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Abstract

This paper is about detecting bipedal motion in video sequeas by using
point trajectories in a framework of classi cation. Given anumber of point
trajectories, we nd a subset of points which are arising fro feet in bipedal
motion by analysing their spatio-temporal correlation in gpairwise fashion.
To this end, we introduceprobabilistic trajectoriesas our new features which
associate each point over a su ciently long time period in tle presence of
noise. They are extracted from directed acyclic graphs whe®dges repre-
sent temporal point correspondences and are weighted withdir matching
probability in terms of appearance and location. The bene bf the new rep-
resentation is that it practically tolerates inherent ambguity for example due
to occlusions. We then learn the correlation between the moh of two feet
using the probabilistic trajectories in a decision forestlassi er. The e ec-
tiveness of the algorithm is demonstrated in experiments dmage sequences
captured with a static camera, and extensions to deal with a aving camera
are discussed.

Keywords: motion, trajectories, spatio-temporal features, decisioforest

1. Introduction

Point motion in an image sequence not only gives strong cuelsaat the
underlying geometry in 3D space, but may also be charactdicsfor an ob-
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ject class to which the point belong. Further, given a multife of 2D point

patterns, we can infer far more information than we would ofatin from a

single point trajectory through the correlation between tle motion patterns.

Hence, trajectories of points in image sequences provideteosg visual cue,

often allowing the human brain to infer the scene behind thespoints. For

example, when points close to the joints of a walking persorreatracked,

the psychological e ect ofkinetic depthallows us to perceive walking motion
solely from the 2D point motion pattern. This has rst been stdied by Jo-

hansson using moving light displays (MLDs) (Johansson, 13 The goal in

this paper is to achieve this recognition ability for deteéhg pedestrian mo-
tion from tracked points on a pair of feet whose trajectorieare characteristic
and spatio-temporally correlated.

Figure 1: Space-time volume with point trajectories. See the supplementary video
for further explanations of space-time representation. Bighter green indicates corner po-
sitions more recent in time. Left: Two sample trajectories d corners on the feet are
highlighted in yellow. Right: Another case where featuresra swapped during the short
occlusion. Our method is able to correctly classify both ca&s as walking motion.

The work presented in this paper can be categorized as motibased
recognition, but is unique in the sense that we do not assuméean point
tracks. In order to obtain a discriminative trajectory, in this application, a
point should ideally be tracked during a complete walk cycléabout one sec-
ond). However, point trajectories of typical outdoor scerseare rarely reliable
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over such a long period of time. Therefore, we retain the cosat of tem-

poral connectedness by introducing the notion gbrobabilistic trajectories

See Figure 1 for an example of such trajectories. These arengéed from

a directed acyclic graph whose edges represent temporal rgocorrespon-
dences weighted by their matching probability in terms of gpearance and
location. We choose to use standard corner features (Harasd Stephens,
1988) for the points to track rather than space-time interdspoints (Laptev

and Lindeberg, 2003) in order to continue detecting pointsven when they
are stationary during the walk cycle. Temporal corresponaee is thus hy-
pothesized while sacri cing matching accuracy in order tokiain longer and
more discriminative trajectories. The advantage of this gresentation is that
it permits inherent trajectory ambiguity, for example due b occlusions, and
practically gain richer representations of the scene whidacilitate the tasks
of recognition using motion.

Physical models of bipedal motion have recently been used tiracking
a walking person (Brubaker et al., 2010). Intuitively, the notion of a point
on a single foot is composed of two periods of dynamic and staphases
(Bissacco, 2005) and motion of points from a pair of feet ardternating in
a cyclic manner. We aim to directly learn to detect this type dfoot motion
in a discriminative manner. The key idea for our bipedal motin detection
from trajectories is thus to detectcorrelated spatio-temporal features That
is, we detect pedestrian motion by observing the correlatiobetween the
motion of two feet of the same person. It is in contrast to (Brstow and
Cipolla, 2006) whose premise is that a pair of points that agar to move
together are part of the same individual. The motivation beimd our strategy
is the fact that bipedal motion is essential to any walking peson in terms
of physical dynamics of walking motion whereas the motion afther body
parts such as the arms typically exhibits signi cantly morevariation. To the
best of our knowledge this is the rst attempt to recognize motion by way
of investigating correlation of point trajectories.

In this work we opt for a learning based approach and developctassi er
for bipedal motion of a pair of feet among a number of point tjgctories.
We employ a decision forest classi er (Breiman, 2001; Gesrtet al., 2006;
Ho, 1998) which has been successfully applied to di erentadsi cation tasks
(Brostow et al., 2008; Lepetit et al., 2005; Rogez et al., 280Shotton et al.,

LAn early description of this work has appeared in (Perbet et &, 2009).
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2008). The reason of using it is in the ease of training, the ity to deal
with a large amount of data, and good generalisation perforance. It is also
well suited to our probabilistic input. That is, we use sampd subgraphs
of probabilistic trajectories as input data. We build a twostage decision
forest classi er. The rst stage identi es candidate foot rajectories and the
second stage associates candidate trajectories as pairscively exploiting
the correlated spatio-temporal features.

1.1. Related Work

A lot of work in the area of motion-based recognition incluaig human
gait analysis have been inspired by the biological phenonun (Gedras and
Shah, 1995; Gavrila, 1999). These methods typically regeaia robust method
for feature extraction. Thus, trajectories of interest paits were either ob-
tained by using markers to simplify image analysis (Camphbeand Bobick,
1995) or acquired from motion captured data (Meng et al., 2@) in place
of MLDs; automatic acquisition of accurate point tracks is dcult in many
cases due to e ects such as occlusions, lighting changes anthge noise
(BenAbdelkader et al., 2002). Although relatively little work on recognition
were performed purely from low-level features extracteddm natural image
sequences (Polana and Nelson, 1994), increasing challsrngeomputing and
applying point trajectories have been recently presentedséand and Teller,
2008; Perbet et al., 2009; Messing et al., 2009; Matikaineha., 2009; Sun
et al., 2010; Sundaram et al., 2010; Wu et al., 2011; Wang et,&2011) espe-
cially in the context of action recognition.

Two of the common critical factors for computing reliable tajectories
are, however, to select good repeatable features that ardeseant to motion
recognition, and to maintain them continuous throughout a equired part
of the given image sequence. In this respect, Kanade-LucBsnasi (KLT)
tracker (Shi and Tomasi, 1994) is a popular option and utiled in (Mess-
ing et al., 2009; Matikainen et al., 2009; Sun et al., 2010)thbugh obtained
trajectories inevitably su er from discontinuous to an exent according to
the noise and clutters. One solution to deal with discontinties could be to
generate shorter but reliable “tracklets' (Ge and Collins2008) and to link
them in an additional step (Huang et al., 2008). Other extembns have been
for computing trajectories in a dense manner, typically wit incorporation
of optical ow; particle video (Sand and Teller, 2008) is onef the early such
representations. For the same goal, the work in (Sun et al.020) combines
KLT with SIFT-trajectories (Sun et al., 2009), and particle trajectories (Wu
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Figure 2: Schematic of the algorithm. Given a video sequence and 2D corners detected
in each frame, we rst sample probabilistic trajectories of corners in the graph, and then
classify the trajectories by a two-stage decision forest. \Wdesign correlated spatio-temporal
features for classi cation.

et al., 2010) have been used in (Wu et al.,, 2011). Also, a rdahe dense
point tracker (Sundaram et al., 2010) has been developed ledson on large
displacement optical ow (Brox and Malik, 2011). As mentiored earlier, nev-
ertheless, there are intrinsic di culties in maintaining correct and consistent
point correspondence in generating long trajectories, ntosotably due to
occlusions. In order to have a continuum of their 2D coordite in the form
of a trajectory, it will be indispensable to somehow reinfae correspondence.
This is especially important when the correlation need be afysed between
trajectories of points which can often occlude with each oén. The proba-
bilistic trajectories introduced in this paper are desigret by prioritising the
concept of temporal connectedness, and to utilize what wergeive from 2D
motion of points in natural images for recognition.

1.2. Contributions and Assumptions

Figure 2 shows a schematic of our algorithm. The contributies of the
paper are four-fold: (i) the introduction of probabilistic trajectories which
temporally associate each point over a su ciently long timeperiod under
both image noise and occlusion, (ii) the pairwise analysi$ trajectories for
detecting characteristic correlation between the two feah bipedal motion,
(iii) the design of e cient features which are computed in tre two-staged
decision forest classi er, and (iv) a discussion on poteiati extensions to deal
with camera motion.
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We do not assume clean point tracks but instead assume thatdltcamera
captures dynamics of motion at su ciently high rate (we use 6 fps) and
that people walk with approximately constant speed and diiion during a
gait cycle.

2. Probabilistic Trajectories

In this section, we describe the three successive steps tlggnerateprob-
abilistic trajectory. The basic idea is to hypothesize trajectories by enforcing
temporal correspondences between consecutive frames eirepeated detec-
tion of the same point over a long time interval is not always @ssible. In
practice, we generate an acyclic graph for each point of imest using it as
the root node and grow a graph such that each edge representpa@ssible
temporal correspondence. Corners of two consecutive frasrare connected
probabilistically using their spatial distance and their @pearance. OverT
frames, those connections form a graph of possible trajedes. A walk in
this graph describes a possible trajectory of a given cornever time, also
including many incorrect trajectories. Our assumption ishat most of these
will still be discriminative, see Figure 1, right. Di erent paths from the root
node toward the leaf nodes give di erent trajectories, allwing for an inherent
ambiguity in the matching process. For example, although ste trajectories
may re ect apparent motion rather than real motion, this is eicoded in a
probabilistic manner. This matching process ensures that @ach time step
trajectories of equal length are available for all points ithe frame.

2.1. Matching Between Two Consecutive Frames

In every frame we extract Harris corners (Harris and Stephen 1988)
and nd potential ancestors for each point among the featurset from the
previous frame. Letpi(t);i = 1;::;n be the i corner detected at a 2D
location x;(t) 2 R? at time t and letp;(t  1);j = 1;:::;m be thej™ corner
found at x;(t 1) amongm corners which were within a certain range from
Xi(t) inframet 1. We then de ne the temporal matching scoreP; (t), that
pi(t) matchesp; (t 1) in terms of their appearance similarityS;, and the
spatial distanceDj , by

Pi (pi();p(t 1))/ exp( Sy) exp( Dy) ; 1)

where and are positive weighting coe cients.
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Figure 3: Probabilistic Trajectories. Left: A sketch of a graph and selected probabilistic
trajectories as our motion descriptor. Right: An example of partial graph with varying
color representing di erent probabilities, i.e. brighter indicates higher values.

The appearance similarityS; is computed from the local image regions
aroundp;(t) and pj(t 1), respectively, as the SAD score between them (after
subtracting the mean intensity of each image patch) an®; by their spatial
distanceDj = kx;(t) X;(t 1)k. The assumption that the camera captures
dynamics of motion at su ciently high rate, 60 fps rather than usual 30
fps, is to ensure that for each corner point detected in framewe can nd
the corresponding corner in frameé 1 within a reasonable range so that
relatively smooth probabilistic trajectories can be genated.

We represent the existence of a potential match between(t) and pj(t 1)
as a binary value,E; (t) 2 f 0;1g, based onPj (t) and de ne the match as
active, Ej (t) = 1, with the condition:

Pj > maxP; e; (2)
i

where the threshold valuee is dynamically adjusted so that the number of
pairs is constant which is set to 4. Note that this may result in no active

matches for some corners with low values of mak; . We also add temporal
matches for the same set of consecutive frames in the forwatlection by

repeating the process in a reverse manner so that more potahimatches are
ensured.
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Figure 4: Feature Vectors from Trajectories. (a) In order to compute features we
sample many pairs of velocity vectors from a trajectory. (b) The principal direction  of
the trajectory X;(t) is used for the directional feature computation.

suited to our task because each of our input instances is pathlistic, i.e.
any trajectories sampled as subgraphs are probabilistic imoth stages, 1
and 2.

3.1. Selection of Candidate Trajectories

The goal in the rst stage is to select candidate trajectorig prior to pair-
wise classi cation. We thus carry out the selection of candate trajectories
by individual X;(t). The feature design for this stage is based on the obser-
vation that X;(t) originating from a foot is characterized by dynamic and
static phases, being distinguishable from simple trajeates coming from
background.

3.1.1. Feature Vectors

Let a trajectory, X;(t), be represented by a vectoiX;(t) = [ x(t); x(t
1);:5x(t T+1)]”. We rst remove its linear component,X;(t), and convert
Xi(t) to its canonical form, Xi(t) = [x(t);x(t 1);:5x%(t T +1)]” (see
Appendix). The merit of using the canonical formX;(t), is that it represents
the motion characteristics independent of its location.

We generate two feature vectors fronXi(t), vo and v, as the velocity
term. By randomly choosing four time instances as cutting pets, t.(c =
0;::1;3;tc <ter1), We extract

Vo = X(t1) X(to); )
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