
Pattern Recognition ] (]]]]) ]]]–]]]
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

E-m

ognjen.a

Pleas
mod
journal homepage: www.elsevier.com/locate/pr
Achieving robust face recognition from video by combining a weak
photometric model and a learnt generic face invariant
Ognjen Arandjelović n, Roberto Cipolla
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In spite of over two decades of intense research, illumination and pose invariance remain prohibitively

challenging aspects of face recognition for most practical applications. The objective of this work is to

recognize faces using video sequences both for training and recognition input, in a realistic,

unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face

images are of low resolution. The central contribution is an illumination invariant, which we show to be

suitable for recognition from video of loosely constrained head motion. In particular there are three

contributions: (i) we show how a photometric model of image formation can be combined with a

statistical model of generic face appearance variation to exploit the proposed invariant and generalize

in the presence of extreme illumination changes; (ii) we introduce a video sequence ‘‘re-illumination’’

algorithm to achieve fine alignment of two video sequences; and (iii) we use the smoothness of

geodesically local appearance manifold structure and a robust same-identity likelihood to achieve

robustness to unseen head poses. We describe a fully automatic recognition system based on the

proposed method and an extensive evaluation on 323 individuals and 1474 video sequences with

extreme illumination, pose and head motion variation. Our system consistently achieved a nearly

perfect recognition rate (over 99.7% on all four databases).

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic face recognition has long been established as one of
the most active research areas in computer vision. In spite of the
large number of developed algorithms, real-world performance of
state-of-the-art methods has been disappointing. Even in very
controlled imaging conditions, such as those used for passport
photographs, the error rate has been reported to be as high as
10%, while in less controlled environments the performance
degrades even further [1,2]. We believe that the main reason for
the apparent discrepancy between results reported in the litera-
ture and observed in the real world is that the assumptions that
most face matching algorithms rest upon are difficult to satisfy in
practice.
1.1. Recognition from video sequences and image sets

Compared to single-shot recognition, face recognition from image
sequences is a relatively new area of research. Some of the existing
algorithms that deal with multi-image input use temporal coherence
ll rights reserved.
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within the sequence to enforce prior knowledge on likely head
movements [3–5]. In contrast to these, a number of methods that
do not use temporal information have been proposed. Recent ones
include statistical [6,7] and principal angle-based methods with
underlying simple linear [8,9], kernel-based [10] or Gaussian mix-
ture-based [11] models. By their very nature, these are inherently
invariant to changes in head motion pattern. Other algorithms
implement the ‘‘still-to-video’’ scenario [12,13] and do not take full
advantage of sequences available for training.

1.2. Recognition across illumination

Illumination invariance, perhaps the most significant chal-
lenge for automatic face recognition [14], remains a virtually
unexplored problem for recognition using video. Most methods
focus on other difficulties of video-based recognition, employing
simple preprocessing techniques to deal with changing lighting
[15,16]. Others rely on the availability of ample training data but
achieve limited generalization [6,17].

Two influential generative model-based approaches for illu-
mination-invariant single-shot recognition are the illumination
cones [18,19] and the 3D morphable model [20–22]. Both have
significant shortcomings in practice. The former is not readily
extended to deal with video, assuming accurately registered face
images, illuminated from several well-posed directions for each
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024
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Table 1
A qualitative comparison of advantages and disadvantages of the two main groups of face recognition methods in the literature.

Appearance-based [29,3,30,31] Model-based [32,22,20,16]

Advantages Well-understood off-the-shelf statistical methods readily applied Explicit modelling and recovery of personal and extrinsic variables

Can be used for poor quality and low resolution input Prior, domain-specific knowledge is used

Disadvantages Poor generalization to unseen pose, illumination etc. High quality data required

No (or little) use of domain-specific knowledge Time-consuming model parameter estimation

User intervention is often required for initialization

Difficult to model complex illumination effects – fitting becomes increasingly

ill-conditioned

Fig. 1. Samples from a manifold of face appearance corresponding to a single head

motion sequence. Images in the set were first converted into vectors by column-

wise rasterization (as in [35], for example) of their greyscale pixel values and then

displayed projected to the first three linear principal components computed using

the entire image set. A typical manifold sample displayed as an image is shown in

the top-right corner.
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pose which is difficult to achieve in practice (see Section 4 for
typical data quality). Similar limitations apply to the related
method of Riklin–Raviv and Shashua [23]. On the other hand,
the 3D morphable model is easily extended to video-based
recognition, but it requires a (in our case prohibitively) high
resolution [16], struggles with non-Lambertian effects (such as
specularities) and multiple light sources, and has convergence
problems in the presence of background clutter and partial
occlusion (glasses, facial hair).

1.3. Recognition across pose

Broadly speaking, there are three classes of algorithms aimed at
achieving pose invariance. The first, a model-based approach, uses an
explicit 2D or 3D model of the face, and attempts to estimate the
parameters of the model from the input [20,24]. This is a view-
independent representation. A second class of algorithms consists of
global, parametric models, such as the eigenspace method [25] that
estimates a single parametric (typically linear) subspace from all the
views for all the objects (also see [26]). In comparative face recogni-
tion evaluation trials, such methods are usually outperformed by
methods from the third class: view-based techniques e.g. the view-
based eigenspaces [27] (also [3,4,28]), in which a separate subspace is
constructed for each pose. These algorithms usually require an
intermediate step in which the pose of the face is determined, and
then recognition is carried out using the estimated view-dependent
model. A common limitation of these methods is that they require a
fairly restrictive and labour-intensive training data acquisition proto-
col, in which a number of fixed views are collected for each subject
and appropriately labelled. This is not the case with the method
proposed in this paper.

1.4. Problem statement

In this paper, we are interested in recognition using video

sequences. This problem is of enormous interest as video is readily
available in many applications, while the abundance of information
contained within it can help resolve some of the inherent ambiguities
of single-shot based recognition. In practice, video data can be
extracted from surveillance videos by tracking a face or by instructing
a cooperative user to move the head in front of a mounted camera.

We assume that both the training and novel data available to a
face recognition system is organized in a database where a
sequence of images for each individual contains some variability
in pose, but is not obtained in scripted conditions or in controlled
illumination. The recognition problem can then be formulated as
taking a sequence of face images from an unknown individual and
finding the best matching sequence in the database of sequences
labelled by the identity.

Our approach consists of using a weak photometric model of
image formation and a generic illumination invariant, learnt off-
line. Specifically, we show that the combined effects of face shape
and illumination can be effectively learnt using a mixture of Prob-
abilistic Principal Component Analyzers (PPCA) [33] from a small,
Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
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unlabelled set of video sequences of faces in randomly varying
lighting conditions, while a novel manifold-based ‘‘re-illumination’’
algorithm is used to provide robustness to pose and motion pattern.
Given a novel sequence, the learnt model is used to decompose the
face appearance manifold into albedo and shape-illumination mani-
folds, producing the classification decision by robust likelihood
estimation. We demonstrate that the manner in which generative
and discriminative elements are interlaced in the proposed method
succeeds in inheriting the strengths of both groups of approaches,
which are summarized in Table 1.
2. Face motion and other manifolds

Concepts in this paper heavily rely on the notion of face
manifolds. Under the standard rasterized representation of an
image, images of a given size can be viewed as points in a
Euclidean image space, its dimensionality being equal to the
number of pixels D. However, the surface and texture of a face
is mostly smooth making its appearance constrained and approxi-
mately confining it to an embedded face manifold of dimension d,
where usually d5D [6,34]. Formally, the distribution of observed
face images x of the subject i can be written as the integral

pðiÞðxÞ ¼

Z
pðiÞF ð

~xÞpnðf ið ~xÞ�xÞ d ~x, ð1Þ

where pn is the noise distribution, f ðiÞ : Rd-RD the embedding
function, ~x an intrinsic face descriptor and pðiÞF ð

~xÞ the corresponding
probability density function over Rd. Fig. 1 illustrates the validity of
the notion on an example of a set of face images extracted from a
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024
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Fig. 2. Manifold-to-manifold pose matching: geodesic distances between neigh-

bouring faces on the domain manifold and the corresponding faces on the

codomain manifold are used to regularize the solution.
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head motion video sequence. For the proposed method, the crucial
properties of face appearance manifolds are their (i) C0 continuity and
(ii) approximate smoothness (C1 continuity).

2.1. Synthetic re-illumination of face motion manifolds

One of the key ideas of this paper is the re-illumination of video
sequences. Our goal is to take two input sequences of faces and
produces a third, synthetic one, that contains the same poses as
the first in the illumination of the second.

The proposed method consists of two stages. First, each face from
the first sequence is matched with the face from the second that
corresponds to it best in terms of pose. Then, a number of faces close
to the matched one are used to finely reconstruct the re-illuminated
version of the original face. Our algorithm is therefore global, unlike
most of the previous methods which use a sparse set of detected
salient points for registration, e.g. [36,37,8]. We found that these fail
on our data set due to the severity of illumination conditions (see
Section 4). The two stages of the proposed algorithm are described in
detail next.

2.1.1. Stage 1: pose matching

Consider two motion sequences of a person’s face in different
illuminations1:

fxig
ð1Þ ¼ fxð1Þ1 , . . . ,xð1ÞN1

g and fxig
ð2Þ ¼ fxð2Þ1 , . . . ,xð2ÞN2

g: ð2Þ

Then, for each xð1Þi we are interested in finding xð2ÞcðiÞ that corresponds
to it best in terms of head pose. Finding the unknown mapping c :
f1, . . . ,N1g-f1, . . . ,N2g on a frame-by-frame basis is difficult in the
presence of extreme illumination changes and when face images are
of low resolution. Instead, we exploit the smoothness of face
appearance manifolds by formulating the problem as a minimization
task with the fitness function f(c) taking on the following form:

f ðcÞ ¼ f matchðcÞþo � f regðcÞ, ð3Þ

f ðcÞ ¼
X

j

dEðx
ð1Þ
j ,xð2ÞcðjÞÞ

2

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Matching term

þo
X

j

X
k

dð2ÞG xð2ÞcðjÞ,x
ð2Þ
cðnðj,kÞÞ; fxjg

ð2Þ
� �

dð1ÞG xð1Þj ,xð1Þnðj,kÞ; fxjg
ð1Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Regularization term

, ð4Þ

where nði,jÞ is the j-th of K nearest neighbours of face i, dE a pose
dissimilarity function, dðkÞG a geodesic distance estimate along the
appearance manifold corresponding to the sequence k, and o a
relative weighting constant. The first term is easily understood as a
penalty for the dissimilarity of matched poses. The latter is a
regularizing term that enforces a globally good matching by favouring
mappings that map geodesically close points from the domain
manifold to geodesically close points on the codomain manifold. This
is illustrated conceptually in Fig. 2.

2.1.2. Regularization

The manifold-oriented nature of the regularizing function
freg(c) in Equation (4) has significant advantages over alternatives
that use some form of temporal smoothing. Firstly, it is unaffected
by changes on the motion pattern of the user (i.e. sequential
ordering of fxig

ðjÞ). On top of the inherent benefit (a person’s
motion should not affect recognition), this is important for several
practical reasons, the most important of which are:
�

asp

P
m

face images need not originate from a single sequence—

multiple sequences are easily combined together by computing
the union of their frame sets, and
1 Note that illumination may arbitrarily vary within each sequence as well. No

ect of our method requires unchanging illumination within a sequence.

lease cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
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�
 regularization works even if there are bursts of missed or
incorrect face detections (see Section 4).

To understand the form of the regularizing function note that the
mapping function c only affects the numerator of each summation
term in freg(c). Its effect is then to penalize cases in which
neighbouring faces of the domain manifold map to geodesically
distant faces on the codomain manifold. The penalty is further
weighted by the inverse of the original geodesic distance
dð1ÞG ðx

ð1Þ
j ,xð1Þnðj,kÞ; fxjg

ð1ÞÞ to place more emphasis on local pose
agreement.

2.1.2.1. Pose-Matching Function: The performance of function dE in
Equation (4 at estimating the goodness of a frame match is crucial
for making the overall optimization scheme work well. Our
approach consists of filtering the original face image to produce
a quasi illumination-invariant pose-signature, which is then
compared with other pose-signatures using the Euclidean
distance:

dEðx
ð1Þ
j ,xð2ÞcðjÞÞ ¼ JXð1Þj �Xð2ÞcðjÞJ2: ð5Þ

Note that the signatures are only used for frame matching and
thus need not retain any power of discrimination between
individuals—all that is needed is sufficient pose information.
We use a distance-transformed edge map of the face image as a
pose-signature, shown in Fig. 3, motivated by the success of this
representation in object-configuration matching across other
computer vision applications, e.g. [38,39].

2.1.2.2. Optimizing the Frame Correspondence Function: Exact
minimization of the fitness function in Eq. (4) over all functions
c is an NP-complete problem. However, since the final synthesis
of novel faces (Stage 2) involves an entire geodesic
neighbourhood of the paired faces, it is inherently robust to
some non-optimality of this matching. Therefore, in practice, it
is sufficient to find a good match, not necessarily the optimal one.

We propose to use a genetic algorithm (GA) [40] as a
particularly suitable approach to minimization for our problem.
GAs rely on the property of many optimization problems that
sub-solutions of good solutions are good themselves. Specifically,
this means that if we have a globally good manifold match, then
local matching can be expected to be good too. Hence, combining
two good matches is a reasonable attempt at improving the
solution. This motivates the chromosome structure we use,
depicted in Fig. 4(b), with the i-th gene in a chromosome
representing the value of c(i). GA parameters were determined
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024
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Fig. 3. Left-to-right: original image, the image after high-pass filtering, Canny-detected edges and the final pose-signature as a distance-transformed edge map.

Fig. 4. (a) Parameters of the proposed GA optimization, (b) the corresponding chromosome structure, and (c) population fitness of Eq. (4) in a typical evolution. Each data

point (dot in the plot) represents the fitness of a single individual in the population of the corresponding generation (thus the number of data points for each abscissa value

is 20 which is the population size). Maximal generation count of 200 (maximal abscissa value) was chosen empirically as a trade-off between accuracy and

matching speed.
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experimentally by optimizing the algorithm’s performance on a
small training data set. A summary is given in Fig. 4(a) and (c).

2.1.2.3. Estimating Geodesic Distances: The expression for the
fitness function in Equation (4 involves geodesic distances along
manifolds. Due to the nonlinearity of face appearance manifolds
[6,4], these are not well approximated by the corresponding
Euclidean distances in the image space. Thus we estimate the
geodesic distance between every two faces lying on an
appearance manifold using Floyd’s algorithm [41] on a
constructed undirected graph whose nodes correspond to face
images (also see [42]). Then, if xi is one of the K nearest
neighbours of xj.

2

dGðxi,xjÞ ¼ Jxi�xjJ2: ð6Þ

Otherwise

dGðxi,xjÞ ¼min
k
½dGðxi,xkÞþdGðxk,xjÞ�: ð7Þ

2.1.3. Stage 2: fine re-illumination

Having computed a pose-matching function cn, we turn to

the problem of re-illuminating face images xð1Þi . We exploit the
2 Note that the converse does not hold as xi being one of the K nearest

neighbours of xj does not imply that Xj is one of the K nearest neighbours of xi .

Therefore the edge relation of this graph is a superset of the ‘‘in K-nearest

neighbours’’ relation on xs.

Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
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smoothness of pose-signature manifolds (which was ensured by
distance-transforming face edge maps), illustrated in Fig. 5, by

computing yð1Þi , the re-illuminated face xð1Þi , as a linear combina-

tion of K nearest-neighbour frames of xð2ÞcnðiÞ:

yð1Þi ¼
XK

k ¼ 1

akxð2ÞnðcnðiÞ,kÞ: ð8Þ

Linear combining coefficients a1, . . .aK are found from the corre-
sponding pose-signatures by solving the following constrained
minimization problem:

fajg ¼ arg min
fajg

Xð1Þi �
XK

k ¼ 1

akXð2ÞnðcnðiÞ,kÞ

�����
�����

2

ð9Þ

subject to
PK

k ¼ 1 ak ¼ 1:0, where XðjÞi is the pose-signature corre-

sponding to xðjÞi . In other words, the pose-signature of a novel face

is first reconstructed using the pose-signatures of K training faces
(in the target illumination), which are then combined in the same
fashion to synthesize a re-illuminated face, as shown in
Figs. 6 and 7. We restrict the set of frames used for re-illumina-
tion to the K-nearest neighbours for two reasons. Firstly, the
computational time of using all faces would make this highly
unpractical. Secondly, the nonlinearity of both face appearance
manifolds and pose-signature manifolds, demands that only the
faces in the local, Euclidean-like neighbourhood are used.

Optimization of the expression in Equation (9 is readily
performed by differentiating the quadratic term corresponding
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024

dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024


Fig. 5. A face motion manifold in the input image space and the corresponding pose-signature manifold (both shown in their respective 3D principal subspaces). Much like

the original appearance manifold, the latter is continuous and smooth, as ensured by distance transforming the face edge maps. While not necessarily similar globally, the

two manifolds retain the same local structure, which is crucial for the proposed fine re-illumination algorithm.

Fig. 6. (a) Original images from a novel video sequence and (b) the result of re-illumination using the proposed genetic algorithm with nearest neighbour-based

reconstruction.
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to the square of the objective function, giving:

½a2 a3 . . . aK �
T ¼R�1t, ð10Þ

where:

Rðj,kÞ ¼ ðXð2ÞnðcnðiÞ,1Þ�Xð2ÞnðcnðiÞ,jÞÞ
T
ðXð2ÞnðcnðiÞ,1Þ�Xð2ÞnðcnðiÞ,kÞÞ

and

tðjÞ ¼ ðXð2ÞnðcnðiÞ,1Þ�Xð2ÞnðcnðiÞ,jÞÞ
T
ðXð2ÞnðcnðiÞ,1Þ�Xð1Þi Þ: ð11Þ

3. The shape-illumination manifold

In most practical applications, specularities, multiple or non-
point light sources significantly affect the appearance of faces. We
believe that the difficulty of dealing with these effects is one of
the main reasons for poor performance of most face recognition
systems when put to use in a realistic environment. In this work
we make a very weak assumption on the process of image
formation: the only assumption made is that the intensity of
each pixel xðjÞ is a linear function of the albedo aðjÞ of the
corresponding 3D point:

xðjÞ ¼ aðjÞ � sðjÞ, ð12Þ

where s is a function of illumination, shape and other parameters
not modelled explicitly. This is similar to the reflectance-lighting
model used in Retinex-based algorithms [43], the main difference
being that we make no further assumptions on the functional
form of sð:Þ. Note that the commonly used Lambertian reflectance
Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
model and a learnt generic face invariant, Pattern Recognition (201
model (e.g. see [20,19,23]) is a special case of Eq. (12) [18]:

sðjÞ ¼
X

i

maxðnj � Li,0Þ, ð13Þ

where ni is the corresponding surface normal and fLig the
intensity-scaled illumination directions at the point.

The image formation model introduced in Eq. (12) leaves the
image pixel intensity as an unspecified function of face shape or
illumination parameters. Instead of formulating a complex model
of the geometry and photometry behind this function (and then
needing to recover a large number of model parameters), we
propose to learn it implicitly. Consider two images, X1 and X2 of
the same person, in the same pose, but different illuminations.
Then from Eq. (12):

D log xðjÞ ¼ log s2ðjÞ� log s1ðjÞ � dsðjÞ: ð14Þ

In other words, the difference between these logarithm-trans-
formed images is not a function of face albedo. As before, due to
the smoothness of faces, as the pose of the subject varies the
difference-of-logs vector ds describes a manifold in the corre-
sponding embedding vector space. This is the shape-illumination
manifold (SIM) corresponding to a particular pair of video
sequences.

3.1. The generic shape-illumination manifold

A crucial assumption of our work is that the shape-illumina-
tion manifold of all possible illuminations and head poses is
generic for human faces (generic SIM, or G-SIM). This is motivated
by a number of independent results reported in the literature that
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024
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Fig. 7. Face re-illumination: the coefficients for linearly combining face appearance images (bottom row) are computed using the corresponding pose-signatures (top row).

Also see Fig. 5.
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have shown face shape to be less discriminating than albedo
across different models [44,45] or have reported good results in
synthetic re-illumination of faces using the constant-shape
assumption [23]. In the context of face manifolds this means that
the effects of illumination and shape can be learnt off-line from a
training corpus containing typical modes of pose and illumination
variation.

It is worth emphasizing the key difference in the proposed off-
line learning from previous approaches in the literature which try
to learn the albedo of human faces. Since off-line training is
performed on persons not in the online gallery, in the case when
albedo is learnt it is necessary to have means of generalization i.e.
learning what possible albedos human faces can have from a small
subset. In [23], for example, the authors demonstrate general-
ization to albedos in the rational span of those in the off-line
training set. This approach is not only unintuitive, but also
without a meaningful theoretical justification. On the other hand,
previous research indicates that illumination effects can be learnt
directly without the need for significant generalization [6].
3.1.1. Training data organization

The proposed face recognition method consists of two training
stages—a one-time off-line learning performed using off-line

training data and a stage when gallery data of known individuals
with associated identities is collected. The former (explained
next) is used for learning the generic face shape contribution to
face appearance under varying illumination, while the latter is
used for subject-specific learning.
3.2. Off-line stage: learning generic shape-illumination effects

Let Xðj,kÞi be the i-th face of the j-th person in the k-th
illumination, same indexes corresponding in pose, as ensured by
the proposed re-illumination algorithm in Section 2.1. Then from
Eq. (14), samples from the generic shape-illumination manifold
can be computed by logarithm-transforming all images and
subtracting those corresponding in identity and pose:

d¼ log xðj,pÞi � log xðj,qÞi : ð15Þ

Provided that training data contains typical variations in pose and
illumination (i.e. that the probability density function confined to the
generic SIM is well-sampled), this becomes a standard statistical
problem of high-dimensional density estimation. We employ the
Gaussian Mixture Model (GMM), already proven successful in a
variety of face recognition algorithms [46,47,6,48]. In the proposed
framework, this representation is motivated by: (i) the assumed low-
dimensional manifold model in Eq. (1), (ii) its compactness and (iii)
the existence of incremental model parameter estimation algorithms
Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
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(e.g. [49,50]). Thus:

Gðd;HÞ ¼
XQ

q ¼ 1

½aq � Gðd;mq,SqÞ�, ð16Þ

where Gðd;lq,RqÞ is a multivariate Gaussian function in RD, with the
mean lq and the covariance matrix Rq:

Gðd;lq,RqÞ ¼ expf�1
2ðd�lqÞ

TR�1
q ðd�lqÞg, ð17Þ

and H the set of all mixture parameters. By construction, the
covariance matrix can be written as a sum of a full covariance in at
most dGSIM directions and an isotropic complementary covariance,
uniform across different components in the mixture:

Rq ¼ P̂qL̂qP̂
T

q

zfflfflfflfflffl}|fflfflfflfflffl{principal subspace

þ r̂ĈqCT
q

zfflfflffl}|fflfflffl{complementary subspace

ð18Þ

where

PT
qCq ¼ 0 PT

qPq ¼ 1ðdGSIMÞ CT
qCq ¼ 1ðD�dGSIMÞ, ð19Þ

and 1ðdGSIMÞ and 1ðD�dGSIMÞ are identity matrices of dimensions, respec-
tively, dGSIM � dGSIM and ðD�dGSIMÞ � ðD�dGSIMÞ. We estimate the
multivariate Gaussian components using the Expectation Maximiza-
tion (EM) algorithm [40], initialized by K-means clustering. Automatic
model order selection is performed using the well-known Minimum
Description Length criterion [40,51] while the principal subspace
dimensionality of PPCA components was estimated from eigenspectra
of covariance matrices of a diagonal GMM fit, performed first. Fitting
was then repeated using a PPCA mixture. From 6123 G-SIM samples
computed from 100 video sequences, we obtained Q¼12 mixture
components, each with a dGSIM ¼ 6-dimensional principal subspace.

3.3. Model application: matching a novel query sequence

The discussion so far has concentrated on off-line training and
building an illumination model for faces – the generic shape-
illumination manifold. Central to the proposed algorithm was a
method for re-illuminating a face motion sequence of a person
with another sequence of the same person—see Section 2.1. We
now show how the same method can be used to compute a
similarity between two unknown individuals, given a single
training sequence for each and the probability density capturing
the structure of the generic shape-illumination manifold.

Let gallery data consist of face sequences fxig
ð1Þ, . . . ,fxig

ðNÞ,
corresponding to N individuals, fxig

ð0Þ be a novel sequence of
one of these individuals and Gðd;HÞ a mixture of Probabilistic PCA
corresponding to the generic SIM. Using the re-illumination
algorithm of Section 2.1, the novel sequence can be re-illuminated
with each fxig

ðjÞ from the gallery, producing samples fdig
ðjÞ. We

assume these to be identically and independently distributed
according to a density corresponding to a postulated subject-
specific SIM. We then compute the probability of these under
t face recognition from video by combining a weak photometric
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Fig. 8. An example of ‘‘re-illumination’’ results when the two compared sequences do not correspond to the same individual: the target sequence is shown on the left, the

output of our algorithm on the right. Most of the frames do not contain face which correspond in pose.

Fig. 9. (a) Histograms of intra-personal likelihoods across frames of a sequence when two sequences compared correspond to the same (red) and different (blue) people.

(b) Recognition rate as a function of the number of frames deemed ‘reliable’. (For interpretation of the references to color in this figure caption, the reader is referred to the

web version of this article.)
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Gðd;HÞ

pðjÞi ¼ Gðd
ðjÞ
i ;HÞ: ð20Þ

When fxig
ð0Þ and fxig

ðjÞ correspond in identity, from the way the
generic SIM is learnt, it can be seen that the probabilities pðjÞi will
be large. The more interesting question arises when the two
compared sequences do not correspond to the same person. In
this case, the re-illumination algorithm will typically fail to
produce a meaningful result—the output will not correspond in
pose to the target sequence, as illustrated on an example in Fig. 8.
Consequently, the observed appearance difference will have a low
probability under the hypothesis that it is caused purely by an
illumination change. A similar result is obtained if the two
individuals share sufficiently similar facial lines and poses are
correctly matched. In this case it is the differences in face surface
albedo that are not explained well by the generic SIM, producing
low pðjÞi in Eq. (20).
3 A thorough description of the University of Cambridge face database with

examples of video sequences is available at http://mi.eng.cam.ac.uk/	oa214/.
3.3.1. Varying pose and robust likelihood

Instead of basing the classification of fxig
ð0Þ on the likelihood

corresponding to observing the entire set fdig
ðjÞ in Eq. (20), we

propose a more robust measure. To appreciate the need for
additional robustness, consider the histograms in Fig. 9(a). It
can be observed that the likelihood of the most similar faces in an
inter-personal comparison, in terms of the expression in Eq. (20),
approaches that of the most dissimilar faces in an intra-personal

comparison (sometimes even exceeding it). This occurs when the
Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
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correct gallery sequence contains poses that are very dissimilar to
even the most similar ones in the novel sequence, or vice versa
(note that small dissimilarities are extrapolated well from local
manifold structure using Eq. (9). In our method, the robustness to
these, unseen modes of pose variation is achieved by considering
the mean log-likelihood of only the most likely faces. In our
experiments we used the top 15% of the faces, but we found the
algorithm to exhibit little sensitivity to the exact choice of
this number, as Fig. 9(b) shows. A summary of the proposed
algorithms is shown in Fig. 10.
4. Empirical evaluation

Methods in this paper were evaluated on four databases,
containing in total 323 people and 1474 sequences, resulting in
117,271 automatically detected faces. We summarize the
data sets:

CamFace: The University of Cambridge face motion database
contains 100 individuals of varying age and ethnicity. For each
person in the database we collected seven video sequences of the
person in arbitrary motion (significant translation, yaw and pitch,
negligible roll), each in a different illumination setting, at 10 fps
and in 320�240 pixel resolution (face size � 60 pixelsÞ3; see
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024
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Fig. 10. Summary of the proposed learning (off-line) and recognition algorithms.
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Figs. 11(a), 12(a) and 13, as well as [52] for a detailed description
of the database.

ToshFace: This database was kindly provided to us by Toshiba
Corporation. It contains 60 individuals of varying age, mostly
male Japanese, and 10 sequences per person. Each sequence was
acquired at 10 fps and in 320�240 pixel resolution, and corre-
sponds to a different illumination setting in which the subject
performed uncontrolled body and head pose changes, (face size
� 60 pixelsÞ, as illustrated in Figs. 11(b) and 12(b).

FaceVideo: This database is freely available4 and described in
[53]. It contains 11 individuals with 2 sequences per person, little
variation in illumination, but extreme and uncontrolled variations
in pose and motion, acquired at 25 fps and 160�120 pixel
resolution (face size � 45 pixelsÞ, see Fig. 11(c).

Faces96: This is the most challenging subset of the University
of Essex face database, also freely available.5 It contains 152
individuals, most of whom are 18–20 years old, and a single
20-frame sequence per person in 196�196 pixel resolution (face
size � 80 pixelsÞ. The users were asked to approach the camera
while performing arbitrary head motion. Although the illumina-
tion was kept constant throughout each sequence, there is some
variation in the manner in which faces were lit due to the change
in the relative position of the user with respect to the lighting
sources, as shown in Fig. 11(d).
4.1. Automatic data extraction

The discussion so far focused on recognition using fixed-scale
face images. Our system uses the cascaded detector of Viola and
Jones [54] for localization of faces in cluttered images, which are
then rescaled to the uniform resolution of 50�50 pixels (approxi-
mately the average size of detected faces). Depending on the
severity of the illumination in which data was acquired as well as
the poses assumed by the user, a varying number of faces is
extracted from a single sequence, see Fig. 14.
4 See http://synapse.vit.iit.nrc.ca/db/video/faces/cvglab.
5 See http://cswww.essex.ac.uk/mv/allfaces/faces96.html.

Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
model and a learnt generic face invariant, Pattern Recognition (201
4.2. Methods and representations

We compared the performance of our recognition algorithm
with and without the robust likelihood of Section 3.3 (i.e. using
only the most reliable vs. all detected and re-illuminated faces) to
that of:
�

t fa
2),
Commercial system FaceIts by Identix [55] (the best perform-
ing software in the 2003 Face Recognition Vendor Test [56];
also see [57]).

�
 Mutual Subspace Method, based on canonical correlation

analysis (CCA) constrained to low-dimensional linear sub-
spaces, [8,58].6
�
 Constrained Mutual Subspace Method [8], a discriminative
form of Canonical Correlation Analysis (C-CCA), used in Toshi-
ba’s commercial system FacePasss [59].7
�
 The probability density-based algorithm of Shakhnarovich
et al. (G-KLD) which models personal appearance variations
by multivariate normal distributions and uses the Kullback-
Leibler divergence to measure their similarity [7]. (See
Footnote 7.)

In all tests, both training data for each person in the gallery, as
well as query data, consisted of only a single sequence. Off-line
training of the proposed algorithm was performed using 20
individuals in five illuminations from the CamFace data set—we
emphasize that these were not used as query input for the
evaluations reported in this section.

For CamFace, ToshFace and FaceVideo databases, we trained our
algorithm using a single sequence per person and tested against a
single other query sequence per person, acquired in a different
session (for CamFace and ToshFace different sessions correspond
to different illumination conditions). Since Faces96 database
contains only a single sequence per person, we used the frames
1–10 of each for training and frames 11–20 for test. Seeing that
each video sequence in this database shows a person walking to
6 http://cswww.essex.ac.uk/mv/allfaces/faces96.html.
7 The algorithm was re-implemented in consultation with the authors.
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Fig. 11. Frames from typical video sequences in the databases used for evaluation. (a) CamFace. (b) ToshFace. (c) FaceVideo. (d) Faces96.

Fig. 12. (a) CamFace and (b) ToshFace illuminations. Also see Fig. 13.
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Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robust face recognition from video by combining a weak photometric
model and a learnt generic face invariant, Pattern Recognition (2012), http://dx.doi.org/10.1016/j.patcog.2012.06.024

dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024


Fig. 13. Five different individuals in the illumination setting number 6. In spite of the same spatial arrangement of light sources, their effect on the appearance of faces

changes significantly due to variations in people’s heights, the ad lib chosen position relative to the camera etc.

Fig. 14. Histograms of the number of detected faces per video sequence for the four databases used in evaluation. All sequences in CamFace, ToshFace and Faces96 data

sets are of equal duration, resulting in roughly unimodal histograms, while the duration of sequences in FaceVideo varies from 9 s to 21 s, producing a more varied number

of detections.
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the camera, this division maximizes the variation in illumination,
scale and pose between training and test, thus maximizing the
recognition challenge. The methods were evaluated using three
face representations:
�

P
m

raw appearance images x,

�
 Gaussian high-pass filtered images, successfully used for face

matching in [60,36,61] amongst others:

xH ¼ x�ðxnGs ¼ 1:5Þ, ð21Þ

where n denotes convolution, and

�
 local intensity-normalized high-pass filtered images – similar

to the Self Quotient Image [62] (also see [63,23,60]):

xQ ¼ xH{ðx�xHÞ, ð22Þ

where { denotes element-wise matrix division.

Background clutter was suppressed using a weighting mask
mF , produced by feathering the mean face outline m:

mF ¼mnexp �
r2ðx,yÞ

8

� �
: ð23Þ

This simple form of background suppression was adopted from
[15] where it was successfully applied in the context of clustering
of face appearance sets. A typical result of applying the mask is
shown in Fig. 15.
lease cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
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4.3. Results

A summary of experimental results is shown in Table 2. The
proposed algorithm greatly outperformed other methods, achiev-
ing nearly perfect recognition (99.7þ%) on all four databases. This
is an extremely high recognition rate for such unconstrained
conditions (see Fig. 11), small amount of training data per gallery
individual and the degree of illumination, pose and motion
pattern variation between different sequences. This is witnessed
by the performance of Kullback–Leibler divergence-based method
which can be considered a proxy for gauging the difficulty of
the task, seeing that it is expected to perform well if imag-
ing conditions are not greatly different between training and
query [7]. Additionally, it is important to note the excellent
performance of our algorithm on the Japanese database,
even though off-line training was performed using Caucasian
individuals only.

As expected, when plain likelihood was used instead of the
robust version proposed in Section 3.3, the recognition rate was
lower, but still significantly higher than that of other methods.
The high performance of non-robust G-SIM is important as an
estimate of the expected recognition rate in the ‘‘still-to-video’’
scenario of the proposed method. We conclude that our algo-
rithm’s performance seems very promising in this setup as well.
An inspection of the Receiver–Operator Characteristic curves of the
two methods in Fig. 16(a) shows an even more drastic improvement.
t face recognition from video by combining a weak photometric
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Fig. 15. (a) The weighting mask used to suppress background clutter. (b) The three face representations used in evaluation, shown as images, before (top row) and after

(bottom row) the weighting mask was applied.

Table 2
Average recognition rates (%) and their standard deviations (where applicable).

G-SIM, rob. G-SIM FaceIt C-CCA CCA G-KLD

CamFace

x 99.7/ 0.8 97.7/ 2.3 64.1/ 9.2 73.6/ 22.5 58.3/ 24.3 17.0/ 8.8

xH – – – 85.0/ 12.0 82.8/14.3 35.4/ 14.2

xQ – – – 87.0/ 11.4 83.4/8.4 42.8/ 16.8

ToshFace

x 99.9/ 0.5 96.7/ 5.5 81.8/ 9.6 79.3/18.6 46.6/ 28.3 23.0/ 15.7

xH – – – 83.2/ 17.1 56.5/ 20.2 30.5/ 13.3

xQ – – – 91.1/ 8.3 83.3/ 10.8 39.7/ 15.7

FaceVideo

x 100.0 91.9 91.9 91.9 81.8 59.1

xH – – – 100.0 81.8 63.6

xQ – – – 91.9 81.8 63.6

Faces96

x 100.0 100.0 94.1 100.0 90.9 51.0

xH – – – 100.0 94.0 27.8

xQ – – – 100.0 99.3 28.5

Fig. 16. (a) The Receiver-Operator Characteristic (ROC) curves of the G-SIM method, with and without the robust likelihood proposed in Section 3.3 estimated from

CamFace and ToshFace, and (b) the variation in the mean recognition rate across the two data sets as a function of the amount of available data used for training and

querying the algorithm.
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This is an insightful observation: it shows that the use of the
proposed robust likelihood yields less variation in the estimated
similarity between individuals across different sequences.

To see how our algorithm copes with a progressively decreas-
ing number of poses as well as a reduced density of face
appearance manifold samples, we repeated the experiments, this
time using only the first 50%, 25% and 12.5% of frames in each
video sequence. The result, summarized in Fig. 16(b), shows a
very gradual degradation of recognition performance. Robust
Please cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
model and a learnt generic face invariant, Pattern Recognition (201
G-SIM consistently achieved a higher recognition rate than non-
robust G-SIM, its performance also decaying more slowly as the
amount of training data is reduced. Even when only the first 12.5%
of sequence frames are used (i.e. on average about 11 frames
per sequence), it correctly recognized in 92.5% of the cases.

Finally, note that the standard deviation of our algorithm’s
performance across different training and query illuminations is
much lower than that of other methods, showing less dependency
on the exact imaging conditions used for data acquisition.
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024

dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024
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4.3.1. Representations

Both the high-pass and even further Self Quotient Image
representations generally produced an improvement in recogni-
tion accuracy over raw grayscale. This is consistent with previous
findings in the published literature [14,36,61,62]. Performance
degraded only in the case of Faces96 data set and Gaussian
appearance models matched using Kullback–Leibler divergence.
The likely reason for this stems from a low number of faces
per sequence (usually 10) available both for training and as a
query in this data set, limiting the robustness of the correspond-
ing probability density function estimates in the presence of noise
amplified by filtering, as explained in further detail next.

In contrast to previous empirical studies of image filters in face
recognition, in this paper we also sought to investigate the source
of variation in the discriminative gain achieved with their use. To
quantify this, consider ‘‘performance vectors’’ sR and sF , corre-
sponding to respectively raw and filtered input, whose each
component is equal to the recognition rate of a method on a
particular training/query data combination. Then the vector
DsR � sR�sR contains relative recognition rates to its average on
raw input, and Ds� sF�sR the improvement with a particular
filtered representation. We then considered the angle f between
vectors DsR and Ds, using both the high-pass and Self Quotient
Image representations. In both cases, we found the angle to be
f� 1361.

This is an interesting result: it means that while on average
both representations increase the recognition rate, they actually
worsen it in ‘‘easy’’ recognition conditions. The observed phenom-
enon is well understood in the context of energy of intrinsic
and extrinsic image differences and noise (see [65] for a
thorough discussion). Higher than average recognition rates for
raw input correspond to small changes in imaging conditions
between training and query, and hence lower energy of extrinsic
variation. In this case the training and query data sets are already
normalized to have the same illumination and the two filters can
only decrease the signal-to-noise ratio, thereby worsening the
recognition performance. On the other hand, when the imaging
conditions between training and query are very different, normal-
ization of extrinsic variation is the dominant factor and the
performance is improved, as illustrated in Fig. 17.

This is an important observation, as it suggests that the
performance of a method that uses either of the representations
Fig. 17. Shown is the measured recognition performance improvement with high-

pass and quotient image filters against the performance of unprocessed, raw

imagery across different illumination combinations used in training and query.

The two strongly negatively correlate. Queries are shown in the order of increasing

raw data performance for easier visualization.
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can be increased further in a very straightforward manner by
detecting the difficulty of recognition conditions. This is exploited
in [60].
4.3.2. Imaging conditions

We were interested if the evaluation results on our database
support the observation in the literature that some illumination
conditions are intrinsically more difficult for recognition than
others [66]. An inspection of the performance of the evaluated
methods has shown a remarkable correlation in relative perfor-
mance across illuminations, despite the very different models
used for recognition. We found that relative recognition rates
across illuminations correlate on average with r¼ 0:96.
4.3.3. Re-illumination and topological similarity of manifolds

The presented empirical analysis indirectly but strongly sup-
ports the validity of principles underlying the proposed recogni-
tion method. As a particularly interesting novelty in our approach,
we pursued a more detailed and direct examination of the
implicit assumption of topological similarity of face appearance
and the corresponding pose-signature manifolds, used for
sequence re-illumination in Section 2.1 and, specifically, Eq. (9).

For each face xð1Þi in a sequence, we first computed its optimal
reconstruction as a linear combination of its K-nearest neighboursPK

k ¼ 1 akxð1Þnði,kÞ, in a manner similar to that in Eq. (9), and measured
the relative reconstruction error eIM in the image space

eIM ¼

xð1Þi �
PK

k ¼ 1 akxð1Þnði,kÞ

��� ���
2

Jxð1Þi J2

: ð24Þ

The same coefficients a1, . . . ,aK were then used to hypothesize a
reconstruction of the corresponding pose-signature and thus the
reconstruction error eSG in the pose-signature space:

eSG ¼

Xð1Þi �
PK

k ¼ 1 akXð1Þnði,kÞ

��� ���
2

JXð1Þi J2

: ð25Þ

The pose-signature reconstruction error was found to be, quite
expectedly, somewhat higher than that of the corresponding
appearance, but consistently of the same order of magnitude.
This is illustrated in Fig. 18.
Fig. 18. Topological similarity of face motion and pose-signature manifolds was

evaluated by comparing the reconstruction error of a face as a linear combination

of its K-nearest neighbours in the appearance space and the reconstruction error

of the reconstruction of the corresponding pose-signatures, using the same linear

combination of its neighbourhood.
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Fig. 19. (a) A histogram of non-robust G-SIM recognition failures across individuals in the ToshFace data set. The majority of errors are repeated, of which two of the most

common ones are shown in (b). Visual inspection of these suggests that these individuals are indeed inherently similar in appearance.
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4.3.4. Faces and individuals

Finally, in a similar manner as previously for different illumi-
nation conditions, we were interested to see if certain individuals
were more difficult for recognition than others. In other words,
are incorrect recognitions roughly equally distributed across the
database, or does a relatively small number of people account for
most? Our robust algorithm failed in too few cases to make a
statistically significant observation, so we instead looked at the
performance of the non-robust G-SIM which failed at about an
order of magnitude greater frequency.

A histogram of recognition errors across individuals in Tosh-
Face is shown Fig. 19(a), showing that most errors were indeed
repeated. It is difficult to ascertain if this is a consequence of an
inherent similarity between these individuals or a modelling
limitation of our algorithm. A subjective qualitative inspection
of the individuals most commonly confused, shown in Fig. 19(b),
tends to suggest that the former is the dominant cause.

4.4. Computational complexity

The proposed method consists of two complementary algo-
rithms. The first considers the problem of one-time off-line
learning of the shape-illumination effects for human faces, while
the second one concerns the application of the learnt model in
assigning the identity to a novel face image set. It is the
performance of the latter which is critical in practice so in this
section we focus solely on its analysis.

The application of the shape-illumination invariant comprises
the following:
1.
P
m

K-nearest neighbour computation for each face image,

2.
 geodesic distance estimation between all pairs of images,

3.
 pose correspondence optimization using a GA,

4.
 re-illumination based on pose correspondence, and

5.
 robust computation of likelihood of the same identity.
8 We use the standard notation whereby a function f(N) is said to be OðgðNÞÞ if

and only if (r40,N08N4N09f ðNÞ9r9r � gðNÞ9. Similarly, f(N) is said to be YðgðNÞÞ if

and only if (r1 ,r1 40,N08N4N09r1 � gðNÞ9o9f ðNÞ9o9r2 � gðNÞ9.
We use the following notation: N is the number of face images in a
set, K the number of neighbourhood faces used for re-illumination,
Ngen the maximal number of generations in the genetic algorithm
iteration, Nchr the number of chromosomes in each generation and
Ncomp the number of Gaussian components in the mixture capturing
the distribution of shape-illumination effects Gðd;HÞ.

4.4.1. Asymptotic complexity

In step1, to determine the exact K-nearest neighbourhood of
each face in a set, the distance to all other faces must be
computed – which requires exactly N comparisons – and the
lease cite this article as: O. Arandjelović, R. Cipolla, Achieving robus
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result ordered to find the smallest K, which has the computational
load proportional to NK. Thus, the entire process is YðN2KÞ.8

In step2, the estimation of geodesic distances involves the
initialization of elementary distances within all K-neighbour-
hoods, which is YðNKÞ, and an application of Floyd’s algorithm
[41], which is YðN3

Þ. As K5N, the complexity of step2 is the same
as that of Floyd’s algorithm.

In a generation of the genetic algorithm applied in step3, the
computation of the similarity between pairs of matching pose-
signatures given for every chromosome is YðNÞ. The look-up of
geodesic distances in all K-neighbourhoods (required for impos-
ing the smoothness constraint) is YðNKÞ. The total complexity of
step3 is thus YðNgenNchrNKÞ.

Step4 refines re-illumination results using the pose matching
pairs estimated by the genetic algorithm and their K-neighbour-
hoods. It consists of a single K � K matrix inversion for each of K

images in a set, giving the total complexity of OðNK3
Þ.

Finally, in step5, the likelihoods corresponding to all face
images are computed in YðNcompNÞ, which are then ordered in
further average YðN log NÞ time. In principle, Ncomp is a constant
determined by the nature of illumination-shape effects (or, in
practice, by fitting an optimal mixture to the sample from the
corresponding distribution), so the complexity of step5 simplifies
to OðN log NÞ.

Treating everything but N as a constant, the overall asymptotic
complexity of the algorithm is YðN3

Þ. A summary is presented in
Fig. 20(a).
4.4.2. Empirical performance

We next profiled an implementation of the algorithm written
in Matlab on an Intel Pentium 4 PC, with a 3.2 GHz CPU and 2GB
RAM. In all experiments only N, the number of faces per set, was
varied. Sets of sizes 25, 50, 100, 200, 400 and 800 were used.
Mean computation times for different stages of the matching
algorithm (estimated from 100 executions of independently
drawn identity-illumination combinations for the sets matched)
are shown in Fig. 20(b). In this range of N, the measured
asymptote slopes were typically lower than predicted, which
was especially noticeable for the most demanding computation
of geodesic distances. The most likely reason for this phenomenon
is the presence of large proportionality constants, associated with
Matlab’s for-loops and data allocation routines.
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Algorithm stage Complexity

K -nearest neighbours Θ (N 2 K )

geodesic distances Θ (N 3)

genetic algorithm Θ (Ngen Nchr N K )

fine re-illumination O (N K 3)

robust likelihood O (N log N)

Fig. 20. (a) Asymptotic complexity of different stages of the proposed online, novel sequence recognition and (b) the measured times of our Matlab implementation.
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5. Summary and conclusions

In this paper we described a novel algorithm for face recogni-
tion that uses video to achieve invariance to illumination, pose
and user motion pattern variation. We introduced the concept of
the generic shape-illumination manifold as a model of illumina-
tion effects on faces and showed how it can be learnt off-line from
a small training corpus. This was made possible by the proposed
‘‘re-illumination’’ algorithm which is used extensively both in the
off-line and online stages of the method.

Our method was demonstrated to achieve a nearly perfect
recognition on four databases containing extreme variation in
acquisition conditions. It was compared to and has significantly
outperformed state-of-the-art commercial software and methods
in the literature. Furthermore, an analysis of a large-scale perfor-
mance evaluation (i) showed that the method is promising for
image-to-sequence matching, (ii) suggested a direction of
research to improve image filtering for illumination invariance,
and (iii) confirmed that certain illuminations and individuals are
inherently particularly challenging for recognition.

There are several avenues for future work that we would like
to explore. Firstly, we would like to make further use of off-line
training data, by constructing the G-SIM while taking into account
probabilities of both intra- and inter-personal differences. Addi-
tionally, we would like to improve the computational efficiency of
the method, e.g. by representing each FMM by a strategically
chosen set of sparse samples. Finally, we are evaluating the
performance of image-to-sequence matching and looking into
increasing its robustness, in particular to pose.
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[28] O. Arandjelović, R. Cipolla, An illumination invariant face recognition system
for access control using video, in: Proceedings of the IAPR British Machine
Vision Conference (BMVC), September 2004, pp. 537–546.

[29] L. Zhang, S. Shan, X. Chen, W. Gao, Histogram of Gabor phase patterns
(HGPP): a novel object representation approach for face recognition, IEEE
Transactions on Image Processing 16 (1) (2007) 57–68.

[30] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H.-J. Zhang, Multilinear discriminant
analysis for face recognition, IEEE Transactions on Image Processing 16 (1)
(2007) 212–220.
t face recognition from video by combining a weak photometric
2), http://dx.doi.org/10.1016/j.patcog.2012.06.024

dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024
dx.doi.org/10.1016/j.patcog.2012.06.024
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