) are provided in Appendix A.

3.4. Inferring Depths from the Single Silhouette

A straightforward method to predict the depth from a

new single-view silhouette input includes the following

steps. First, we obtain a 2D-position feature ỹ from the

input silhouette. This is done by going through the same

shape registration and dimension reduction procedures

as the training stage does. Second, given the GPLVM

shape priorM learned in Section 3.3, the depth feature

z̃ can be inferred from ỹ. It is theoretically equivalent to

maximizing the following conditional distribution.

P(z̃|ỹ,M) = P(z̃|ỹ,Z,Y,X, θY, θZ)

=

∫

P(x|ỹ,Y,X, θY)P(z̃|x,Z,X, θZ)dx, (14)

Since there is no closed-form solution to maximize the

integral in (14), we approximate the prediction with a

two-stage process. In the first stage, we shall find the

position x̃ in the latent space which is most likely to gen-

erate the observed 2D-position feature. Unfortunately,

GPLVM does not give a simple functional representa-

tion for this inverse mapping. Hence, we find the la-

tent position x̃ by minimizing the negative log predictive

posterior − log P(x|ỹ,Y,X, θY).

x̃ = argminx − log P(x|ỹ,Y,X, θY)

= argminx − log P(ỹ|x,Y,X, θY)P(x)

= argminx

(

(

ỹ − µy(x)
)T (

ỹ − µy(x)
)

2σ2
y(x)

+
m

2
log
(

σ2
y

(

x)
)

+
1

2
‖x‖2
)

. (15)

where

µy(x) = kY(x,X)T KY
−1Y (16)

σ2
y(x) = kY (x, x) − kY(x,X)T K−1

Y kY(x,X), (17)

Intuitively, (15) minimizes the reconstruction error (the

first term) while keeping the predicative variance ỹ

small (the second term), i.e., the latent position x̃ of the

new instance is close to those of the training data. The

last term is a regularity term that penalizes large latent

positions and usually has relatively little influence on

the optimization. The scale conjugate gradient (SCG)

7



method is again used for the optimization in our imple-

mentation (see Appendix A for detailed formulations).

Equation (15) can usually be multi-modal, which

means that the same 2D-position feature input can cor-

respond to several solutions in the latent space. We

hence adopt a multiple-initialization scheme to search

multiple peaks.

In the second stage, the depth feature z̃ is to be esti-

mated based on the latent positions we have found.

z̃ = argmaxzP(z|x̃,Z,X, θZ). (18)

The second stage is the forward mapping and it has a

Gaussian closed-form representation as follows:

P(z|x̃,Z,X, θZ) = N(z; µz(x̃), σ2
z (x̃)I), (19)

where

µz(x̃) = kZ(x̃,X)T K−1
Z Z, (20)

σ2
z (x̃) = kZ(x̃, x̃) − kZ(x̃,X)T K−1

Z kZ(x̃,X) (21)

Hence the most probable depth features that corre-

spond to each optimized latent point found in the first

stage can be simply given by the mean prediction z̃ =

kZ(x̃,X)KZ
−1Z. The variance σ2

z , on the other hand, in-

dicates the confidence level of the prediction, or in the

other words, an uncertainty measurement. The larger

the variance, the more uncertain is the prediction.

Finally, the complete depth maps of the 3D object

can be fully reconstructed from the estimated depth fea-

ture z̃ according to (7) through a linear combination of

the mean depth vector Gz,0 and the PCA eigenvectors

B = [bi]
m
i=1

which are stored in memory. It follows that

the predictive depth maps are subjected to the following

Gaussian distribution:

P(Gz|x̃,X,Z) = N(x̃; Gz,0 + Bµz(x̃), σ2
z (x̃)BBT), (22)

which gives the mean depth-map prediction as well as a

measurement of uncertainty. From (22), we can further

write the variance of the depth map prediction at each

grid point as:

σ2
Gz ,i
= σ2

z (x̃)‖Bi,:‖
2. (23)

This point-wise uncertainty measurement is essential

for judging the local accuracy of the prediction.

3.5. Shape-from-silhouettes in the Single-View or

Sparse-View Setting

Section 3.4 gave a probabilistic approach for directly

predicting the 3D shape from a single silhouette. How-

ever there are a couple of shortcomings with this ap-

proach. First, it requires that testing instances are given

V

xM

Wk

k =  1,2,...,K

kγ

Sk

(a)

V Wk Sk

M

x

Shape

P rior

3D Shape
P rojected

Silhouette

Obser ved

Silhouette

Laten t

Coordinate

(b)

Figure 4: Graphical models of the extended shape prediction frame-

work.

in the similar form as the training data. As the train-

ing data are usually aligned (usually in the frontal view)

and with little noise, the power of the approach is quite

limited. Second, the approach is not straightforwardly

extendable to adopt additional inputs (e.g., a silhouette

in an extra view) for the purpose of ambiguity removal

or more accurate reconstruction.

In this subsection, we propose a more adaptive frame-

work for the shape prediction stage. Our aim is to use

the same shape model learned in Section 3.3 to handle

more complicated issues in the shape inference, e.g.,

noisy silhouette inputs and outliers, camera viewpoint

changes, inputs of more than one view, etc., and achieve

more accurate and robust reconstruction.

The problem of modeling 3D shapes from K silhou-

ettes can be described by the graphical model shown in

Fig. 4(a). Here we assume that silhouettes are extracted

from distinct viewpoints. In the model, {Sk}
K
k=1

denotes

the observed input silhouettes in K cameras, which are

given in the form of a 2D point set; V = {vi}
2Ng

i=1
repre-

sents the set of 2Ng 3D sampling points on frontal and

dorsal scans generated by the existing shape modelM

learned in Section 3.3 (see Appendix B for detailed for-

mulations); and Wk (k = 1, 2, · · · ,K) represents the true

silhouette of V in the k-th view, and it is a 2D point set

generated by projecting V into the k-th camera and ex-

tracting those points on the boundary. V, Wk, and Sk

are examplified in Fig. 4(b). Now, the joint posterior

can thus be written as:

P(V, {Sk,Wk}
K
k=1|{γk}

K
k=1,M, x)

=

( K
∏

k=1

P(Sk|Wk)P(Wk|V, γk)

)

P(V|x,M). (24)

where M = {X,Y,Z, θY, θZ} refers to the learned

GPLVM model; x is the latent position; γk = {Pk, tk}

are parameters of the k-th camera. Here, we assume an

8



affine camera given the fact that objects are usually in

weak perspective scenes, where Pk is the 2 × 3 projec-

tion matrix and tk is the 2 × 1 offset vector of the k-th

camera, respectively.

In (24), the terms P(Sk|Wk) and P(Wk|V, γk) model

how well 3D shape V matches the observed silhouettes

Sk (k = 1, 2, · · · ,K). It is formulated as a two-stage

process in our approach: the projection stage and the

matching stage. In the projection stage, P(Wk|V, γk)

models the procedure of projecting the 3D shape V into

a silhouette Wk in the k-th view. It is defined as a Gaus-

sian distribution shown in (25).

P(Wk|V, γk) = N(Wk; P̃kV + t̃k, σ
2
wI2Nb

k
×2Nb

k
). (25)

where P̃k = Pk ⊗ Mk and t̃k = tk ⊗ 1Nb
k
×1 are the ex-

panded versions of the projection matrix Pk and the off-

set vector tk in the k-th view, respectively. Here, V is

represented by a 6Ng-D column vector concatenated by

all 2Ng 3D sampling points, and Wk is represented by

a 2Nb
k
-D column vector concatenated by the 2D image

positions of the Nb
k

sample points on the boundary in

the k-th view; Mk = [mk,i j]1≤i≤Nb
k
,1≤ j≤2Ng

is a Nb
k
× 2Ng

binary masking matrix with element mk,i j = 1 if the pro-

jection of the i-th 3D sample points is on the boundary

and mk,i j = 0 otherwise. Mk selects the Nb
k

silhouette

points of the projection in the k-th view. Both Mk and

Nb
k

are fully determined by Pk.

In the matching stage, P(Sk|Wk) models how well the

input silhouette Sk fits the corresponding boundary pro-

jection Wk of the generated shape in the k-th view. As

shown in (26), the observation likelihood is defined on

the basis of Chamfer matching, which is robust to er-

rors and outliers in the input silhouettes and has been

widely used for matching silhouettes in the application

of object recognition and shape recovery [5], [20], [27].

P(Sk|Wk) =
1

Z
exp

(

−
1

2σ2
s

DT 2
Sk

(

Wk)
)

)

, (26)

where DT 2
Sk

(·) refers to the squared L2-distance trans-

form of the silhouette Sk. For an arbitrary point set

W = {w1,w2, · · · ,wn}, it is defined as DT 2
Sk

(W) =
1
n

∑n
i=1 minui∈Sk

‖wi −ui‖
2. To simplify the computation,

the normalization factor Z is approximated by a constant

here.

Finally, the last term in (24) generates the 3D shape V

from the learned shape modelM at the latent position x,

which is formulated as the predictive likelihood of the

learned GPLVM:

P(V|x,M) = N
(

V; µV(x),ΣV(x)
)

. (27)

And it can be further shown that the likelihood

P(Wk|x,M, γk) also has the Gaussian form:

P(Wk|x,M, γk) =

∫

V

P(Wk|V, γk)P(V|x,M)dV

= N
(

Wk; µWk
(x, γk),ΣWk

(x, γk)
)

.

(28)

The detailed formulations of µV, ΣV, µWk
, ΣWk

4 as well

as related derivations are given in Appendix B.

Our target is to find the optimal 3D shape that best fits

all the image evidences Sk (k = 1, 2, · · · ,K) in K view,

or equivalently, to find the latent position x. And on

the other hand, we also hope to correct parameters γk

of K cameras. This can be done by finding the max-

imum of the overall likelihood of Sk given x and γk

(k = 1, 2, · · · ,K) as follows.

P({Sk}
K
k=1|x,M, {γk}

K
k=1) =

K
∏

k=1

P(Sk|x,M, γk)

=

K
∏

k=1

∫

Wk

P(Sk|Wk)P(Wk|x,M, γk)dWk

=

K
∏

k=1

∫

Wk

1

Zk

e
− 1

2σ2
s

DT 2
Sk

(Wk)
N
(

Wk; µWk
,ΣWk

)

dWk,

(29)

The likelihood has no closed form since the direct in-

tegral over the terms with distance transform is not

tractable. As a consequence, a direct maximization

on (29) will be computationally troublesome. However,

the following property of the L2-distance transform will

help the computation.

Property 1. Let S be the observed 2D silhouette, and

W = {w1,w2, · · · ,wn} and U = {u1, u2, · · · , un} be

two 2D point sets of size n. Then the squared L2-

distance transform of W satisfies DT 2
S
(W) + DT 2

S
(U) ≤

2DT 2
S
( U+W

2
) + 1

2n
‖W − U‖2.

Proof.

l.h.s =
1

n

n
∑

i=1

min
vi∈S
‖wi − vi‖

2 +min
v′

i
∈S
‖ui − v′i‖

2

≤
1

n

n
∑

i=1

min
vi∈S

(

‖wi − vi‖
2 + ‖ui − vi‖

2)

4For the convenience of notation, we sometimes omit the parame-

ters of the terms, e.g., µV = µV(x).
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=
1

n

n
∑

i=1

min
vi∈S

(

2‖
wi + ui

2
− vi‖

2 + 2‖
wi − ui

2
‖2
)

=
2

n

n
∑

i=1

min
vi∈S
‖

wi + ui

2
− vi‖

2 +
1

2n

n
∑

i=1

‖wi − ui‖
2

= r.h.s.

Property 1 give a closed-form lower bound

Q(x, {γk}
K
k=1

) to the likelihood P({Sk}
K
k=1
|x,M, {γk}

K
k=1

),

as shown in (30).

P({Sk}
K
k=1|x,M, {γk}

K
k=1)

=

K
∏

k=1

∫

Wk

1

2Zk

(

e
− 1

2σ2
s

DT 2
Sk

(Wk)
+ e
− 1

2σ2
s

DT 2
Sk

(2µWk
−Wk))

· N
(

Wk; µWk
,ΣWk

)

dWk

≥

K
∏

k=1

∫

Wk

1

2Zk

(

e
− 1

4σ2
s

(

DT 2
Sk

(Wk)+DT 2
Sk

(2µWk
−Wk)
)

)

· N
(

Wk; µWk
,ΣWk

)

dWk

≥

K
∏

k=1

1

Zk

exp
(

−
1

2σ2
s

DT 2
Sk

(

µWk

))

·

K
∏

k=1

∫

Wk

e
− 1

2Nb
k
σ2

s
‖Wk−µWk

‖2

N
(

Wk; µWk
,ΣWk

)

dWk

=

K
∏

k=1

1

Zk

√

det
(

I + 1

Nb
k
σ2

s
ΣWk

)

exp

(

−
1

2σ2
s

DT 2
Sk

(

µWk

)

)

=Q(x, {γk}
K
k=1). (30)

Practically, the maximum-likelihood estimate of the

latent coordinate xML and camera parameters γkML (k =

1, 2, · · · ,K) can be well approximated by finding x and

{γk}
K
k=1

which maximize the lower bound Q.

(xML, {γk ML}
K
k=1) ≈ arg max

x,{γk}
K
k=1

Q(x, {γk}
K
k=1)

= arg min
x,{γk}

K
k=1

− log Q(x, {γk}
K
k=1)

= arg min
x,{γk}

K
k=1

K
∑

k=1

(

1

2σ2
s

DT 2
Sk

(

µWk

)

+
1

2
log det

(

I +
1

Nb
k
σ2

s

ΣWk

)

)

, (31)

and consequently the corresponding maximum likeli-

hood estimate of the 3D shape can be given as:

P(VML|xML,M) = N
(

VML; µV(xML),ΣV(xML)
)

, (32)

In our implementation, − log Q is optimized by the

adaptive-scale line search and multiple initializations

are used to avoid local minima. The optimisation alter-

nates between finding the latent coordinate x and cor-

recting camera parameters {γk}
K
k=1

(and hence {Mk}
K
k=1

and {Nb
k
}K
k=1

). The convergence usually comes fast, as

the latent dimension of GPLVM is low and a small per-

turbation of the camera parameters is assumed. It is also

worth to mention that the determinant det
(

I+ 1

Nb
k
σ2

s
ΣWk

)

in (31) can be computed efficiently (see Appendix C).

3.6. Issues on Computational Complexity

The computational complexity of the GPLVM is

mainly dependent on the number of training data. Let

N be the size of the training set, and m be dimension-

ality of the observation data (position and depth fea-

tures in our problem). The computational complexity of

GPLVM training is determined by the inversion of ker-

nel matrices, i.e., O(N3); while in the depth prediction

stage, the complexity is O(mN) for each iteration, which

is determined by matrices multiplications in (15) and

(18), where K−1
Z

Z can be calculated off-line and stored.

A sparse method, named the Informative Vector Ma-

chine (IVM) [29] can be used to further speed up the

training and prediction. In IVM, a small subset of the

training data called the “active set” (size d ≪ N) is se-

lected to construct the GPLVM effectively. In the train-

ing process, data points are added to the model one at

a time, and at each step the point with the highest con-

struction variances (see (17) and (21)) will be selected.

In this way, the active set tends to contain those training

data points that are reasonably well spaced throughout

the latent space. The overall complexity of the train-

ing can be reduced to O(d2N), which is dominated by

the active selection, while the complexity of each-step

prediction drops to O(md).

4. Experimental Results

4.1. Datasets

In order to verify the efficacy of our approach, we

train the shape models on both synthetic and real data.

We first use parametric models to synthesize two 3D

shape datasets: a vase dataset (2000 instances) and a

mug dataset (2000 instances). The side silhouettes are

parametrized by following equations:

rmug(h) = r1h + r2(1 − h) +
fh

2

√

max(r2
h
− (h − 0.5)2, 0)

(33)

rvase(h) = r1h + r2(1 − h) + s1 sin(πhs2),

where h ∈ [0, 1], (34)
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Table 1: The parameter ranges of synthetic objects. Suppose that the height of the object is 1.

Dataset Parameters

r1 r2 rh s1 s2

Mugs U(0.25, 0.4) U(0.15, 0.25) U( r1

4
, r1

4
+ 0.03) N/A N/A

Vases U(0.25, 0.4) U(0.15, 0.25) N/A U(−5, 5) U(0.5, 1.5)

Figure 5: Instances of the datasets we use. Vases (Row 1 left), mugs

(Row 1 right), and the human bodies in CAESAR dataset(Row 2.

Landmarks are indicated by blue dots.).

where r1 and r2 are radii of the top and the bottom,

respectively; s1 and s2 are parameters for generating

curved silhouettes of vases; rh is the handle size of

mugs; and fh is a binary variable which equals 1 at the

handle areas and 0 otherwise. We generate all parame-

ters using uniform distributions with the ranges listed in

Table 1. For the real data, we investigate the SAE Inter-

national Civilian American and European Surface An-

thropometry Resource (CAESAR) dataset, which con-

tains over 2000 3D body scans of North American and

European adults. For each instance in the CAESAR

dataset, 74 anthropometric landmarks are provided and

they can be used for registration. Some instances of

each dataset are illustrated in Fig. 5.

For registering shapes, the template grid resolutions

Ng of the three classes are 760, 760, and 1864, respec-

tively. Concerning the scale ambiguity of the recon-

struction problem, all objects in a dataset are normal-

ized to have the same height 1 before the training and

the testing.

4.2. Selection of Latent Dimensions

The latent dimension q determines the model com-

plexity of GPLVM and choosing a proper q must be ad-

dressed. The latent space may not be enough to charac-

terize the inherent manifold structure of the data when

its dimensionality is set too low, while on the other

hand, a larger value of q will also increase the average

prediction errors because it leads to over-fitting and poor

generalization.

In practice, we can obtain the proper latent dimen-

sion q of a dataset D through cross validations. Dur-

ing the model training stage, we train Nq GPLVMs

M1,M2, · · ·MNq
on the same subset D1 ⊂ D with a

range of different latent dimensions q1, q2, · · · , qNq
, and

use the rest data D\D1 as the testing set. The model

best fitting the testing set will be selected.

In our work, we learn models for each dataset with

the latent dimension q ranging from 3 to 10, and use

the cross-validation approach described above to vali-

date the performance of these models. The criterion

for the model comparison is the average prediction error

measured in terms of the mean vertex-to-vertex distance

between the model prediction and the ground truth (see

Fig. 6). Through experiments, we finally adopt the opti-

mal dimensionality q = 4 for the vase data, q = 4 for the

mug data, and q = 8 for the human-body data regardless

of gender, respectively.

4.3. Qualitative Experiments

We first train the model of each type of shapes us-

ing 800 instances of the same category, and then ap-

ply our single-silhouette-based prediction approach pro-

posed in Section 3.4 to reconstruct new shape from the

testing silhouettes. Some qualitative results are given in

Fig. 7. For each testing instance, the model automati-

cally returns several depth distributions. In Fig. 7, we

give shapes corresponding to highest predictive poste-

rior values in comparison with the ground truth. Un-

certainty measurements of the shapes are also visually

provided. In general, the shape model we learn can gen-

erate satisfactory reconstruction results. It can be ob-

served that the rotational symmetry of both catagories

is well captured. It is also worth mentioning that un-

certainty measurements give an important cues on the

quality of the local surface estimation. More discussion

on this effect will be given in Section 5.

For the mug dataset, we launch two individual exper-

iments by providing training and testing silhouettes in
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Figure 6: The comparison of models with different latent dimensions. We plot prediction errors versus the latent dimension of the models.

different settings. In the first setting, the handle of the

mug is in the side and not occluded, but it creates an

extra loop in the topology of the silhouette. In the other

test, the viewpoint is parallel to the handle direction,

which may result in the occlusion of the mug handle. In

this case, we also deliberately change the direction of

mug handle randomly, which can be either in front or

behind. Since changing handle position does not affect

the external silhouette of the mug, we expect to see a

bimodal structure in the GPLVM prior model which is

learned from such a dataset. As expected, our model

is capable of generating both feasible reconstruction re-

sults. Given an ambiguous frontal silhouette of the mug

(a trapezoid), our approach is able to find both possi-

ble solutions from the two peaks in the predictive poste-

rior (15), each corresponding to the two different handle

directions, as shown in Fig. 8.

We also train GPLVM body shape priors on male in-

stances, female instances, and mixed-gender instances,

respectively. Each model is learned from the 2D projec-

tions and depth maps of 800 instances in standing pose.

In the testing stage, we provide only the 2D standing

pose silhouettes in frontal view as inputs to the shape

model we obtain. The reconstruction results of human

bodies with different body shapes and genders are given

in Fig. 9. The GPLVM model captures the shape vari-

ation among different people, and it is able to generate

multiple reasonable candidate body shapes which cor-

respond to the input silhouette.

4.4. Quantitative Evaluations and Comparisons

We also evaluate the accuracy of the single-silhouette

reconstruction method quantitatively. For the compari-

son purpose, we implement two different reconstruction

methods in addition to our approach. The first one is

Predictive Posterior

Figure 8: The bimodal predictive posterior of the last mug sample in

Fig. 7. Here we fix the first two dimensions of the latent space and

plot the distribution of the posterior with respect to the 3rd and 4th

dimensions. Each peak of the predictive posterior corresponds to the

case of two different handle directions.

based on nearest-neighbors (NN) searching, i.e. finding

the instance in the database which gives the most simi-

lar silhouette as the query and return its corresponding

depth maps. For the second comparative method, we

perform PCA on the database such that grid positions

and depth maps are encoded jointly. The reconstruction

is done by searching the eigen-space and combining the

modes such that the generated shape fits the query sil-

houette. The first 20 principle components are used to

capture the variation of the shapes in our implementa-

tion. This PCA-based shape modeling approach and

similar variants are widely-used in previous literatures

[3], [4], [5], [20]. In the implementation of both meth-
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Silhouettes

Output ShapesGround

Truth

Figure 7: Qualitative results on synthetic mug and vase datasets. Row 1-3: Test on vase silhouettes; Row 4-5: Test on side-view mug silhouettes;

Row 6-7: Test on frontal-view mug silhouettes. For each testing instance, we give the shape prediction (in black dots) in contrast with the ground

truth in the side view, as well as uncertainty measurement (in magenta error bars [µ − σ, µ + σ]) from both the top view and the side view. For the

frontal-view mug instances (row 3 and 4), two different modes of the solution are given.

ods, we adopt Hausdorff Fraction [28] as the measure-

ment of silhouette similarity.

We compare the performance of these algorithms on

all three datasets. For each dataset, we use 800 instances

randomly selected from the datasets to train the GPLVM

shape prior and another 800 as the testing set. The ex-

act same training sets and testing sets are used in the

nearest-neighbor search and PCA-based reconstruction.

The evaluation is based on measuring the errors between

the ground truths and the candidate reconstructed results

at specified positions. To obtain the natual scales of

measurement errors, we assume different actual height

H for each class of objects: H = 100mm for vases and

mugs, and H = 1700mm for human bodies.

In this paper, the error measurement of the recon-

struction is defined as:

Err =
1

NS

NS
∑

i=1

|di − di,0|, (35)

where di and di,0 are the reconstructed and ground truth

thickness values (the difference of frontal and dorsal

depth values) at sampling position i, respectively, and

NS is the total number of sampling positions. For the

synthetic data, we sample thickness values at all the

grid points. On the other hand, for the human body

data, thickness values are sampled around the chest and

the waist, which are of most interests in anthropometric
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Figure 9: Reconstruction from a single frontal view silhouette of the human body. For each given testing input silhouette (column 1), we predict

the depth maps using the trained model. Two candidate reconstruction results with the highest predictive posterior values are given in column 2

and 3. For each result, we give the reconstructed depth surface from the side view (left), the uncertainty of the prediction (center, in magenta error

bars [µ − σ, µ + σ]), and the contrast with the ground truth (right).

Chest Ar ea

Waist Ar ea

Figure 10: An illustration of chest and waist areas on the human body

for depth samplings and error measurements.

measurements. In our experiments, the chest area and

the waist area are defined as 5cm-wide horizontal bands

(see Fig. 10), and their heights are determined by CAE-

SAR landmark marks ”Right/Left Thelion/Bustpoint”

and ”Waist Preferred, Posterier”, respectively.

From the results tabulated in Table 2 and 3, we

can see that both our GPLVM-based approach and the

PCA-based approach always outperform the nearest-

neighbor-based approach in all the contexts listed. In

more cases, our approach gives lower predictive errors

than the PCA-based approach. This is mainly because

searching in a lower dimensional latent space is less

likely to be trapped into local optima.

We also compare the efficiency of different ap-

proaches, and investigate how the size of the training

set affects the speed and the precision of the GPLVM

model. We run all the codes on a 2.5GHz processor. The

average training and prediction time for different ap-

proaches are summarized in Table 4. Generally speak-

ing, the nearest-neighbor method is most efficient due to

its simplicity. Our GPLVM-based approach is more ef-

ficient than the PCA-based approach due to the fact that

the optimization of GPLVM is done on a more compact

latent space (usually ≤ 8-D), compared with higher-

dimensional 20 − 30-D PCA eigen-space.

In the experiments, we train three GPLVMs with the

same latent dimension for each dataset based on dif-

ferent training sets: a full training set of 800 instances

(GPLVM-F), a subset of the full training set contain-

ing only 200 instances selected by random (GPLVM-R),

and another subset of 200 instances selected by IVM

14



Table 2: Quantitative comparisons on vases and mugs datasets given the single frontal-view silhouette. Errors and standard deviations are given in

millimeters, and the actual height of each instance is assumed to be 100mm.

Data Set The 1st Candidate

GPLVM GPLVM-R GPLVM-I PCA NN

Dimensionality 4 4 4 10

Vases 0.66 ± 0.24 0.89 ± 0.37 0.72 ± 0.76 1.08 ± 0.96 2.17 ± 1.76

Mugs Frontal 0.87 ± 0.40 0.82 ± 0.49 0.83 ± 0.47 1.09 ± 0.77 1.60 ± 1.22

Side 1.19 ± 0.9 1.45 ± 1.19 1.34 ± 1.17 1.07 ± 0.87 2.75 ± 2.19

Data Set Best among the First 3

GPLVM GPLVM-R GPLVM-I PCA NN

Dimensionality 4 4 4 10

Vases 0.61 ± 0.29 0.76 ± 0.2 0.67 ± 0.62 0.94 ± 0.93 1.70 ± 1.12

Mugs Frontal 0.71 ± 0.40 0.76 ± 0.43 0.75 ± 0.45 0.84 ±0.68 1.10 ± 0.65

Side 1.02 ± 0.92 1.22 ± 1.18 1.13 ± 1.06 0.98 ± 0.95 2.37 ± 1.84

Table 4: Empirical time (in seconds) for training and prediction (per

instance) for different approaches. For GPLVM and PCA approaches,

the prediction includes 20 restarts for finding optima.

Approaches Training Prediction

GPLVM (q = 4,N = 200) 86 15

GPLVM (q = 8,N = 200) 190 43

GPLVM (q = 4,N = 800) 2844 224

GPLVM (q = 8,N = 800) 5336 877

PCA (m = 10) – 703

PCA (m = 20) – 1898

NN – 3

(GPLVM-I). Reducing in the number of training sam-

ples from 800 to 200 greatly enhances the training and

prediction speed. The model training is sped-up by

about 30 times, while the average time for depth pre-

diction on each instance is sped-up by about 15 times.

The testing errors in Table 2 and 3 show that the per-

formance of our GPLVM is very slightly affected after

the reduction of the training set size. Also, comparing

two different data selection schemes, IVM better main-

tains the performance of the model than a random selec-

tion.

4.5. Reconstruction using the Extended Prediction

Framework

We also carry out qualitative and quantitative exper-

iments on the extended shape prediction approach pro-

posed in Section 3.5. Using the shape priors learned in

Section 3.3, the framework can reconstruct 3D shapes

from either a single silhouette or multiple silhouettes

with different camera viewpoints. In our experiments,

we set variance parameters σ2
s and σ2

w to be 10−5 and

10−7, respectively.

First, we revisit the occlusion problem in the mug re-

construction. In Section 4.3, the probability distribution

of the handle direction is bimodal given the assumption

that the camera viewpoint is in parallel with the handle

orientation. We now consider the more general case,

the handle direction under an arbitrary camera view-

point. Given the frontal-view silhouette in Fig. 11(a),

we use the approach in Section 3.5 to reconstruct the 3D

shape, and plot the negative logarithm of the likelihood

lower bound − log Q against the camera angle parame-

ter θ in Fig. 11(b) with the latent coordinate x fixed. In

the diagram, there is a wide flat region θ ∈ [−35, 35] of

low − log Q value, which indicates that all viewpoints

which result in the handle occlusion are approximately

equi-probable. This matches our perception that the ori-

entation of the occluded handle is completely uncertain

unless some prior knowledge on the camera parameter

is given. In practice, we are usally much more inter-

ested in the shape variation rather than such uncertainty

in the viewpoint. Hence, to speed up the shape con-

struction in the following experiments, we intentionally

remove this uncertainty by roughly initializing camera

projection matrices Pk and narrowing down the search-

ing range of camera parameters.

We then test the exteneded approach on the human

body dataset under a 2-view (K = 2) sparse-view set-

ting. More specially, a side-view silhouette is pro-

vided in addition to the frontal-view silhouette. The

experiments are based on the same training and test-

ing sets as those in Section 4.3. Some of the qualita-
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Table 3: Quantitative comparisons on human data given the single frontal-view silhouette. Errors and standard deviations are given in millimeters,

and the actual body height of each instance is assumed to be 1700mm.

Data Set The 1st Candidate

GPLVM GPLVM-R GPLVM-I PCA NN

Dimensionality 8 8 8 20

Humans Chest 15.8 ± 13.3 17.3 ± 13.4 16.5 ± 13.1 21.4 ± 16.7 22.1 ± 16.5

(mixed) Waist 15.6 ± 12.2 16.5 ± 10.4 15.6 ± 10.0 19.0 ± 11.7 19.4 ± 13.8

Humans Chest 15.4 ± 12.9 17.5 ± 13.0 16.5 ± 10.9 17.2 ± 12.4 20.5 ± 15.5

(female) Waist 15.6 ± 11.7 15.3 ± 12.2 15.5 ± 9.9 15.0 ± 8.4 20.0 ± 14.0

Humans Chest 15.2 ± 13.8 15.6 ± 11.9 15.1 ± 12.3 16.6 ± 11.6 20.5 ± 14.2

(male) Waist 15.8 ± 11.7 16.6 ± 11.2 16.8 ± 11.4 17.7 ± 10.5 18.9 ± 11.7

Data Set Best among the First 3

GPLVM GPLVM-R GPLVM-I PCA NN

Dimensionality 8 8 8 20

Humans Chest 10.2 ± 7.3 12.1 ± 10.5 10.9 ± 9.1 16.2 ± 14.3 12.9 ± 10.7

(mixed) Waist 12.6 ± 7.5 14.4 ± 7.7 12.9 ± 7.5 17.3 ± 11.2 15.0 ± 10.2

Humans Chest 10.6 ± 8.7 12.0 ± 9.1 10.6 ± 8.1 13.4 ± 9.9 12.7 ± 11.2

(female) Waist 12.0 ± 8.4 13.0 ± 8.3 12.7 ± 7.9 13.9 ± 7.7 14.7 ± 9.9

Humans Chest 11.4 ± 9.6 11.4 ± 9.3 11.0 ± 7.4 13.1 ± 9.8 12.3 ± 8.4

(male) Waist 12.3 ± 8.2 13.3 ± 7.9 12.8 ± 8.2 14.7 ± 8.8 14.9 ± 8.2
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Figure 11: Possible camera poses given the silhouette of a mug with

its handle occluded.

tive results from frontal-side silhouette pairs are given

in Fig. 12. We compare the results with those recon-

structed from the single frontal silhouette only. As ex-

pected, we can see that the reconstructed body shape

better fits the ground truth shape of the query instances

than the single-view result does. Also, it is worth men-

tioning that the secondary side silhouette helps disam-

biguate the slight pose changes perpendicular to the im-

age plane, such as leaning forward or backward, which

are almost unobservable from the frontal silhouette.

In Table 5, we also provide the quantitative perfor-

mance of our extended framework in comparison with

other approaches. In the case when only the single

frontal silhouette is used as the input, the extended

framework performs similarly to the straightforward

framework in Section 3.4. Benefiting from the ad-

ditional side-view silhouette, prediction errors of the

GPLVM drop as much as 30 − 50% when comparing

with the reconstruction from a single frontal-view sil-

houette. Compared with the PCA-approach, our ap-

proach is able to give similar accuracy but with a much

lower dimensionality, which implies a faster optimisa-

tion.

Finally, we test our framework on the real images

with common background scenes. Segmenting fore-

ground objects from the background with shadows and

scenes clutters usually causes additional errors and out-

liers in the extracted silhouettes, which results in con-

siderable difficulty to the subsequent reconstruction. In

our implementation, we adopt GrabCut [30], a state-

of-the-art interactive segmentation algorithm based on

graph cut, to roughly crop out the foreground, and the

silhouettes are then extracted from the segmentation re-

sults. The approach proposed in Section 3.5 is then

used to reconstruct 3D shapes. Fig. 13 illustrates some

results on the photos of humans dressed in relatively
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Table 5: Quantitative comparisons on human body data given frontal-view and side-view silhouettes. F: use the frontal-view silhouette only; F+S:

use both frontal-view and side-view silhouettes. Errors and standard deviations are given in millimeters, and the actual body height of each instance

is assumed to be 1700mm.

Data Set The 1st Candidate

GPLVM-I (F) GPLVM-I (F+S) PCA (F+S) NN (F+S)

Dimensionality 8 8 20

Humans Chest 16.3 ± 12.9 8.8 ± 5.8 8.0 ± 5.6 13.6 ± 10.9

(mixed) Waist 15.7 ± 10.6 9.2 ± 5.1 9.4 ± 4.7 16.0 ± 12.2

Humans Chest 16.0 ± 10.7 7.4 ± 5.1 7.8 ± 4.8 12.4 ± 9.4

(female) Waist 15.1 ± 9.5 9.4 ± 4.5 8.6 ± 4.6 14.2 ± 9.6

Inp ut M ulti-View O utpu t Sin gle View

O utpu t

Figure 12: Reconstruction from both frontal-view and side-view sil-

houettes of the human body. For each pair of given testing input sil-

houettes (column 1), we show the reconstructed surface in column 2

in contrast with the ground truth. We also compare it with the re-

construction result based on a single frontal-view silhouette (column

3).

tight-fitting clothes. It shows that both single-frontal-

view and frontal+side-view settings of ours can give

meaningful results. It can be seen that our framework

is somewhat robust to imperfect silhouette inputs and

outliers.

5. Discussion and Future Work

Experiments show that our approaches work well on

the data presented in the previous Section 4. In this sec-

tion, we discuss some limitations of the approaches pre-

sented in this paper.

In the single view reconstruction, the frontal silhou-

ette does not convey enough information for precisely

inferring the depth distribution and this usually results

in ambiguity in the 3D structure. For most categories of

3D objects, multi-modality is common in the predictive

posterior as the mug example in Fig. 8 shows, i.e., the

instances with a similar silhouette may have strikingly

different depth distributions, corresponding to multiple

local maxima of the predictive posterior. In this case,

our approach will provide multiple very different can-

didate solutions. In the example of Fig. 14(a), the first

candidate is unsatisfactory. A lady with a relative wider

waist is more likely to have a thicker belly in the predic-

tion of our model, but it is not the case of this specific

example. This ambiguity can be solved by introducing

another side view, as described in Section 4.5, or in-

corporating more visual information such as texture and

color, which we plan to address in the future.

In Section 4.3, it is mentioned that uncertainty mea-

surements indicate that the prediction accuracy varies

with the location. We can observe that uncertainty val-

ues are usually low at smooth areas such as torso, belly,

and thighs. However, at those fine ending parts such as

the head, hands and feet of the human body, and discon-

tinuous edges, e.g., the handle of the mug (see Fig. 7

and 9), uncertainty values are high, which indicates

poor prediction and explains the artifacts at those areas.

An important cause of this phenomenon is that depth

maps are usually under-sampled in these areas during

the model training stage when a uniform template grid

is adopted. Our future work will address this issue, and

a part-based representation of shapes is of interest here.

Through learning the shape prior of each part, a divide-

and-conquer strategy could be applied such that the lo-

cal shape modeling can be more accurate.

At present, we assume all silhouettes are obtained
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Figure 13: Test on the image inputs. Column 1: image inputs in the

frontal and side view; Column 2: segmented foreground and back-

ground; Column 3: extracted silhouettes; (S1) and (S2): two highest-

posterior candidates of reconstructed body shapes from the single

frontal-view silhouette along with their error measurements; (M): re-

constructed body shapes from both frontal-view and side-view silhou-

ettes.

in a canonical standing pose for the human body data.

We have not taken into account the articulation pose

changes of those highly deformable objects such as hu-

man body or quadrupeds, and large perspective view-

point changes of the input. Presumably, a complete

shape model in our framework is expected to learn these

variations also as a part of latent factors and thus be

adapted to input changes. Therefore, another important

research issue for us in the near future is to investigate

how these variations in the input data influence our re-

construction approach and fit our framework to various

types of inputs.

Finally, since we use frontal and dorsal depth maps

for 3D shape representation, our current approach is not

dealing with internal structures, e.g., the inside of the

mug. Currently, we assume that those objects for train-

Input Output s

(a) (b)

Figure 14: Failure examples. (a) The model generates an unsatis-

factory top candidate, although the second and the third ones look

reasonable. (b) Mugs may have topological changes around their han-

dles, which cannot be modeled by the current approach.

ing the shape model are aligned into a viewpoint with

the least occlusion. Also, since our current framework

capture continuous variations in the shape space, it is

not suitable for modeling sudden topological changes

within the category, e.g., a mug with an open handle (see

Fig. 14(b)). Future possible solutions to these problems

can be voxel-based or level-set-based representations.

6. Conclusion

In this paper, we propose a novel framework for

learning the shape prior with a Gaussian Process La-

tent Variable Model and reconstructing dense 3D shapes

from 2D single-view/sparse-view silhouettes. Com-

pared with previous methods, our approaches do not de-

pend on any predefined parametrical model and heuris-

tic regularity. A significant advantage of the framework

of learning-based reconstruction that we propose is that

it can be easily generalized to deal with various cate-

gories of 3D objects that may have complex geometri-

cal and topological structures just by simply adjusting

the dimension of the latent space in the model. The ex-

tension of the current research may include: 1) expand-

ing the current framework to incorporate multiple visual

cues to achieve more accurate reconstruction; 2) to fur-

ther cope with articulation and pose changes of highly

deformable input data; 3) investigating shape priors of

parts to improve the local shape modeling; 4) conduct-

ing more thorough experiments over a wider range of

objects.

[1] M. Prasad, A. Zisserman, A. Fitzgibbon, Single view recon-

struction of curved surfaces, In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, 2:1345–1354, 2006.

[2] D. Hoiem, A. Efros, M. Hebert, Automatic photo pop-up, SIG-

GRAPH, 577–584, 2005.

[3] V. Blanz, T. Vetter, A morphable model for the synthesis of 3D

faces, SIGGRAPH, 187–194, 1999.

[4] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,

SCAPE: Shape completion and animation of people, SIG-

GRAPH, 408–416, 2005.

18
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Appendix A. Gradients and Derivatives in Sec-

tion 3.3 and 3.4

In the model training stage (Section 3.3), generally

speaking, there is no closed-form solution to the opti-

mization problem in (13) when general non-linear ker-

nels KY and KZ are given and there are likely to be mul-

tiple local optima [6]. We thus resort to a gradient-based

method to optimize the objective function L.

According to the chain rule, the gradients of L

with respect to the latent positions X and the hyper-

parameters θY and θZ can be calculated by first taking

gradient with respect of the kernels KY and KZ and then

combining them with ∂KY

∂θY
, ∂KZ

∂θZ
, ∂KY

∂xi, j
, and ∂KZ

∂xi, j
, as shown

in (A.1), (A.2), and (A.3).

∂L

∂xi, j

= tr

(

( ∂L

∂KY

)T ∂KY

∂xi, j

+
( ∂L

∂KZ

)T ∂KZ

∂xi, j

)

+ 2xi, j,

(A.1)

∂L

∂θY, j
= tr

(

( ∂L

∂KY

)T ∂KY

∂θY, j

)

, j = 1, 2, 3, 4 (A.2)

∂L

∂θY, j
= tr

(

( ∂L

∂KZ

)T ∂KZ

∂θZ, j

)

, j = 1, 2, 3, 4 (A.3)

where the kernel gradient matrices ∂L
∂KY

and ∂L
∂KZ

are

given as:

∂L

∂KY

= −
1

2
(mK−1

Y +K−T
Y YYT K−T

Y ), (A.4)

∂L

∂KZ

= −
1

2
(mK−1

Z +K−T
Z ZZTK−T

Z ). (A.5)

When ”RBF+linear” kernels are adopted, the other

derivatives of kernel elements with respect to the hyper-

parameters and the latent positions have the following
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explicit forms.

∂K
(i, j)

Y

∂θY,1
= e−

θY,2
2

(xi−x j)
T (xi−x j), (A.6)

∂K
(i, j)

Y

∂θY,2
=
θY,1

2
(xi − x j)

T (xi − x j)e
−
θY,2

2
(xi−x j)

T (xi−x j),

(A.7)

∂K
(i, j)

Y

∂θY,3
= −θ−2

Y,3δi j, (A.8)
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= xT
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∂K
(i,i)

Z

∂xi

= 2θZ,4x j. (A.17)

In the prediction stage (Section 3.4), the gradients re-

quired to minimize the negative log predictive posterior

H = − log P(x|ỹ,Y,X, θY) in (15) are given as follows:

∂H

∂x
= x +

1

σ̂2
Y

(ỹ − µ̂Y)
∂µ̂Y

∂x

−

(

1

2σ̂4
Y

(ỹ − µ̂Y)(ỹ − µ̂Y)T +
m

2σ̂2
Y

)∂σ̂2
Y

∂x
(A.18)

∂µ̂Y

∂x
= YT KY

−1 ∂kY

∂x
(A.19)

∂σ̂2
Y

∂x
= 2θ4x − kY

T KY
−1 ∂kY

∂x
(A.20)

Appendix B. Details for Deriving (27) in Section 3.5

We denote y and z as m dimensional PCA feature vec-

tors of 2D grid positions and depth maps, respectively.

Let A =

[

A1

A2

]

and B =

[

B1

B2

]

are 2Ng × m matrices

be PCA eigen-vectors of 2D grid positions and depth

maps, respectively, where Ng is the grid density of the

2D template. Here, A1, A2, B1, and B2 are all Ng × m

sub-matrices of A and B, which control x-coordinates,

y-coordinates, frontal depth values, and dorsal depth

values of all the grid points, respectively. Then, ac-

cording to (6) and (7), both 2D image positions Gy and

depth maps Gz of all the grid points are 2Ng-D col-

umn vectors, which can be written as Gy =

[

G1
y

G2
y

]

=

[

G1
y,0
+ A1y

G2
y,0
+ A2y

]

and Gz =

[

G1
z

G2
z

]

=

[

G1
z,0
+ B1z

G2
z,0
+ B2z

]

,

respectively, where Gy,1, Gy,2, Gz,1, Gz,2 are the corre-

sponding Ng-D sub-vectors of Gy and Gz.

Note that V = [vi]
2Ng

i=1
is a 6Ng-D column vector con-

catenated by all the 2Ng 3D sampling points of the re-

constructed object. For the simplicity of notation, we let

ei
j

be the j-D basis vector with the i-th element 1 and all

other elements 0, and Ii
j

be the j × j basis matrix with

the i-th diagonal element 1 and all other elements 0, and

⊗ denotes the Kronecker product. V can thus be written

into the following matrix formulation.

V = G1
y ⊗ (e1

6 + e4
6) +G2

y ⊗ (e2
6 + e5

6)

+G1
z ⊗ e3

6 +G2
z ⊗ e6

6

= (G1
y,0 + A1y) ⊗ (e1

6 + e4
6)

+ (G2
y,0 + A2y) ⊗ (e2

6 + e5
6)

+ (G1
z,0 + B1z) ⊗ e3

6 + (G2
z,0 + B2z) ⊗ e6

6

= G̃0 + ÃΛ. (B.1)

where

G̃0 = G1
y,0 ⊗ (e1

6 + e4
6) +G2

y,0 ⊗ (e2
6 + e5

6)

+G1
z,0 ⊗ e3

6 +G2
z,0 ⊗ e6

6 (B.2)

Ã = A1 ⊗ (I1
6 + I4

6) + A2 ⊗ (I2
6 + I5

6)

+ B1 ⊗ I3
6 + B2 ⊗ I6

6 (B.3)

Λ = y ⊗ (e1
6 + e2

6 + e4
6 + e5

6) + z ⊗ (e3
6 + e6

6). (B.4)

From (B.1), it is obvious that V is a linear combina-

tion of y and z, which both have Gaussian forms when

the q-D latent coordinate x of the 3D reconstruction is
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given, i.e.,

P(y|x,M) = N(y; µy(x), σ2
y(x)Im×m), (B.5)

P(z|x,M) = N(z; µz(x), σ2
z (x)Im×m), (B.6)

where the formulations of µy, σ2
y , µz, and σ2

z can be

found in (16), (17), (20), and (21), respectively. We

can finally write P(V|x,M) by applying the property of

Gaussian distributions.

P(V|x,M) = N
(

V; µV(x),ΣV(x)
)

, (B.7)

where µV = G̃0 + ÃΛµ, ΣV = ÃΛΣÃT , and here

Λµ = µy ⊗ (e1
6 + e2

6 + e4
6 + e5

6) + µz ⊗ (e3
6 + e6

6), (B.8)

ΛΣ = σ
2
yIm×m ⊗

(

(e1
6 + e2

6 + e4
6 + e5

6)(e1
6 + e2

6 + e4
6 + e5

6)T )

+ σ2
z Im×m ⊗

(

(e3
6 + e6

6)(e3
6 + e6

6)T ). (B.9)

On the other hand, since projecting the 3D shape V

into the k-th view is a linear process according to (25),

the silhouette Wk (a 2Nb
k
-D column vector) can also be

written as a linear combination of y and z.

Wk = P̃T
k V + t̃k + nk = P̃T

k (G̃0 + ÃΛ) + t̃k + nk,

(B.10)

where P̃T
k

and t̃k are defined in Section 3.5, and nk is

the Gaussian noise subjected to N(nk; 0, σ2
wI2Nb

k
×2Nb

k
).

Hence, the likelihood P(Wk|x,M, γk) is also a Gaussian

distribution:

P(Wk|x,M, γk) = N
(

Wk; µWk
(x, γk),ΣWk

(x, γk)
)

,

(B.11)

where µWk
= P̃T

k
(G̃0 + ÃΛµ) + t̃k, and ΣWk

=

P̃T
k

ÃΛΣÃTP̃k + σ
2
wI2Nb

k
×2Nb

k
.

Appendix C. Efficient Computation of the Determi-

nant in (31)

The determinant det
(

I+ 1

Nb
k
σ2

s
ΣWk

)

in (31) can be fac-

torized into the following form:

det
(

I +
1

Nb
k
σ2

s

ΣWk

)

=

2Nb
k
∏

i=1

(

λD,i + σ
2
w

Nb
k
σ2

s

+ 1

)

, (C.1)

where λD,i (i = 1, 2, · · · , 2Nb
k
) denote the eigen-values

of the 2Nb
k
× 2Nb

k
matrix D = P̃T

k
ÃΛΣÃTP̃k.

Directly solving the eigen-decomposition of D can

be expensive. Instead, we work on its 6m × 6m dual

matrix D̃ = Λ
1/2

Σ
ÃTP̃kP̃T

k
ÃΛ

1/2

Σ
, where Λ

1/2

Σ
repre-

sents the Cholesky decomposition of the diagonal ma-

trix ΛΣ. According to the linear algebra theory, the

eigen-values λ̃D,i (i = 1, 2, · · · , 6m) of D̃k satisfy that

λD,i =

{

λ̃D,i, i = 1, 2, · · · , 6m;

0, i = 6m + 1, 6m + 2, · · · , 2Nb
k
.

. It fol-

lows that

det
(

I +
1

Nb
k
σ2

s

ΣWk

)

=

(

σ2
w

Nb
k
σ2

s

+ 1

)2Nb
k
−6m

·

6m
∏

i=1

(

λ̃D,i + σ
2
w

Nb
k
σ2

s

+ 1

)

. (C.2)

However, λ̃D,i (i = 1, 2, · · · , 6m) are much faster to com-

pute since 6m ≪ 2Nb
k
. The overall complexity of com-

puting the determinant is hence reduced from O(Nb
k

3
) to

O(m3).
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