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Abstract: Visual inspection, although labor-intensive, costly, and inaccurate, is a common practice used in the condition assessment of
underground tunnels to ensure safety and serviceability. This paper presents a system that- can construct a mosaic image of a tunnel surface
with little distortion, allowing a large area of tunnels to be visualized, and enabling tunnel inspection to be carried out off-line. The system
removes distortion by a robust estimation of a tunnel surface through structure from motion (SFM), which can create a 3D point cloud of the
tunnel surface from uncalibrated images. SFM enables the mosaicing system to cope with images with a general camera motion, in contrast to
standard mosaicing software that can cope only with a strict camera motion. The estimation of the tunnel surface is further improved by
support vector machine (SVM), which is used to remove noise in the point cloud. Some curvatures are observed in the mosaics when an
inaccurate surface is used for mosaicing, whereas the mosaics from a surface estimated using the proposed method are almost distortion-free,
preserving all physical attributes, e.g., line parallelism and straightness, which is important for tunnel inspection. DOI: 10.1061/(ASCE)CP
.1943-5487.0000516. © 2015 American Society of Civil Engineers.
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Introduction

Much of the underground infrastructure in many major cities
around the world shows signs of deterioration due to aging and
may later cause problems in structural integrity. Maintenance
works are regularly carried out and visual inspection is a common
practice, which is used in detecting and monitoring anomalies
(e.g., cracks, spalling, and staining) in the infrastructure. A number
of systems have been proposed to facilitate the laborious process of
visual inspection using cost-effective digital photographs and vid-
eos. These systems can be categorized into the following themes:
(1) automation system for fast data acquisition, (2) automatic crack
detection systems, and (3) organization of a large amount of photo-
graphic data. This paper presents a system that focuses on Theme 3
so that a thorough examination of the growing number of photo-
graphs can be achieved more effectively. A typical solution is to
apply image mosaicing, a technique that stitches individual images
together to form a larger image, hence reducing the number of im-
ages required for inspection. Additionally, mosaicing also enhances
visualization for inspectors by providing a larger field of view in

greater detail than if a single image is used to capture an entire scene.
As exemplified in Zhu et al. (2010), commercial software was ap-
plied to stitch the images of columns under bridges to enhance data
visualization, and Lee et al. (2013) applied image rectification from
a known tunnel geometry before applying image stitching.

Mosaicing typically requires manually identified control points,
especially in remote sensing, in which mosaicing is applied to
detect landscape changes from satellite images (Zitová and Flusser
2003). With improvement in feature detection and matching algo-
rithms (Szeliski 2010) such as scale invariant feature transform
(SIFT) (Lowe 1999), mosaicing can now be carried out automati-
cally, and the manual control points are no longer required. Never-
theless, the application of automatic mosaicing software is still
limited because mosaicing systems are also dependent upon motion
models, which can cause distortion in a mosaic if an unsuitable
motion model is used (Szeliski 2006).

One motion model for home and industrial applications,
widely adopted owing to its simplicity [M. Brown and R. Szeliski,
“Multi-image feature matching using multi-scale oriented patches,”
U.S. Patent No. 10/833 (2004)], is the homography-based model,
which relates images of the same planar surface by homography,
assuming a pinhole camera model. This model works well when
either an interested scene is far away (i.e., a plane at infinity) or
a camera undergoes pure rotation (because the homography is fur-
ther simplified and becomes more stable). A mosaic from this
model typically suffers from perspective distortion, especially in
the region of the mosaic that is further away from a central projec-
tion (Szeliski 2006). Fig. 1(a), which was created from the tunnel
data set presented in this paper, shows that the mosaic suffers from
distortion and misalignment as the image data set violates the as-
sumptions of the homography-based model.

The motion models, which are specific for mosaicing a quadric
surface, may be applied to the images of a tunnel. For example,
cylindrical projection mosaicing works by transforming image co-
ordinates from Euclidean space to cylindrical or spherical coordi-
nates. This allows the warped images to be related by a translation
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motion model, which is simpler and more stable. However, this
method only works if the images are all taken with a level camera
or with a known tilt angle (Szeliski 2010). Fig. 1(b) shows various
distortions introduced by this method. The hierarchical estimation
of the motion models, such as Shum and Szeliski (1998) and Can
et al. (2002), are also specific for mosaicing the quadric surface,
although these models still impose constraints on a camera motion
and the type of the scene, which must be a true quadric.

The data sets presented in this paper are obtained from a camera
with an arbitrary motion; also, the tunnel surface is not a true
quadric, which violates the assumptions of the existing models
and causes unwanted image distortion. The mosaicing system pro-
posed in this paper is independent of camera motion and can create
an almost distortion-free mosaic. This is achieved by exploiting the
properties of developable surfaces (e.g., underground tunnels),
which can be flattened onto a plane without distortion (Fig. 2). This
mosaic, created from 173 images, preserves all physical attributes,
including line parallelism, collinearity, line straightness, and angles.

The mosaicing system presented in this paper removes distor-
tion by recovering the true cylindrical surface of a tunnel through
structure from motion (SFM). The SFM system creates a three-
dimensional (3D) point cloud of a tunnel from uncalibrated images
and then a cylindrical proxy is fitted onto the point cloud by a non-
linear least-squares method. The proxy is used to warp individual
images, which are then input into stitching software to create a
final distortion-free mosaic. Additionally, support vector machine
(SVM) is applied to remove some 3D points from the point cloud

because these 3D points are those that lie on protuberant regions
such as pipes, pans, and tunnel ridges, and will cause inaccuracy in
the cylindrical surface estimation. The mosaics created without
SVM still contained curvature distortion, whereas distortion was
completely removed when SVM was applied.

Background

Photographic Technology in Visual Inspection

Visual inspection must be carried out on a regular basis by trained
engineers to obtain an initial assessment of the structural compo-
nents. In the United Kingdom, for example, the frequency of in-
spections ranges between 2 and 6 years (Messervey 2008). For
tunnel inspection, the guideline from Federal Highway and Transit
Administration (2005) suggests that tunnel owners should establish
a frequency for up-close inspections based on the age and condition
of the tunnels; this period could be as great as 5 years and, for older
tunnels, a much more frequent inspection period may be required,
possibly every 2 years. Visual inspection heavily relies on the
experience of the inspectors; often, inspection is required to be car-
ried out in many inaccessible areas, such as narrow ventilation
shafts, which is impractical. Visual inspection usually results in an
inspection report, which contains sketches of the defects found in
problematic areas (Fig. 3).

Photographic technologies, such as images and videos, are com-
monly used to aid visual inspection because they provide rich in-
formation, such as texture, color, and 3D cues, which are useful
when assessing the conditions of structures. As an example, leak-
age, which is identified as a major problem for tunnels (Delatte et al.
2003; Mallett 1994), can only be detected through photographic
techniques using color information. In recent years, visual inspec-
tion incorporates techniques to allow fast data acquisition, such as
the use of a self-navigated robot to acquire videos of sites under
inspection, for example, FATA automation (FATA 2011) that
mounts infrared cameras onto a vehicle to allow the acquisition
of data through remote control; sewer inspection systems (Makar
1999; Costello et al. 2007), and Lawson and Pretlove (1998) ap-
plied a stereo vision system and augmented reality to navigate a
robot. Idoux (2005) presents a system called ATLAS 70, which
is a complete sensor and software package to acquire data and post-
process remotely by a trained inspector. Yu et al. (2007) presents an

Fig. 1.Distortions observed in the mosaics created from typical motion
models from the Prague data set: (a) homography-based mosaicing;
(b) cylindrical projection mosaicing

Fig. 2. Result created from the proposed mosaicing system that pre-
serves all physical attributes, e.g., line parallelism and straightness,
which are important for tunnel inspection; the mosaic was constructed
from 173 images
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integrated system for automatic tunnel inspection, which includes
both image acquisition from a mobile robot and a crack detection
algorithm.

The captured videos and photographs can then be automatically
processed to detect defects (Sinha and Fieguth 2006). To this end,
many crack detection systems have been developed. Algorithms for
crack detection generally involve a preprocessing step and a crack
identification step (Guo et al. 2009). The preprocessing step applies
image processing techniques to extract potential crack features,
such as edges. Miyamoto et al. (2007) computed the difference
in intensity between each pixel and the average intensity of each
row in an image matrix; a pixel that differs considerably from the
average is deemed to belong to a crack. Fujita et al. (2006) applied a

line filter using the Hessian matrix and a threshold is applied to
extract the crack regions. Ukai (2000) developed a system to model
cracks, which can be characterized by eight quantities, including
area and Ferets occupancy rate. Yamaguchi and Hashimoto
(2010) modeled cracks based on the percolation model, which is
a physical model based on liquid permeation. Paar et al. (2006)
proposed a crack detection algorithm based on the line tracing al-
gorithm. The identification step usually applies crack modeling
and/or pattern recognition techniques to determine whether the ex-
tracted features belong to crack regions. Zhu and Brilakis (2010)
proposed an algorithm for detecting concrete columns based on
texture using artificial neural networks. Liu et al. (2002) applied
a support vector machine classifier to classify if crack features

Fig. 3. Example of an inspection report containing sketches of anomalies on tunnel surface
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appear in an image patch, which is preprocessed to extract potential
crack features based on intensity. Abdelqader et al. (2006) applied a
principal component principles (PCA) algorithm, which was used
to reduce the dimensions of feature vectors based on eigenvalues, to
extract cracks from concrete bridge decks.

Once cracks have been identified, more semantic information
can be obtained so that a subsequent step, such as a repair regime,
can be planned. To this end, algorithms that classify cracks and
indicate the states of cracks have been proposed. Kaseko and
Ritchie (1993) proposed an artificial neural network system that
classifies pavement surface cracking by the type, severity, and ex-
tent of cracks detected in video images. Sinha and Fieguth (2006)
applied a new neuro-fuzzy classifier to classify extracted features in
buried pipe images into different types of cracks and other defects,
such as holes on the pipe surface. Kim et al. (2007) proposed a
computer-assisted crack diagnosis system for reinforced concrete
structures that aids the nonexpert to diagnose the cause of cracks
at the level of an expert in the general inspection of structures. Lim
et al. (2005) proposed a system to monitor the change of cracks
from multitemporal images. The system is based on a two-
dimensional (2D) projective transformation to accurately extract
the size of cracks, which is then monitored in the images as the
cracks propagate. Chen and Hutchinson (2010) proposed a frame-
work for concrete surface crack monitoring and quantification.

As the image or video data become large, it is essential to organ-
ize or, more importantly, be able to visualize the data for a thorough
examination. In this area of research, many systems have been pro-
posed to improve visualization of a large amount of data. A typical
solution is to use image mosaicing, which stitches images together
to form a larger image to provide a larger field of view. Zhu et al.
(2010) applied commercial software to stitch the images of col-
umns under bridges so that an entire column can be visualized
in greater detail than if a single image is used. Song et al. (2005)
created a stitched image of construction sites from a series of im-
ages taken by a robotic camera, and the stitched image is used to
record the progress of the construction. Jahanshahi et al. (2011)
created stitched images of structural systems from a tilt-and-pan
camera to detect missing parts in time-lapse photos. Image regis-
tration techniques were applied to rectify images so that all images
are in the same coordinate frame and can then be compared. Stent
et al. (2013) and Chaiyasarn et al. (2009) created mosaicing of tun-
nels to form the basis for change detection for tunnel images.

Mosaicing Technology

The visual presentation and quality of a mosaic depends largely
on an accurate motion model. The motion models can be broadly
grouped into single viewpoint and multi-viewpoint. A single-
viewpoint panorama is the most common type in the commercial
stitching software. This type of panorama is created with the
assumption that all images share the same center of projection
(Haenselmann et al. 2009). This can be achieved by rotating a cam-
era around its optical center (Agarwala et al. 2006). One model is
based on planar projective transformation, in which all images are
aligned using homographies. The final panorama is created by
warping other images based on a homography to a chosen reference
image. One drawback of this method is that the panorama appears
to diverge toward the edge, and only a small number of images can
be combined without causing severe distortion (Peleg et al. 2000).
To avoid this problem, first warp each image to cylindrical or
spherical coordinates and then relate each image using a transla-
tional model (Chen and Klette 1999). This model, however, distorts
a panorama by making all the straight lines appear curved. This
model also requires a level camera for the cylindrical projection

or a level camera with known tilt angles for the spherical projection.
The drawback of the single-viewpoint panorama is that it does not
work well with images with general camera motion.

A multi-viewpoint panoramic image consists of patches that
do not have a common projection center, but are taken from chang-
ing viewpoints (Haenselmann et al. 2009). Strip panoramas, which
are created from a translating camera, are one of the methods used
for creating a multi-viewpoint panorama. There are many variants
of strip panoramas, such as pushbroom panoramas (Gupta and
Hartley 1997) and adaptive manifolds and x-slits images (Zomet
et al. 2003). The strip panoramas are suitable for visualizing images
or videos with long sequences, such as long street scenes. A
common method used with strip panoramas is to sample vertical
strips from each image or video frame and then warp the strips ac-
cording to the chosen transformation model to stitch the strips onto
a final image plane. The strip panoramas exhibit some degree of
distortion. Only objects at a certain depth from the camera plane
are shown with a correct aspect ratio; objects that are further away
may appear horizontally stretched, and closer objects appear
squashed. These panoramas are usually created from videos, which
are generally of lower quality than images. In addition, acquiring
suitable video data can be challenging.

Carroll and Seitz (2009) create multi-viewpoint panoramas us-
ing developable surfaces, which can be unwrapped onto a plane
without distortion. The result is a mosaic without any perspective
distortion. The system estimates a camera pose for each frame and
then, with known camera poses, an inverse projection of each frame
can be performed onto a developable surface. This system, how-
ever, requires tracking pixels in the pose estimation algorithm;
hence, the camera path has to be smoothed. Therefore, it is only
suitable for cameras with forward motion. Forward motion is
unsuitable for scenes taken inside tunnels owing to the large size
of the tunnels because only a small portion of the tunnel surface for
each panel is visible in the images as shown in Fig. 4. This is inad-
equate for inspection purposes.

Agarwala et al. (2006) developed a system that creates multi-
viewpoint panoramas from digital images taken from a standard
single-lens reflex (SLR) or a fish-eye lens camera. The system uses
structure from motion, which explicitly recovers a sparse 3D point
cloud of a scene and camera poses. The texture from each camera is
projected onto a dominant plane, which corresponds to the facade
of the buildings along the streets, to create the final panoramas. In
this work, a dominant plane is chosen automatically by principal
component analysis (PCA). PCA is able to find a direction with the
largest variance of data. In this work, PCA is applied to a 3D point
cloud, and the direction of the largest variance in the point cloud is
used to form the parameters for a plane. The PCA method works
when a street scene is not curved. If it is slightly curved, a dominant
plane is selected manually. For a scene with a large curvature (such
as a tunnel), a geometry proxy (such as a cylindrical surface) can be
used as a dominant plane, as demonstrated in this paper. In Agar-
wala et al. (2006), when a distance between a scene and a camera is
large, only a slight distortion in the mosaic is observed for objects
that do not lie on a dominant plane, such as cars; and therefore,
standard stitching and blending algorithms are sufficient to cope
with these objects.

The method developed in this study is similar to Agarwala et al.
(2006), which relied on an SFM system to create multi-viewpoint
panoramas. The SFM system allows stitching for a general camera
motion, which eases the process of image acquisition and also en-
ables images to be stitched in both the radial and longitudinal di-
rections for tunnels. Because the tunnel surface is a developable
surface, the panoramas can be distortion free. The primary chal-
lenge of the current work, also faced by Agarwala et al. (2006),
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is how to extract a geometry proxy for mosaicing. Agarwala et al.
(2006) identifed a dominant plane automatically by the use of PCA.
In this paper, the estimation of the tunnel proxy is done manually
by initializing parameters for the cylindrical surface, and then the
parameters are optimized by the least-squares method. Addition-
ally, support vector machine classification is applied to remove
the noise from the 3D point cloud, i.e., points lying on the protu-
berant regions causing inaccuracy in the surface estimation step.

Methodology

Fig. 5 shows an outline of the proposed system. The first compo-
nent is image acquisition, in which the images of underground
scenes are systematically obtained based on the method described

previously. To mosaic images in the proposed system, tunnel im-
ages are first input into the structure from motion (SFM) module to
recover the 3D point cloud of a tunnel model and camera poses.
SFM is the process of finding the 3D structure of an object from
multiple uncalibrated images taken at various locations. The SFM
program used in this paper is called Bundler, implemented by
Snavely et al. (2006) as explained previously.

Next, a surface proxy is fitted to the point cloud in the surface
estimation module by nonlinear least-squares optimization. In this
system, the tunnel surface is estimated using either the manual in-
put obtained from users or the input obtained from SVM classifiers.
SVM is applied to classify 3D points into those that either lie or
do not lie on an actual tunnel surface, because nonsurface points
can corrupt the optimizer to converge to an incorrect surface. The
SVM code from the statistical pattern recognition toolbox (SPRT)

Fig. 4. Pictures of tunnels from the Aldwych site obtained by forward motion; only small parts of the tunnel surface are visible in these images,
making them unsuitable for inspection

Training  
Images 

Structure from  
Motion 

(Bundler) 

 
Image  

Warping 

 
Image  
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SVM (SPRT) 

 
Manual Input 
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(ICE) 

 
Surface  

Estimation 

 

  egamI
datasets 

3D point 
cloud + 
camera 

calibration 

Final cylinder 
params + 
 camera 

calibration 

Warped 
images 

Initial cylinder 
params  

Classified 
associated 2D 
image points 

Fig. 5. System outline
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implemented by Vojtěch and Václav (2004) is used. The nonsurface
points can badly skew an estimated surface and create distortion in
a final mosaic. The estimated surface is then used to warp input
images in the image warping module; and finally, the warped im-
ages are composited at the stitching stage by a commercial program
called ICE (Microsoft 2011).

Image Acquisition

It is important to ensure that sufficient 3D information is captured
to make the SFM module successful. The image acquisition
procedure is designed to ensure that the image data sets have
(1) sufficient 3D information; (2) the full coverage of the tunnel
linings; and (3) sufficient overlaps between images. There are three
main pieces of equipment: a standard digital camera, a tripod, and a
portable spotlight.

As a rule of thumb, there should be some degree of overlapping
for every three images; therefore, an overlap of more than 50% for
every two images was chosen (Fig. 6). The procedure is as follows.
For each tunnel ring, a camera mounted on a tripod is rotated to
cover approximately 270° [Fig. 6(b)], and the overlap between
the images should be at least 50%. The camera is then moved
along the tunnel by approximately half the width of the ring
[Fig. 6(a)]. The amount of distance moved along the tunnel is
flexible, depending on the width of the tunnel lining. The camera
is rotated to cover the entire ring of a tunnel lining, but the rail
tracks at the bottom section of the ring are omitted to allow a more
accurate 3D model of the tunnel to be reconstructed.

Each image is taken using a self-timer function (e.g., 3–10 s can
be used) to release the camera shutter to avoid blurring. The F-stop
and shutter speed were set to the P mode when the flash was not
used, and the Auto mode was used when the flash was used. These
modes are standard in modern digital cameras. The P mode lets the
camera calculate both the shutter speed and aperture to obtain au-
tomatic image exposure, whereas the Auto mode allows the camera
to alter all of the settings (e.g., flash, exposure compensation). An
external light source is used when the flash is turned off (i.e., in the
P mode). A camera is locked into position on a tripod before images
are taken to avoid vibration, which can cause image blurring.

Data Sets

There are three data sets presented in this paper, referred to as the
Aldwych data set (taken at Aldwych tunnels, London), the Prague
data set (taken at Prague Metro, Czech Republic), and the Bond
Street data set (taken at Bond Street tunnels, London). Table 1 sum-
marizes the number of images and the length of a tunnel covered in
each data set (the number of images/length is rounded to the nearest
integer).

Structure from Motion

Structure from motion refers to a process of recovering a 3D point
cloud and camera poses from uncalibrated or calibrated cameras.
Fig. 7 shows an example of the typical pipeline of a structure from
motion system; the reader is referred to Snavely et al. (2006) for full
details. The algorithm starts with the SIFT matching algorithm to
extract features and their associated descriptor vectors for each im-
age (Lowe 1999). This feature is invariant to scale and robust to
affine transformation. The 128-dimensional descriptor vectors
are then pairwise matched by the k-nearest neighbor method for
each pair of images. Incorrect matches are filtered out by the geo-
metrical consistency constraint by the RANdom sampling consen-
sus (RANSAC matching) algorithm. The fundamental matrix F
obtained by the RANSAC is used to obtain the essential matrix,
E ¼ KT

2FK1, whereK is the camera calibration matrix. The essen-
tial matrix is decomposed by singular value decomposition (SVD)
to produce the relative camera rotation and translation matrixes,
hence the projection matrixes, between each camera pair. The am-
biguity of the projection matrixes is solved by the cheirality con-
straint (Nister 2004). To register all cameras in a global scale, the
scale ambiguity is solved in a tripletwise fashion. The scale ratio of
each triplet is found by the SVD method. Once all camera projec-
tion matrixes in the global frame are found, 3D points can be re-
covered from any pair of the projection matrixes by triangulation in
the triangulation step. The DLT algorithm is used in the triangula-
tion step (Hartley and Zisserman 2000). All 3D points, the camera
rotation and translation matrixes, and the calibration matrix are then
used to initialize the bundle adjustment (BA) algorithm. This algo-
rithm can improve the reconstruction accuracy by global registra-
tion in which all parameters (i.e., 3D points and all camera

Fig. 6. Configuration of image acquisition system: (a) side view where the tunnel linings are in front of the camera; (b) view looking into the tunnel

Table 1. Summary of Data Sets

Data sets
Number
of images Length (m)

Number of
images/length (m−1)

Aldwych 23 3 8
Prague 173 8 21
Bond Street 123 7 17

RANSAC 
matching 

 
Bundle 

Adjustment SIFT Matching Triangulation 

Fig. 7. Example of the pipeline of a structure from motion system
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projection matrixes) are optimized together by minimizing a suit-
able cost function.

Bundler, which is a noncommercial state-of-the-art SFM
software package developed by Snavely et al. (2006), was applied
to obtain the 3D point clouds for each of the data sets. Notably,
Bundler estimates camera calibration parameters K from the EXIF
tags of images, and then all camera parameters (i.e., rotation, trans-
lation, and K) together with initialized 3D points are optimized in
the sparse bundle adjustment algorithm (Lourakis and Argyros
2004). Hence, the method described in this paper relies on Bundler
to give a 3D point cloud, K, R, and T from uncalibrated input im-
ages. Fig. 8 shows an example of a 3D point cloud obtained from the
Prague data set. The software successfully reconstructed the model
and created 139,665 3D points; all 173 images are registered in the
model. For the spatial accuracy of the SFM system, the 3D point
cloud was compared with the laser imaging detection and ranging
(LiDAR) data by an iterative closest point (ICP) algorithm. The
point cloud from the SFM system can give the accuracy between
120 and 200 mm compared with 4.5–8 mm for the LiDAR in
the 5 m range for the Prague data set. However, the SFM system
had an accuracy of 25–40 mm in the 50 m range as shown in Harwin
and Lucieer (2012). The spatial accuracy of the SFM system can be
improved further with higher image resolution. The experiment is
performed on an Intel Core i3 3.06 GHz with 4 GB of memory.

Cylindrical Surface Estimation

After a sparse 3D point cloud is created from the SFM system, the
point cloud is fed into the surface estimation module to fit a geo-
metric proxy onto the point cloud. The cylindrical surface is esti-
mated using the nonlinear least-square optimization of a cylindrical
surface as explained subsequently.

Let C be a cylinder defined by a center ðx0,y0,z0ÞT, a unit direc-
tional vector ða,b,cÞT, and a radius r. A point p ∈ R3 that lies on
the cylinder is then defined as

�������
p −

2
64
x0

y0

z0

3
75

�������

2

¼

8><
>:

0
B@p −

2
64
x0

y0

z0

3
75

1
CA ·

2
64
a

b

c

3
75

9>=
>;

2

þ r2 ð1Þ

Let xi ¼ ðxi,yi,ziÞT be a 3D coordinate; and the minimum
distance (i.e., the shortest distance between a point to a surface)
between the point x and the cylinder C is then defined as
di ¼ minkxi − pk, where p ∈ C. To fit a cylinder to a point cloud
X ¼ fxi; : : : ; xng, the following cost function is minimized:

min
Xn
i¼1

wid2i ð2Þ

where wi ∈ ½0,1� = weight of a point xi. The preceding cost
function is minimized using the nonlinear least-squares method
by the Gauss-Newton algorithm, in which the implementation from
Eurometros (2011) is used.

It is assumed that the geometry of a tunnel can be modeled by a
cylinder. This assumption is valid because the deformation of a tun-
nel is negligible in comparison with the size of a tunnel.

The surface estimation requires an initial input for r0, a direc-
tional vector a0, and a cylinder center x0; and these inputs are
required from the users.

As shown in Eq. (2), w is the weight given to each point in the
point cloud. Generally, not all points lie on a cylindrical surface
because some points are found on tunnel ridges, cables, and other
protuberant regions. These points can cause inaccuracy in the sur-
face estimation if all points are equally weighted, especial in cast
iron linings, where many protuberant regions are found, especially
in the Aldwych data set. The next section explains how the weights
for each point using an SVM classifier are obtained to improve ac-
curacy in the surface estimation for the Aldwych data set. For the
Prague and Bond Street data sets, the SVM is not required because
they are concrete linings, and the effect caused by the protuberant
regions is negligible; hence, w is assigned as 1 for all points in these
two data sets.

Estimation by Support Vector Machine
In this section, the estimation of the weight w for each 3D point
using SVM is explained. Because not all of the 3D points are
on the cylinder surface, the weight is proposed as

wi ¼ ΣjpðxjiÞ ð3Þ
The weight w implies the probability that the 3D point belongs to
the surface class. In addition, xji is the scale invariant feature trans-
form (SIFT) vector of the jth image point of ith 3D point, which is
reprojected by the projection matrix as denoted by

xji ¼ GðPjiXiÞ ð4Þ
where G and P denote the SIFT function and the camera projection
matrix, respectively. To retrieve the weights for each Xi, the prob-
abilities are summed over the associated image points xji as shown
in Eq. (3). The probability p is given as

pðxjiÞ ¼ 1=f1þ exp½−fðxjiÞ�g ð5Þ
where the function f is the SVM classifier in Eq. (6). Fig. 9 illus-
trates the conceptual diagram of how SVM is used in obtaining the
weights for each 3D point.

Learning Support Vector Machine
The SVM classifier is applied to discriminate the tunnel surface
points from the nonsurface points. The image patches of the
two classes exhibit quite distinctive appearances (Fig. 10); hence,
they are separable. The interest points detected by the SIFT algo-
rithm on or near the protuberant regions are collected as the non-
surface class and others as the surface class [Figs. 11(a and b)]. The
image patches of the two classes exhibit quite distinctive appear-
ances (Fig. 10); hence, they are separable. The training data set is
composed of fxji,ykg, where xji is the 128-dimension SIFT de-
scriptor vectors described in Eq. (4), and yk ∈ f−1,þ 1g is the
class label of the point xji. The SVM classifier (Bishop 2006) that
optimally separates the positive class from the negative class is
learned as

Fig. 8. Example of a 3D point cloud obtained from the Prague data set
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fðxjiÞ ¼
XNs

k¼1

αkykKðsk,xjiÞ þ b ð6Þ

where fs1; : : : ; sNs
g = set of support vectors; αk = weight for the

kth support vector; and b = bias. The kernel function used in the
system is Kðzi,zjÞ ¼ e−kzi−zjk2=2σ2 , where σ is the kernel variance.
The variance σ and the penalty constants are set using a valida-
tion set.

For the SVM classification, the data set contains 1,369 training
points (i.e., training set) and 635 test points (i.e., validation set)

from 19 labeled images [e.g., Fig. 11(a)]. The ROC curves for
the different variance and the constants are shown in Fig. 12.
The best performance is achieved when the kernel variance
and the penalty constants are set as σ ¼ 0.5 and ½C1,C2� ¼ ½2,1�,
respectively, and these values are used to classify all other points
in the data set.

Image Warping and Stitching

Warping
A surface proxy is estimated to fit onto a 3D reconstructed point
cloud. This proxy is a developable surface whose properties allow
the surface to be flattened onto a plane without distortion, such
as stretching or compressing. These special properties enable a mo-
saic from tunnel images to be created with little or no distortion.
A developable surface is considered as a special case of a ruled
surface—a surface that can be swept out by moving a line in space.
The ruled surface R carries a one-parameter family of straight lines
L (Peternell 2004), known as generators. If all points on each gen-
erator, x ∈ L, have the same tangent plane, this surface is said to be
a developable surface. Some examples of ruled surfaces are a plane,
a cylinder, and a cone.

Given the constraints on the image collection process, cameras
are located inside a developable surface, and each ray intersects the
surface only at a single visible point. The intersection defines, for
each image, a one-to-one mapping between image samples and

Fig. 9. Weights obtained from the SVM classifier are placed on 3D
points for accurate surface estimation; 3D points are projected onto
images by projection matrixes and then classified by the SVM classifier
by their associated image points

Fig. 10. Example of two classes: interest points on the protuberant
regions are Class 1; points on the surface are Class 2

Fig. 11. (a) Example of a labeled image for SVM training and testing, the nonsurface region is colored in dark grey; (b) the points in solid grey lines
and in dotted black lines are estimated as the nonsurface class and the surface class, respectively
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Fig. 12. ROC curves for the different kernel parameters and the penalty
constants
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points on the surface. In other words, each image is projected onto
the surface. These facts allow us to define a warping that produces
the flattened versions of the input images as shown in Fig. 13
(i.e., before warping) and Fig. 14 (i.e., after warping).

Compositing
The final stage of mosaicing involves different processes, including
selecting a compositing surface, selecting pixel contributions to
the final composite, and blending these pixels to minimize visible
seams, blur, and ghosting. Most commercial stitching software
packages already contain the aforementioned algorithms to perform
a final composite. However, these packages only work well with
images related by homographies, and they do not work well
with the data sets presented in this paper. In the proposed system,
input images can be warped more accurately because better camera
calibration parameters and a more accurate estimated tunnel surface

are applied to remove distortion before feeding into stitching soft-
ware. This allows a translational model, which is a simpler and
more stable model, to be applied to relate the warped images in
the stitching software to obtain a final result. The stitching software
by Microsoft Image Composite Editor (Microsoft 2011) is applied
in this paper.

Results and Discussion

Surface Estimation Results

For the Aldwych data set, SVM is applied to improve the results in
the surface estimation step. The convergence graph from the BA
algorithm (Fig. 15) quantitatively shows a significant improvement
in global registration in 3D points as shown in Figs. 16(a and b) as
the cost function converges. Figs. 16(a and b) show the 3D point
cloud of the Aldwych tunnel with and without applying the BA
algorithm, respectively. After the BA algorithm is applied, the tun-
nel linings can be observed more clearly, and camera poses are also
improved. The convergence graph from the BA algorithm (Fig. 15)
quantitatively shows a significant improvement in global registra-
tion as the cost function converges. Fig. 16(c) shows the result of
the 3D point cloud that is classified by SVM as rectangular markers
for the surface points and the nonsurface points as dot markers.
From Fig. 16(d), the estimated surface shown in light grey is with-
out SVM (all points are used for estimation, i.e., the weight wi for
each point set to 1), whereas the dark grey surface is estimated by
using the weights from the SVM classifier. As shown next, the light
grey surface creates a curvature in the final mosaic.

Final Mosaic Results

In Fig. 17(a), the mosaic is created from the point cloud before the
BA algorithm is applied. The mosaic shows a number of misalign-
ments as expected because the camera poses were not yet optimized

Fig. 13. Examples of the input images from the Bond Street data set before warping

Fig. 14. Input images from the Bond Street data set after warping

Fig. 15. Reprojection error of the initialized point cloud is converged
when the bundle adjustment is applied
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by the BA algorithm. Fig. 17(b) shows a typical result obtained
from commercial stitching software. The mosaic shows a signifi-
cant degree of perspective distortion because an unsuitable camera
motion is used by the software. From Fig. 17(c), the mosaic is cre-
ated from the surface without SVM [i.e., the light grey surface from

Fig. 16(d)], whereas Fig. 17(d) is constructed from a more accurate
surface [i.e., the light grey surface from Fig. 16(d)]. The quality
of the final mosaics are shown to depend primarily on the accuracy
of estimated surfaces. From Fig. 17(c), the mosaic results in cur-
vature, whereas the mosaic from Fig. 17(d) preserves all physical

Fig. 16. Process of robust surface estimation: (a) reconstructed model before applying the bundle adjustment algorithm; (b) model after applying the
BA algorithm; (c) classification of 3D points by SVM, surface points as rectangular markers and nonsurface points as dot markers; (d) estimation of
surface, the light grey surface represents estimation with all 3D points having the weights equal to 1, and the dark grey surface is a more accurate
estimation by using the weights obtained from SVM
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geometries, such as line straightness, parallelism, and a 90° angle
between horizon and vertical lines. The curvature is caused by the
skewness of the estimated surface, which is induced by the nonsur-
face points. In contrast to the mosaic produced from the commer-
cial software shown in Fig. 17(b), which exhibits strong perspective
distortion, the mosaic generated from this study is almost distortion
free; this improvement in the mosaic quality is desirable and suit-
able for a tunnel inspection report.

Fig. 18 shows the result from the Bond Street data set. This re-
sult demonstrates that the proposed system allows images to be
stitched in the longitudinal direction for a longer distance. This
means that the mosaic can be created to cover a much larger section
of a tunnel. The ability to stitch in the longitudinal direction is not
possible in standard stitching software. Notably, misalignment can
be observed toward the bottom right corner of the mosaic, but not
on the left corner. This is caused by the the rail track section of the
tunnel lying further away from the true tunnel surface, which vio-
lates the assumption made in the proposed system. The proposed

system works well for the areas that are close to the tunnel geom-
etry. The further away the real scene is from the estimated surface,
the more violated the assumption becomes. As a result, greater in-
accuracy can be observed in the bottom right corner as induced by
the significant part of the rail track section of the tunnel.

The result from the Prague data set is shown in Fig. 2. This result
covers almost 8 m of the tunnel surface in the longitudinal direction
and approximately 270° in the radial direction. A small amount of
misalignment can be observed in this result as labeled in Fig. 2 for
the same reason explained previously for the Bond street data set.
Nevertheless, this result preserves all physical geometries and pro-
vides a larger field of view for the tunnel surface, which is desirable
for tunnel inspection.

The method presented in this paper is suitable for cylindrical
tunnels. For other noncylindrical tunnels, such as an arch shape,
a different geometry is required in the surface estimation step.
As an example, an arch tunnel, which is semicircular in shape,
can be estimated as a combination of planes and cylinders. This
is a nontrivial problem, and further study is required to automati-
cally extract primitive geometries from a point cloud. Nevertheless,
cylindrical tunnels are commonly found in most manmade tunnels;
hence, the proposed system is still applicable in a majority of
tunnels.

Conclusion and Future Work

A system for stitching images of a tunnel surface with little distor-
tion is presented. The quality of the mosaics depends primarily on
the accuracy of the surface estimation of a tunnel. With the pro-
posed mosaicing system, SFM allows images to be stitched in both
the radial and longitudinal directions by relaxing the constraints on
camera motion; also, the point cloud allows a tunnel surface to be
estimated more accurately. The system exploits the properties of a
developable surface to create a distortion-free mosaic for cylindri-
cal tunnels. A support vector machine is also applied to remove the
protuberant points, which are noise, from the point cloud in the
Aldwych data set. SVM helps to remove the curvature by excluding
the 3D points that do not belong to the true tunnel surface.

The mosaic images from the presented results have a number of
advantages. One direct impact is the ease of creating an inspection
report. The mosaics allow the inspectors to have a wider field of
view of a tunnel surface, making it easier for them to carry out in-
spections and analyses from the mosaics. The inspectors can use
mosaic images to guide the localization of anomalies when creating
an inspection report. The automatic localization of cracks or
anomalies can subsequently be performed.

Future plans are to conduct further validation on more data sets,
with the hope of testing the system in a real scenario with human
participants to gain further insights in the effectiveness of the sys-
tem in identifying anomalies in real structures. Furthermore, the
prototype of the system, including the software and the apparatus
for acquiring images (e.g., 20–30 m of the tunnel length), is cur-
rently being developed so that it can be practically adopted in the
tunnel inspection procedure.
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Fig. 17. Results obtained from the Aldwych data set: (a) mosaic before
the BA algorithm is applied; (b) typical result from commercial stitch-
ing software; (c) result obtained from the experiment when an incorrect
surface proxy is used for mosaicing; (d) final result obtained from an
accurate surface proxy

Fig. 18. Result obtained from Bond Street Station is created from 123
images and covers 7 m in the longitudinal direction
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