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Abstract

This paper is about detecting bipedal motion in video sequences by using
point trajectories in a framework of classi�cation. Given anumber of point
trajectories, we �nd a subset of points which are arising from feet in bipedal
motion by analysing their spatio-temporal correlation in apairwise fashion.
To this end, we introduceprobabilistic trajectoriesas our new features which
associate each point over a su�ciently long time period in the presence of
noise. They are extracted from directed acyclic graphs whose edges repre-
sent temporal point correspondences and are weighted with their matching
probability in terms of appearance and location. The bene�tof the new rep-
resentation is that it practically tolerates inherent ambiguity for example due
to occlusions. We then learn the correlation between the motion of two feet
using the probabilistic trajectories in a decision forest classi�er. The e�ec-
tiveness of the algorithm is demonstrated in experiments onimage sequences
captured with a static camera, and extensions to deal with a moving camera
are discussed.
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1. Introduction1

Point motion in an image sequence not only gives strong cues about the2

underlying geometry in 3D space, but may also be characteristic for an ob-3
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ject class to which the point belong. Further, given a multiple of 2D point4

patterns, we can infer far more information than we would obtain from a5

single point trajectory through the correlation between the motion patterns.6

Hence, trajectories of points in image sequences provide a strong visual cue,7

often allowing the human brain to infer the scene behind those points. For8

example, when points close to the joints of a walking person are tracked,9

the psychological e�ect ofkinetic depthallows us to perceive walking motion10

solely from the 2D point motion pattern. This has �rst been studied by Jo-11

hansson using moving light displays (MLDs) (Johansson, 1973). The goal in12

this paper is to achieve this recognition ability for detecting pedestrian mo-13

tion from tracked points on a pair of feet whose trajectoriesare characteristic14

and spatio-temporally correlated.15

Figure 1: Space-time volume with point trajectories. See the supplementary video
for further explanations of space-time representation. Brighter green indicates corner po-
sitions more recent in time. Left: Two sample trajectories of corners on the feet are
highlighted in yellow. Right: Another case where features are swapped during the short
occlusion. Our method is able to correctly classify both cases as walking motion.

The work presented in this paper can be categorized as motion-based16

recognition, but is unique in the sense that we do not assume clean point17

tracks. In order to obtain a discriminative trajectory, in this application, a18

point should ideally be tracked during a complete walk cycle(about one sec-19

ond). However, point trajectories of typical outdoor scenes are rarely reliable20
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over such a long period of time. Therefore, we retain the concept of tem-21

poral connectedness by introducing the notion ofprobabilistic trajectories.22

See Figure 1 for an example of such trajectories. These are sampled from23

a directed acyclic graph whose edges represent temporal point correspon-24

dences weighted by their matching probability in terms of appearance and25

location. We choose to use standard corner features (Harrisand Stephens,26

1988) for the points to track rather than space-time interest points (Laptev27

and Lindeberg, 2003) in order to continue detecting points even when they28

are stationary during the walk cycle. Temporal correspondence is thus hy-29

pothesized while sacri�cing matching accuracy in order to obtain longer and30

more discriminative trajectories. The advantage of this representation is that31

it permits inherent trajectory ambiguity, for example due to occlusions, and32

practically gain richer representations of the scene whichfacilitate the tasks33

of recognition using motion.34

Physical models of bipedal motion have recently been used intracking35

a walking person (Brubaker et al., 2010). Intuitively, the motion of a point36

on a single foot is composed of two periods of dynamic and static phases37

(Bissacco, 2005) and motion of points from a pair of feet are alternating in38

a cyclic manner. We aim to directly learn to detect this type of foot motion39

in a discriminative manner. The key idea for our bipedal motion detection40

from trajectories is thus to detectcorrelated spatio-temporal features. That41

is, we detect pedestrian motion by observing the correlation between the42

motion of two feet of the same person. It is in contrast to (Brostow and43

Cipolla, 2006) whose premise is that a pair of points that appear to move44

together are part of the same individual. The motivation behind our strategy45

is the fact that bipedal motion is essential to any walking person in terms46

of physical dynamics of walking motion whereas the motion ofother body47

parts such as the arms typically exhibits signi�cantly morevariation. To the48

best of our knowledge this is the �rst attempt1 to recognize motion by way49

of investigating correlation of point trajectories.50

In this work we opt for a learning based approach and develop aclassi�er51

for bipedal motion of a pair of feet among a number of point trajectories.52

We employ a decision forest classi�er (Breiman, 2001; Geurts et al., 2006;53

Ho, 1998) which has been successfully applied to di�erent classi�cation tasks54

(Brostow et al., 2008; Lepetit et al., 2005; Rogez et al., 2008; Shotton et al.,55

1An early description of this work has appeared in (Perbet et al., 2009).
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2008). The reason of using it is in the ease of training, the ability to deal56

with a large amount of data, and good generalisation performance. It is also57

well suited to our probabilistic input. That is, we use sampled subgraphs58

of probabilistic trajectories as input data. We build a two-stage decision59

forest classi�er. The �rst stage identi�es candidate foot trajectories and the60

second stage associates candidate trajectories as pairs, e�ectively exploiting61

the correlated spatio-temporal features.62

1.1. Related Work63

A lot of work in the area of motion-based recognition including human64

gait analysis have been inspired by the biological phenomenon (C�edras and65

Shah, 1995; Gavrila, 1999). These methods typically require a robust method66

for feature extraction. Thus, trajectories of interest points were either ob-67

tained by using markers to simplify image analysis (Campbell and Bobick,68

1995) or acquired from motion captured data (Meng et al., 2006) in place69

of MLDs; automatic acquisition of accurate point tracks is di�cult in many70

cases due to e�ects such as occlusions, lighting changes andimage noise71

(BenAbdelkader et al., 2002). Although relatively little work on recognition72

were performed purely from low-level features extracted from natural image73

sequences (Polana and Nelson, 1994), increasing challenges in computing and74

applying point trajectories have been recently presented (Sand and Teller,75

2008; Perbet et al., 2009; Messing et al., 2009; Matikainen et al., 2009; Sun76

et al., 2010; Sundaram et al., 2010; Wu et al., 2011; Wang et al., 2011) espe-77

cially in the context of action recognition.78

Two of the common critical factors for computing reliable trajectories79

are, however, to select good repeatable features that are relevant to motion80

recognition, and to maintain them continuous throughout a required part81

of the given image sequence. In this respect, Kanade-Lucas-Tomasi (KLT)82

tracker (Shi and Tomasi, 1994) is a popular option and utilized in (Mess-83

ing et al., 2009; Matikainen et al., 2009; Sun et al., 2010) although obtained84

trajectories inevitably su�er from discontinuous to an extent according to85

the noise and clutters. One solution to deal with discontinuities could be to86

generate shorter but reliable `tracklets' (Ge and Collins,2008) and to link87

them in an additional step (Huang et al., 2008). Other extentions have been88

for computing trajectories in a dense manner, typically with incorporation89

of optical 
ow; particle video (Sand and Teller, 2008) is oneof the early such90

representations. For the same goal, the work in (Sun et al., 2010) combines91

KLT with SIFT-trajectories (Sun et al., 2009), and particle trajectories (Wu92
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Figure 2: Schematic of the algorithm. Given a video sequence and 2D corners detected
in each frame, we �rst sample probabilistic trajectories of corners in the graph, and then
classify the trajectories by a two-stage decision forest. We design correlated spatio-temporal
features for classi�cation.

et al., 2010) have been used in (Wu et al., 2011). Also, a real-time dense93

point tracker (Sundaram et al., 2010) has been developed based on on large94

displacement optical 
ow (Brox and Malik, 2011). As mentioned earlier, nev-95

ertheless, there are intrinsic di�culties in maintaining correct and consistent96

point correspondence in generating long trajectories, most notably due to97

occlusions. In order to have a continuum of their 2D coordinate in the form98

of a trajectory, it will be indispensable to somehow reinforce correspondence.99

This is especially important when the correlation need be analysed between100

trajectories of points which can often occlude with each other. The proba-101

bilistic trajectories introduced in this paper are designed by prioritising the102

concept of temporal connectedness, and to utilize what we perceive from 2D103

motion of points in natural images for recognition.104

1.2. Contributions and Assumptions105

Figure 2 shows a schematic of our algorithm. The contributions of the106

paper are four-fold: (i) the introduction of probabilistic trajectories which107

temporally associate each point over a su�ciently long timeperiod under108

both image noise and occlusion, (ii) the pairwise analysis of trajectories for109

detecting characteristic correlation between the two feetin bipedal motion,110

(iii) the design of e�cient features which are computed in the two-staged111

decision forest classi�er, and (iv) a discussion on potential extensions to deal112

with camera motion.113
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We do not assume clean point tracks but instead assume that the camera114

captures dynamics of motion at su�ciently high rate (we use 60 fps) and115

that people walk with approximately constant speed and direction during a116

gait cycle.117

2. Probabilistic Trajectories118

In this section, we describe the three successive steps thatgenerateprob-119

abilistic trajectory. The basic idea is to hypothesize trajectories by enforcing120

temporal correspondences between consecutive frames since repeated detec-121

tion of the same point over a long time interval is not always possible. In122

practice, we generate an acyclic graph for each point of interest using it as123

the root node and grow a graph such that each edge represents apossible124

temporal correspondence. Corners of two consecutive frames are connected125

probabilistically using their spatial distance and their appearance. OverT126

frames, those connections form a graph of possible trajectories. A walk in127

this graph describes a possible trajectory of a given cornerover time, also128

including many incorrect trajectories. Our assumption is that most of these129

will still be discriminative, see Figure 1, right. Di�erent paths from the root130

node toward the leaf nodes give di�erent trajectories, allowing for an inherent131

ambiguity in the matching process. For example, although some trajectories132

may re
ect apparent motion rather than real motion, this is encoded in a133

probabilistic manner. This matching process ensures that at each time step134

trajectories of equal length are available for all points inthe frame.135

2.1. Matching Between Two Consecutive Frames136

In every frame we extract Harris corners (Harris and Stephens, 1988)137

and �nd potential ancestors for each point among the featureset from the138

previous frame. Letpi (t); i = 1; :::; n be the i th corner detected at a 2D139

location x i (t) 2 R 2 at time t and let pj (t  1); j = 1; :::; m be the j th corner140

found at x j (t  1) amongm corners which were within a certain range from141

x i (t) in frame t  1. We then de�ne the temporal matching score,Pij (t), that142

pi (t) matches pj (t  1) in terms of their appearance similaritySij , and the143

spatial distanceD ij , by144

Pij (pi (t); pj (t  1)) / exp( �S ij ) exp( �D ij ) ; (1)

where � and � are positive weighting coe�cients.145
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Figure 3: Probabilistic Trajectories. Left: A sketch of a graph and selected probabilistic
trajectories as our motion descriptor. Right: An example of partial graph with varying
color representing di�erent probabilities, i.e. brighter indicates higher values.

The appearance similaritySij is computed from the local image regions146

aroundpi (t) and pj (t  1), respectively, as the SAD score between them (after147

subtracting the mean intensity of each image patch) andD ij by their spatial148

distanceD ij = kx i (t)  x j (t  1)k. The assumption that the camera captures149

dynamics of motion at su�ciently high rate, 60 fps rather than usual 30150

fps, is to ensure that for each corner point detected in framet we can �nd151

the corresponding corner in framet  1 within a reasonable range so that152

relatively smooth probabilistic trajectories can be generated.153

We represent the existence of a potential match betweenpi (t) and pj (t  1)154

as a binary value,E ij (t) 2 f 0; 1g, based onPij (t) and de�ne the match as155

active, E ij (t) = 1, with the condition:156

Pij > max
j

Pij  e ; (2)

where the threshold valuee is dynamically adjusted so that the number of157

pairs is constant which is set to 4n. Note that this may result in no active158

matches for some corners with low values of maxj Pij . We also add temporal159

matches for the same set of consecutive frames in the forwarddirection by160

repeating the process in a reverse manner so that more potential matches are161

ensured.162
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2.2. Acyclic Graph with Matching Probabilities163

For each time stept we have determined temporal matchesE ij (t) between164

corners across previous adjacent frames. We retain these for the last T frames165

(the choice ofT will be discussed later). De�ning each pointpi (t) as a root166

node, we generate an acyclic graph,Gi (N; E ), of depth T by tracing active167

temporal matches along the time axis backward forT frames, see Figure 3.168

The graph Gi (N; E ) consists of nodes,N , which represent matched corners169

in the precedingT frames, and edges,E, connecting these nodes. Namely,170

E = ( E ij (� ); � = t; :::; t  T + 1). An edge representing an active match,171

E ij (t), has Pij (t) as its associated weight.172

Note that the number of frames,d, for which each corner can be traced173

back (until encountering an inactive edge or a `dead end') isavailable for each174

node. For example,d[E ij (t)] = 1 if pj (t  1) has no ancestor andE jk (t  1) = 0175

for all k (where k is an index to features in framet  2). We assignd to176

each node as its attribute while ideallyd > T where at least one path can177

be found containing nodes from theT previous frames.178

2.3. Sampling Probabilistic Trajectories179

In each time step the graph is updated and trajectories are sampled from180

it that are then classi�ed. Intuitively, the sampled trajectories need to be181

long and physically plausible. Now, we de�ne theprobabilistic trajectories,182

X i (t) 2 R 2T of pi (t), as the paths connecting the root node to di�erent183

leaf nodes ofGi (N; E ). In practice, a graph traversal ofGi guided by a184

probabilistic selection of edges at each node results in plausible trajectories.185

In particular, we use the sampling probability, bPij ; in which we also take into186

consideration the traceable depthd and the velocity conservation factor,Vij :187

bPij (pi (t); pj (t  1)) / Pij exp
�

 



d[E ij ]+1

�
exp( �V ij ) ; (3)

where 
 and � are positive weighting coe�cients, and the last factor188

Vij (� ) = k(xh(� + 1)  x i (� ))  (x i (� )  x j (�  1))k (4)

is valid when � < t (so that the coordinate of the previous node in the path,189

xh(� + 1), is available). We set 
 = 10 and � = 1 in our experiments.190

A sophisticated selection of paths such as in (Torresani et al., 2008) would191

help if spatial coherence of matched points could be taken into account. In192

our case, however, points on di�erent feet have diverse spatial path and we193

remain to �nd the path individually.194
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2.4. Computational complexity195

We detectn corner points in each frame and usem corners in the previous196

frame for computing the correlation; the complexity of matching between two197

consecutive frames isO(nm). However, m is set to be signi�cantly smaller198

than n; in our experiments we setn = 300 and m = 10. Also, the total199

number of pairs that are considered to be parts of trajectories is adjusted to200

4n. The complexity for the computation between consecutive frame can be201

seen asO(n) given n >> m . For generating an acyclic graph and thereby202

sampling trajectories, we need to compute the velocity conservation factor203

as well as the traceable depth for the length of the trajectories T; the com-204

plexity in this respect is O(T), making the total computational complexity205

for computing the probabilistic trajectoriesO(nT).206

3. Classi�cation of Trajectories207

Given a corner,pi (t), and its probabilistic trajectory, X i (t), our task is208

now to determine whether or notX i (t) is the trajectory of a foot during209

walking motion. In order for a trajectory to contain discriminative features,210

we consider its lengthT as approximately covering one walk cycle. As men-211

tioned above, the key idea is to observe point trajectories in pairs. That212

is, we also considerpu(t)(u 6= i ) that are located in the neighborhood of213

pi (t) and examine the spatio-temporal correlation between the probabilistic214

trajectories, X i (t) and X u(t).215

In order to avoid examining the large number of possible pairs we also216

use the fact that some trajectories can be rejected immediately as candi-217

dates, such as those from stationary background points or those that are too218

noisy due to incorrect temporal association. Thus, we employ a two-stage219

classi�cation process:220

1� Selection of candidate trajectories.221

2� Pairwise classi�cation of pertinent trajectories.222

It should be noted that we bene�t from the selection of the candidates in223

reducing the complexity in terms of the number of possible pairs to be con-224

sidered in the second stage, and therefore overall computational cost. In225

each stage, we need a classi�cation tool and invariant features that allow226

us to distinguish trajectories of walking motion from others. We perform227

classi�cation using decision forests in both stages. Decision forests are well228

9



(a) (b)

Figure 4: Feature Vectors from Trajectories. (a) In order to compute features we
sample many pairs of velocity vectors from a trajectory. (b) The principal direction � of
the trajectory X i (t) is used for the directional feature computation.

suited to our task because each of our input instances is probabilistic, i.e.229

any trajectories sampled as subgraphs are probabilistic inboth stages, 1�230

and 2� .231

3.1. Selection of Candidate Trajectories232

The goal in the �rst stage is to select candidate trajectories prior to pair-233

wise classi�cation. We thus carry out the selection of candidate trajectories234

by individual X i (t). The feature design for this stage is based on the obser-235

vation that X i (t) originating from a foot is characterized by dynamic and236

static phases, being distinguishable from simple trajectories coming from237

background.238

3.1.1. Feature Vectors239

Let a trajectory, X i (t), be represented by a vectorX i (t) = [ x(t); x(t  240

1); :::; x(t  T +1)] > . We �rst remove its linear component, �X i (t), and convert241

X i (t) to its canonical form, ~X i (t) = [ ~x(t); ~x(t  1); :::; ~x(t  T + 1)] > (see242

Appendix). The merit of using the canonical form,~X i (t), is that it represents243

the motion characteristics independent of its location.244

We generate two feature vectors from~X i (t), v0 and v1 as the velocity245

term. By randomly choosing four time instances as cutting points, tc(c =246

0; :::; 3; tc < t c+1 ), we extract247

v0 = �x(t1)  �x(t0); (5)
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v1 = �x(t3)  �x(t2): (6)

Namely, we sample two random velocities,v0 and v1, along a trajectory248

by choosing two points per velocity, see Figure 4 (a). This operation of249

cutting a trajectory at four points is motivated by the observation that four250

dynamical models per gait cycle is a reasonable choice in a probabilistic251

decomposition human gait (Bregler, 1997) where coherent motion is used as252

low-level primitives. Note that t � tc � t  T. We then de�ne our features,253

f s and f d, by the distance and the inner product of scaled versions of the two254

vectors:255

f s = ka0v0  a1v1k; (7)

f d = hb0v0; b1v1i ; (8)

where ai and bi ; i = 0; 1 are random coe�cients in (0; 1). Di�erent features256

f s and f d are generated by sampling values for the coe�cientsai and bi , as257

well as the cutting points, tc(c = 0; :::; 3), of the trajectory.258

259

3.1.2. Learning Using Random Samples260

We obtain training data by manually annotating points corresponding261

to foot regions in a video, and then extracting probabilistic trajectories,262

X i (t) of length T, as random subgraphs which stem from the annotated263

corners. Extracting trajectories for each corner in each frame, we obtain a264

large number of training data. Training is performed separately for each tree265

using a random subset of the training data.266

We recursively split the training data at each node, using the standard267

method involving information gain (Breiman, 2001). Namely, we plot the268

responses of randomly selected features in a histogram and learn a threshold,269

� , which gives the maximum information gain. A node becomes a leaf node270

where the information gain is below a threshold value. At each leaf node, the271

class distribution of foot/non-foot is computed from the number of instances272

that reach the node. See Figure 5 for an example of our decision forest.273

We annotate the ground truth data of feet with a tag of left/right foot so274

that they can be directly used for training the decision forest in the second275

stage. It should be noted that those points that can be associated with both276

feet are also annotated with equal probabilities of being onleft/right foot.277

See Figure 6 for an example of ground truth labels.278

11



Figure 5: Example overview of the decision forest (of the secocnd stage,F = 8). The
learned class distributions of foot/non-foot are displayed for each node as a histogram.

3.1.3. Selection of Trajectories279

We classify candidate trajectories with a decision forest (Breiman, 2001;280

Geurts et al., 2006) which is an ensemble ofF decision trees. Each tree281

examines all input trajectories, ~X i (t). Given an input trajectory at the root282

node, each decision tree recursively branches left or rightdown to the leaf283

nodes according to the feature response,f s and f d in (8), of a learned function284

at each non-leaf node. At the leaf nodes, we obtain the class distributions285

of foot/non-foot. The output from F decision trees is averaged to select286

candidate trajectories.287

3.2. Pairwise Classi�cation of Walking Motion288

Given that a corner pi (t) is selected as a candidate point in the �rst289

stage, we pick thosepu(t)(u 6= i ) which are located in the neighborhood of290

pi (t) and examine how their probabilistic trajectories, ~X i (t) and ~X u(t), are291

spatio-temporally correlated.292

3.2.1. Features for Directional Correlation293

Although the trajectory, X i (t), is three-dimensional, when walking in a294

straight line, the trajectory lies approximately in a 2D plane. If a set of295

two candidate trajectories,X i (t) and X u(t), arises from walking motion of296

12



two feet, the orientations of their 2D planes in 3D space should be close to297

each other because of the consistency of a pair of step motions (Ho�man and298

Flinchbaugh, 1982). Based on this observation, we compute the covariance299

matrices, Ci , of ~x(� ); � = t; :::; t  T + 1, and the eigenvector, � i 2 R 2,300

corresponding to the greatest eigenvalue so that� i represents the principal301

direction of ~X i (t) along its 2D plane, see Figure 4 (b). Analogously� u is302

computed for ~X u(t).303

We expect� i and � u to be approximately parallel, their directions should304

be both close to the walking direction. For most of the gait cycle the vector305

connecting the two front points on the trajectoryx iu (t) = x i (t)  xu(t) can306

be used as an approximation for this direction. We compute a feature vector307

containing inner products,c 2 R 3,308

c =

2

4
kh� i ; � u ik

kh� i ; x iu (t)ik
kh� u; x iu (t)ik

3

5 (9)

and a random vector� 2 R 3, k� k = 1, so that309

f o = h�; ci : (10)

3.2.2. Features for Walking Phase Correlation310

Importantly, we design a feature based on the fact that trajectories from311

a pair of feet are out of phase with each other, alternating ina cyclic manner312

with dynamic and static phases. This means that one foot is mainly in the313

dynamic phase while the other is in the static phase. Since one has nearly314

zero velocity during most of the cycle, we can expect the dot product of their315

velocity vectors, after proper recti�cation, to be also close to zero. For this316

purpose we consider the trajectory,X i (t), in terms of velocity by generating317

a vector318

Yi (t) = [ y(t); y (t  1); :::; y (t  T + 2)] > 2 R 2(T  1) (11)

wherey(� ) = x(� )  x(�  1); � = t; :::; t  T + 2. We convert eachy(� ) to319

�y(� ) by projecting it to the axis of � i . Thus, the recti�ed velocity vector is320

�Yi (t) = [ �y (t); �y (t  1); :::; �y (t  T + 2)] > : (12)

Rather than simply taking the inner product of the entire �Yi (t) and �Yu(t),321

which would result in a scalar, we compute their piecewise dot products. By322

13



Figure 6: Ground truth labels: Corners detected inside the circles are annotated as
being on a foot. We use an in house annotation tool which accelerates the process by
allowing probabilistic labelling.

cutting each of �Yi (t) and �Yu(t) into l pieces at common �xed cutting points,323

tc(c = 0; :::; l  2; tc > t c+1 ), we acquire a vector324

q = [ h�Y 0
i (t); �Y 0

u(t)i ; :::; h�Y0
i (t l  2); �Y 0

u(t l  2)i ]> 2 R l ; (13)

where �Y 0
i (tc) represents a portion of �Yi (t) starting at tc. We then de�ne a325

phase featuref p as the inner product ofq with a random vector,  2 R l
326

wherek k = 1:327

f p = h ; qi : (14)

We choose to usel = 5, again assuming that the four dynamical models per328

gait are well covered in the trajectories.329

3.2.3. Final Detector Output330

The output from the second decision forest consists of a set of hundreds331

of feature pairs along with their probabilities of being a pair of feet (see332

bottom-right in Figure 7 for an example). In order to extracta major pair333

from this set, we run mean-shift clustering and take the average of the most334

probable cluster as the �nal estimate.335

Note that the cost for the algorithm including the classi�cation and this336

clustering step could vary depending on the number of candidate trajectories337

that are selected in the �rst stage.338
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Figure 7: Results on Sequence I Detection results superimposed on the input frames
(from left to right, 150 frames between each view). Top: Extracted corner points and
candidate points after the �rst stage are shown in green, therejected points in purple, and
points with trajectories of insu�cient length in black. Mid dle: Pairs of corners extracted
as feet in the second stage shown as green line segments. Bottom: Final detection after
running mean-shift. Right: Example of all possible pairs between pre-selected corners at
stage1. Purple line segments are those rejected in stage2.

4. Experiments339

In order to obtain training data we made manual annotations in real340

training images. Figure 6 shows how we acquire them in a sequence. The341

two circles indicate areas where corners detected inside are annotated as being342

on foot in the current frame. Corners on the right foot and theleft foot are343

annotated separately by brown and yellow circles, respectively. The smaller344

circles indicate the annotated locations of the feet in other frames of the image345

sequence. As inputs, we captured video sequences (resolution 1280� 720346

pixels at 60 fps) in which a person walks in seven di�erent directions as well347

as other sequences including di�erent persons walking at di�erent speed.348

Figure 7 illustrates the performance of the proposed classi�cation on a349

sequence of 350 frames. The selected candidates of the �rst stage and the350

classi�ed pairs in the second stage are shown in green, in thetop and the351

middle rows, respectively. Although there are some connections between352

corners for example on arms as their motion is similar to feet(see the bottom-353

right picture in a larger scale), the connections between feet are generally354

dominant, and the �nal detection results are shown in red in the bottom355

row. The algorithm currently runs at 2-5 frames per second.356

Figure 8 shows detection in a 400-frame sequence of two pedestrians cross-357
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Figure 8: Results on Sequence II. Detection of bipedal motion of two people walking
across the scene from opposite directions (from top to bottom). Left: Candidate points after
the �rst stage are shown in green, rejected points in red, points with short trajectories in
black. Middle: Candidate pairs after the second stage shownas green line segments. Right:
Final detection result of pairs of feet after running mean-shift shown as red line segments.
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Figure 9: Pedestrian detection on Sequence II by motion-based techni que. De-
tection of two pedestrians walking across the scene from opposite directions by a sliding
window search with histograms of 
ow (HOF) and HOG descriptors. See texts for details.
Left: Final detection result shown with green bounding boxes. Middle: Color coded optic

ow used for computing histograms of 
ow. Right: Pairs of feet detected by the proposed
method: the same results that are in Figure 8 (for side-by-side comparison).
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Table 1: The detection rates (%). Top: The detection rates of pairs of feet for the
sequence including two pedestrians. See text for the de�nition of r simple and rpure . Middle:
The detection rates of pedestrians by a sliding window search with the HOF and HOG
descriptors (Walk et al., 2010). Bottom: The detection rates of pairs of feet using the
annotations as the ground truth. (The threshold distance isset to 30 pixels.)

Proposed r simple rpure

PersonA (front) 90.6 83.4
PersonB (back) 78.4 69.1

HOF+HOG r simple rpure

PersonA (front) 92.4 83.6
PersonB (back) 83.4 67.2

Proposed Example 1 Example 2
Single person 68.9 66.0

ing the scene. Candidate of a set of feature (trajectory) pairs as the output358

from the second decision forest are shown as green line segments in the sec-359

ond column. Note that we can observe two obvious modes corresponding to360

two pedestrians for which we run mean-shift clustering and take the average361

of the most probable cluster(s). This example shows that we can select more362

than one major mode at this stage to determine the �nal estimate when363

dealing with multiple targets.364

Table 1 (top) further shows the detection rates for each of the two pedes-365

trians; r simple is based on a simple count of successful cases where a mode366

connecting the two feet is detected whereasrpure indicates a similar rate but367

excluding the cases when an extra mode is also detected by mistake for in-368

stance between an arm and the background. The overall detection rates are369

lower for PersonB that is walking in behind and occluded by PersonA in370

part of the sequences. During this crossing phase only one pair of feet is371

detected, but subsequently both are detected again correctly. The supple-372

mentary video demonstrates the performance of detections.373

For a comparison, we have also applied a state-of-the-art motion-based374

pedestrian detector with histograms of 
ow (HOF) descriptor2 (Dalal et al.,375

2The exact descriptor we implemented is called IMHd2 (Walk etal. CVPR10) which is
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2006; Walk et al., 2010) to Sequence II in a framework of sliding window376

search; Figure 9 shows some examples of the results with green bounding377

boxes as well as the color coded optic 
ow (Werlberger et al.,2009) which378

was the basis for computing HOF features. The results demonstrate that379

the motion-based pedestrian detection also performs well generally, missing380

the target only during the crossing phase. By the nature of sliding window381

search, however, multiple detections could appear for eachtarget (e.g. in the382

top row) although a non-maximum suppression has been performed. Also,383

a spurious detection is observed when two targets are close to each other384

(see the third row). Note that in the same frame their feet aredetected385

properly by the proposed approach. Nevertheless, when two people are half386

overlapping (the �fth row), the clustering process after the feet detection is387

confused (see also the corresponding row of Figure 8 for the raw detections)388

while the pedestrian detection is performing stably.389

Another di�erence that should be addressed is the location of detection;390

some ambiguity is inherent in detections with a sliding window search, which391

is not considered as a problem when evaluated by the intersection-over-union392

measure with annotations, whereas the proposed method directly indicates393

quite precise positions of feet in the given image. We will discuss the impor-394

tance of this issue in terms of an application in Section 6.395

Table 1 (middle) shows the detection rates for each of the twopedestri-396

ans computed for Sequence II by the sliding window search with HOF and397

HOG descriptors (Walk et al., 2010). Analogously to the casewith our feet398

detection, r simple refers to a simple count of successful pedestrian detections399

in terms of intersection-over-union measure whereasrpure indicates a simi-400

lar rate but excluding the cases when wrong detection(s) also occurred by401

mistake. As was the case with feet detection, the overall detection rates are402

lower for PersonB than PersonA mainly due to the crossing phase. The per-403

formance is somewhat comparable to the proposed feet detection although it404

is not possible to deduce superiority of one against the other; the IMHd2 is405

computed for the entire pedestrian regions at a time but usesoptic 
ow just406

based on two frames whereas the feet detection uses only local information407

as few as two feature points but for 60 frames. If we make a simple com-408

combined with HOG features. We used the TUD-MotionPairs dataset (Wojek et al., 2009)
for training the model as suggested in (Walk et al., 2010), and the histogram intersection
kernel SVM (Maji et al., 2008) for the classi�er.
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Figure 10: Results on Sequence III. Feet are correctly detected in the �rst frames (left,
middle), but in the last frame (right) a detection in the arm region occurs due to very
similar motion. Top: Candidate points after the �rst stage are shown in green, rejected
points in purple, points with short trajectories in black. Middle: Candidate pairs after the
second stage are green line segments. Bottom: Final detection after running mean-shift.
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parison for Person A,r simple with IMHd2 is a little higher than that with409

the proposed feet detection (see Table 1 (top)) whilerpure being at the same410

level, implying an equivalent false positive ratio.r simple with IMHd2 for Per-411

son B is also higher than that with the feet detection, but thescore ofrpure412

drops signi�cantly to the level that is lower than the proposed feet detection,413

re
ecting more cases of spurious detections involved in thewindow search.414

In order to evaluate the detection rate in a more strict sense, for an415

outdoor sequence with one pedestrian of 595 frames, we compute the error416

as distance between the detected pairs and the annotated pairs. For this417

the correspondences between the two pairs is found and the error de�ned418

as the average distance between corresponding points. The average error is419

less than a threshold distance3 from the ground truth for 410 frames. For420

another sequence, the distance was below the same thresholdfor 310 frames421

out of 470 input frames. Approximately half of the error cases were due to422

incorrect detection of arm motion. See Table 1 (bottom) for the summary of423

the detection rates considering the distances to the annotations.424

5. Discussion425

5.1. Failure Case426

Figure 10 shows an example sequence of 500 frames where outliers become427

more dominant and the �nal detection is no longer at the foot location.428

Although pairs are detected on the feet (left), a number of pairs remain429

candidates as the result of classi�cation stages. Outliersinclude pairs of430

points on the arms as well as pairs between the body and the background.431

Through a detailed analysis typical cases have been found where a trajectory432

is �rst on body but taken over the background, or vice versa. Those pairs433

tend to cluster and take over the �nal signal as being from feet after a few434

seconds. However, one possible approach to avoid those cases will be to435

perform further careful training by using such instances asnegative examples.436

5.2. Occlusions and Crowd437

One of the bene�ts of our new representation is that it tolerates inherent438

ambiguity due to occlusion which occurs internally to a target. However,439

external occluding object/target would be a cause of error,just as in many440

3We set it to be 30 pixels in this evaluation.
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existing algorithms, as shown in Figure 8 for the case with two people; de-441

pending on the phase of the overlap the output of the �nal clustering process442

could be a pair of feet of the frontal person, or a pair of feet of two nearby443

people whose motion happens to be correlated in the similar way as that of444

a real pair of feet does. The stability against more precise classi�cation is445

therefore in working progress.446

The current approach will be confused with further crowded people, being447

not suitable to such a situation. For dealing with complicated crowded se-448

quence, other representations such as particle trajectories (Wu et al., 2010)449

have been proposed which are designed for anomaly detectionwhile pro-450

ducing some representative trajectories of a crowd. On the other hand, our451

approach will help when the position of feet in given images need be detected452

explicitly.453

5.3. Moving Camera454

Moving cameras generally pose signi�cant challenges for recognising mo-455

tion due to the changes in the �eld of view. Although we have assumed a456

static camera to capture input sequences, future work will be directed to the457

case of a moving camera. In order to tackle this problem, it will be necessary458

to separate the global camera motion and the local object motion somehow459

in the acquired frames. Figure 11 shows trajectories for thecases with both460

stationary and moving camera. The space-time volume is displayed so that461

the time-axis is along the vertical direction. In the case ofa stationary cam-462

era, trajectories connecting background corners are vertically aligned. On the463

other hand, trajectories viewed by a moving camera exhibit more variation.464

However, for su�ciently smooth camera motion the trajectories of points on465

the feet are still recognizable, and therefore we believe that it is possible to466

eliminate the dominant camera motion.467

One way to deal with such variations is to generate a recti�edvelocity468

vector in (12) so as to cancel the possible camera motion; given a velocity469

vector, Yi (t), as in (11) we can compute the recti�cation by470

�y(� ) = ŷ (� )  min
�

ŷ (� ) (15)

where ŷ(� ) is obtained by taking the absolute value of each element of re-471

sulting vector after the projection.472

Other possibilties are to employ a global motion compensation step sim-473

ilar to (Mikolajczyk and Uemura, 2008) or the motion features computed474
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Figure 11: Static and moving camera. Point trajectories in the case of a stationary
camera (left) and a moving camera (right).

from 3D trajectories introduced in (Brostow et al., 2008). Also, a promis-475

ing approach to handle the moving camera is to decompose the trajectories476

into their camera-induced and object-induced componens based on low rank477

optimization as recently suggested in (Wu et al., 2011).478

6. Conclusion479

We have introduced a new algorithm for detecting bipedal motion from480

point trajectories. In particular, we proposed to use the fact that trajec-481

tories from two feet are spatio-temporally correlated. To this end, we have482

introduced (i) the notion of probabilistic trajectories, (ii) the pairwise anal-483

ysis of trajectories for detecting their correlation, (iii) the design of e�cient484

features for a two-stage decision forest classi�er, and (iv) potential extensions485

to deal with camera motion. To the best of our knowledge this is the �rst486

attempt to recognize walking motion by way of investigatingcorrelation of487

point trajectories.488

The strategy in this paper was to retain the uncertainty in the track489

associations and let the classi�er handle this uncertainty. However, other490

advanced methods for association could result in less ambiguous trajectories491

and thus allow the features to be more discriminative. Although our method492

currently assumes little variation in walking speed, it will be also useful in493

the future work to model the period of a walk cycle (Cutler andDavis, 2000;494
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Laptev et al., 2005) and to identify each phase of walking motion.495

The original goal of the work is to replicate the ability to recognize motion496

by the e�ect of kinetic depth using tracked points on a pair of feet. In497

terms of applications, we have designed the method to be usedas a module498

of pedestrian detection system, where feet detection helpsto measure the499

distance to the target since the 2D location in the image can be directly500

mapped to 3D distance given a calibrated camera. This function would be501

especially useful for an automotive system to measure the time-to-contact in502

the area of monocular surveillance given the driving speed (Enzweiler et al.,503

2008). State-of-the-art methods for pedestrian detectionbased on a window504

search return a bounding box as the detected result, but the bottom end of505

the bounding box does not necessarily coincide with the precise 2D location506

of feet. Thus, we point out that the proposed motion-based technique may507

well complement appearance-based methods such as in (Dalaland Triggs,508

2005) in the context of pedestrian detection.509

Appendix A. The Canonical Form of Trajectories510

The canonical form, ~X i (t), of a trajectory X i (t), is computed as511

~X i (t) = X i (t)  �X i (t) (A.1)

where �X i (t) = [ �x(t); :::; �x(t  T + 1)] > and512

�x(� ) =
1

T 1
[(t  � ) x(t  T +1) + ( �  t + T  1) x(t)]: (A.2)
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