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Abstract We describe an automated system for detecting,
localising, clustering and ranking visual changes on tunnel
surfaces. The system is designed to provide assistance to
expert human inspectors carrying out structural health moni-
toring and maintenance on ageing tunnel networks. A three-
dimensional tunnel surfacemodel is first recovered from a set
of reference images using Structure fromMotion techniques.
New images are localised accurately within the model and
changes are detected versus the reference images and model
geometry. We formulate the problem of detecting changes
probabilistically and evaluate the use of different feature
maps and a novel geometric prior to achieve invariance to
noise and nuisance sources such as parallax and lighting
changes. A clustering and ranking method is proposed which
efficiently presents detected changes and further improves
the inspection efficiency. System performance is assessed on
a real data set collected using a low-cost prototype capture
device and labelled with ground truth. Results demonstrate
that our system is a step towards higher frequency visual
inspection at a reduced cost.
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1 Introduction

Efficientlymonitoring the structural health of large-scale tun-
nel infrastructure is a socially important challenge. Tunnel
infrastructure is commonly located in urban areas and pro-
vides essential functions to society such as transport, electric-
ity and communications. As urban populations grow, tunnels
are often worked beyond their original design specifications
for both function and lifespan, and hence face a growing risk
of structural failure.

A critical requirement for effective structural health mon-
itoring is the early detection of any visual changes in the
tunnel surface, such as leakages, cracks and corrosion. Early
detection allows early intervention, keeping the cost of reme-
dial measures low and reducing the risk of unexpected fail-
ure. Detecting such changes is often the work of human
inspectors, but given sometimes adverse working environ-
ments and the extensive coverage areas, this is a costly
and time-consuming process and is subject to human error.
More recently, digital camera and laser technology have
been used to capture data to improve the efficiency of visual
inspection [16,20], but systems remain expensive and rou-
tine inspections are typically conducted only once every few
years.

We present a vision-based change detection systemwhich
is a step towards low-cost, high-frequency monitoring. The
system’s goal is to automatically detect, localise, clus-
ter and rank visual changes on tunnel surfaces in newly
acquired images. The system automates the time-consuming
process of visual defect discovery, reducing theworkload and
increasing the effectiveness of expert human inspectors.

This article is an extended version of the conference
paper [17]. Section 2 describes the main contributions of the
paper in the context of related literature. Section 3 details the
theory behind the change detection framework. Section 4
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Fig. 1 Illustration of the
system. a Hardware for data
capture; b changes detected in
new images by localising within
a reconstructed reference model;
c sample output: detected
changes are clustered by
appearance and ranked within
each cluster according to a
user-defined importance
measure

provides an extended description of the complete system
and its constituent components. Section 5 describes practical
experiments performed, including new results on pixel-level
accuracy and on the clustering and ranking of changes. Sec-
tion 6 concludeswith a description of the system’s limitations
and areas for future work.

2 Related work

The main contributions of this work are twofold. First, we
describe a low-cost means of collecting and organising large-
scale visual datasets of tunnel linings. Secondly, we devise a
framework for change detection on newly captured, unregis-
tered images. These two contributions are further described
below, in the context of related literature.
Data acquisition and reconstruction. Existing automated
approaches for tunnel surface inspection tend to make use
of more expensive or bespoke visual capture systems such as
laser scanners [16] or calibrated laser/camera hybrids [10].

While the use of high-precision depth sensors can enable
more accurate and robust geometry estimation than can be
achieved from images alone, the increased cost of the sensors
makes the systems less economical in situations where such
high precision is not necessary.

Alternative approaches using only CCD sensors, such
as [19,20,25], avoid dealing with geometric information by
assuming an annular 2D world. Such systems rely on accu-
rate camera positioning to maintain a constant distance to
the tunnel surface. The approach in [6] describes a means of
overcoming this by inferring geometric information from the
images, but the use of this information is limited to quanti-
fying the scale of cracks rather than to facilitate comparison
with previous images.

We opt for a fixed but otherwise unconstrained array of
synchronised, overlapping, consumer-grade digital cameras
(Fig. 1a). The low cost of the capture device allows for the
possibility of assigning one or several devices to monitor
individual tunnels continuously, rather than using a single
expensive device to monitor many tunnels sporadically as is
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Fig. 2 Sources of nuisance variability. From left to right new query
image with no relevant change; warped matching image from data-
base; absolute difference image, with brighter areas indicating larger
changes. All differences observed in this final image are caused by nui-

sance variability rather than relevant change. Such nuisances include
low-frequency contrast changes across the tunnel lining, hard shadows
around off-lining geometry and glare from specular surfaces. They are
caused here by the changes in camera position and lighting

common. From the captured image set, we use Structure from
Motion (SfM) techniques [15] to recover 3D geometry, and
model the tunnel surface by locally fitting quadric surfaces
to the resulting point cloud [2]. A 3D wire-frame surface
model, texture-mapped with captured images, is shown in
Fig. 1b.
Change detection. Change detection in 2D images is a well-
studied problem, particularly in the fields of remote sens-
ing, video surveillance and medical imaging [9,12]. Systems
exist for similar applications to ours, such as patternmatching
for concrete crack detection or road surface condition mon-
itoring [16,20]. However, the detection of general changes
on tunnel surfaces does not seem well explored, despite its
importance.We identify the threemain challenges and related
work from the computer vision literature:

1. Query image registration. Accurate registration is an
essential prerequisite for changes to be detected without
a large number of false positives. In remote sensing, the
standard means of registration is by coarse localisation
via GPS, then feature matching and homography estima-
tion (assuming a planar world geometry). In the tunnel
environment, GPS is unavailable and the presence of 3D
relief necessitates a geometric model. Recent techniques
have adopted voxel-based [11,18] and mesh-based [4]
geometric models for 3D change detection in cluttered
scenes with many occlusions. The geometric change
detection system in [14] adopts a probabilistic rather
than deterministic geometric representation, citing the
difficulty of producing sufficiently accurate deterministic
models in many realistic scenarios, e.g. due to the limited
variety of camera poses or insufficient textures. The tun-
nel environment in our scenario is in general uncluttered
and well-defined, and as we are specifically interested in
detecting visual changes on its surface, we opt for a sim-
ple, scalable, local quadric surface model. The benefit of
such an approach is that surfaces can still be recovered
with sufficient accuracy for fine-grained change detec-

tion even in areas with little texture, given a suitable
model.

2. Nuisance variability. Figure 2 illustrates some typical
sources of nuisance variability in the tunnel environ-
ment. One source of false changes between the regis-
tered images is image parallax from unmodelled geome-
try such as textureless cables and poorly lit panel anchor
holes. This can be avoided by explicitly modelling all
geometry [4,18], however, this is challenging in areas of
poor texture or limited visibility. Instead, since the tun-
nel surface is our main concern, we circumvent the prob-
lem using a nuisance mask, in the style of [13], which
downweights regions of the change image depending on
their adherence to the fitted surface model. A further
source of nuisance variability is illumination, amplified
by the enclosed and poorly lit nature of the tunnel envi-
ronment. In surveillance applications, background mod-
elling is used to mitigate this variability, but is not fea-
sible with limited temporal information. We investigate
single image colour-normalisation and colour-constancy
techniques such as Multi-Scale Retinex (MSR) [7],
to counter both high- and low-frequency illumination
variability.

3. Many modes of relevant changes.Many existing systems
for large-scale infrastructure monitoring focus on pat-
tern matching to detect specific features such as cracks
in concrete [6,20,24,25]. Our main concern is to cap-
ture all visual outliers which are not accounted for by
understood modes of nuisance variability. Unlike all of
the mentioned approaches, we aim to do so by statis-
tical comparison against previous images rather than
by creating a set of heuristics for performing detec-
tion of an explicit type of change such as a crack.
Clustering the outliers that we detect based on their
appearance establishes groups of features such as cracks
or leaks, as illustrated in Fig. 1c, but without enforc-
ing any prior knowledge on what types of changes we
detect.
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3 Theory

We denote the query image by I q , a function Dq → R
3

whichmaps pixels from location x in the query image domain
Dq to RGBvalues I q(x). The set ofmatching images is given
by {Imi }i=1,...,M . This is the set of images taken at a previ-
ous time instance which have non-zero intersection with the
query image. Thematching images are registered to the query
camera viewpoint such that Dm

i ⊂ Dq for i = 1, . . . , M .
We are interested in obtaining a change map C : Dq →

{0, 1}, which maps a location to 1 in case of a change and
0 otherwise. The goal is to achieve invariance to nuisance
variability as described above and return a change map of
only the relevant changes for pixel-level or image-level clas-
sification.

3.1 Change detection

We first consider the case of estimating a single change map
Ci from the query image I q and one of the matching images
Imi from the database:

p(Ci | I q , Imi ) = 1

Z
L(I q | Imi ,Ci) p(Imi |Ci) p(Ci) (1)

∝ L(I q | Imi ,Ci) p(Ci), (2)

where the normalising constant Z and the matching image
prior p(Imi |Ci) are disregarded as they are constant with
respect to the query image. This leaves a likelihood term
L(I q | Imi ,Ci) and a prior term p(Ci) for the probability of
change at any given pixel. In our experiments, we set this
prior to a constant value, but in a working system it might be
varied depending on the location of the image pixel within
the tunnel. This would allow a user to bias the system to
detect changes with more sensitivity in areas of structural
importance (such as where the tunnel passes nearby other
critical infrastructure).

We define a distance function d between the query and the
matching image, and the likelihood term is then expressed as
the distribution of values of d given whether or not a change
has occurred at a particular location:

Ld(I
q |Imi ,Ci)=

{
exp

(−d(I q |Imi )/σ 2
)

if Ci=0

U(d) if Ci=1,
(3)

where U(d) is a uniform distribution over the range of values
of d. The smoothing constant σ is set as the mean value of d
over the whole query image set. Each matching image, Imi ,
provides information for changes to be identified in its areas
of overlap with I q .

Table 1 Subset of distance functions examined

Feature Dist. Formula/reference

RGB L2 (R,G, B)

Chromaticity L2 (R,G, B)/R + G + B

Gray-world L2 (R/R̄,G/Ḡ, B/B̄)

Multi-scale retinex L2 See [7]

Dense SIFT Angle See [8,21]

Grayscale NCC 1
n

∑
x,y

(cqx,y−c̄q )(cmx,y− ¯cm )

σcq σcm

Grayscale dist. Regression error |cmx,y − g(cqx,y)|, see [5]

3.2 Choices for distance function

The distance function, d, maps corresponding query and
matching image pixels into a feature space and returns a
value, d(I q |Imi ), using some distance metric. A good choice
of function is one that detects relevant changes, yet is invari-
ant to changes due to nuisance variables. Table 1 details a
subset of the functions that we examined. These include:
colour-normalisation techniques such as chromaticity and
gray-world; colour-constancy techniques such as multi-scale
retinex (MSR); a spatial histogram of gradients technique in
the form of dense scale invariant feature transform (SIFT); a
measure of textural similarity in the form of grayscale nor-
malised cross-correlation (NCC); and a measure of violation
of the smooth relationship, g, between query and matching
image intensities fitted in local windows using polynomial
regression.

3.3 Combination of multiple change maps

In many cases, the query image contains regions which are
visible in multiple matching images. In these areas, we can
combine the outputs of the individual change maps using a
probabilistic OR function:

p(C(x)) = 1 −
∏

{i:x∈Dm
i }

(1 − p(Ci(x))) , (4)

where Dm
i is the domain of the matching image Imi and the

dependencies on I q and Imi are dropped for clarity.

3.4 Geometric prior

We use the information available to us from our SfM recon-
struction to form a geometric prior, p(C|G), included as fol-
lows:

p(Ci|I q , Imi ,G) = p(Ci|I q , Imi ) p(C|G). (5)
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Fig. 3 Geometric prior. a
Query image. b Distribution of
reconstructed SIFT features
(green). c Mean-shift segmented
image with colour-coded
segments. d Final geometric
prior (black areas indicate
off-surface or uncertain
geometry)

The prior makes use of the recovered scene geometry, G,
which maps image locations to corresponding 3D points:
Dm ⊂ Dq → R

3. The objective of the prior is to mask
out nuisance changes caused by geometry or poorly recon-
structed features. It can thus also be thought of as an inverse
‘nuisance map’ [13].

To construct the prior, we first group the image interest
points into an inlier (on-surface) and outlier (off-surface) set,
based on the distance of their corresponding 3D points to the
nearest point on the locally fitted surface. Given the relatively
sparse nature of G (Fig. 3b), we next apply mean-shift seg-
mentation to the query image [3]. This delineates the image
into pixel groups of similar colour and texture (Fig. 3c).

Inliers and outliers contained within a pixel group vote
towards its overall classification. Pixel groups containing
only outliers are classified as off-surface and assigned a prior
probability of zero, i.e. changes in those regions are consid-
ered to be nuisance variability and are ignored. Pixel groups
containing more inliers than outliers are classified as on-
surface and assigned a prior probability of one. For pixels
lying in groups which contain no points, or fewer inliers than
outliers, the prior depends on the distance of the pixel to the
nearest inlier. The prior is, therefore, expressed as:

p(C(x)|G)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, for on-surface groups.

0, for off-surface groups.

exp

(
−||x−xin ||

σ 2
G

)
, otherwise.

(6)

where σG controls smoothness in uncertain regions and xin
signifies the nearest inlying 2D SIFT feature.

The geometric prior thus downweights changes where the
geometry is either known to be off-surface or known to be
unreliable. The latter is important in the tunnel environment,
where off-surface features such as cables and boxes tend
to have matte, featureless surfaces and are therefore recon-
structed poorly using feature-based SfM. Figure 3d shows an
example of a geometric prior mask, downweighting changes
along the yellow cable and in the panel anchor (surface hole).

4 System description

A flowchart illustrating the main processes of our system is
shown in Fig. 4. We now describe each process in turn.
Reference images acquisition.At time t0, we use a prototype
capture system consisting of five cameras with synchronised
shutters and flash units, arranged in a semi-circular array as
shown in Fig. 1a to capture a stream of reference images
{I ri }i=1,...,R . Each reference image overlaps with its imme-
diate neighbours by 50 %, both radially and longitudinally
along the tunnel.
Structure from motion (SfM). SIFT feature descriptors [8]
are extracted from each reference image using a GPU imple-
mentation [22]. The image set is split into smaller over-
lapping subsets and reconstructed in parallel using stan-
dard SfM [15,23]. Local reconstructions are stitched into
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Fig. 4 Flowchart of main
system processes

Fig. 5 Tunnel surface reconstruction from overlapping image subsets. Above overlapping reconstructed subsets are shown in different colours;
below after texture mapping

a global coordinate frame, centred at the first image in the
sequence, using overlapping feature correspondences. The
resulting reconstruction is illustrated in Fig. 5. Note that
the global geometry recovered by the reconstruction process
suffers from drift as loop closure is not possible in lin-
ear tunnels. However, such drift has little consequence on
the change detection system, which relies only on local
geometry.
Atlas (3D database) builder. Following SfM, the pose of each
reference image is known in a global coordinate system. Each
reference image is stored along with its intrinsic and extrin-
sic parameters, the set of descriptors for its N largest SIFT
features over scale and its corresponding subset number in
an “atlas” database. This is used later for query image local-
isation.

Geometric primitive (surface) fitting. The tunnel surface is
modelled locally with quadrics, fit to each point cloud using
robust non-linear optimisationwith outlier removal.As in [2],
we find that in the tunnels we consider, a piecewise cylin-
drical representation is sufficient, though the system can be
trivially extended to any extruded shape (e.g. square or rec-
tangular tunnels). This representation does not limit the sys-
tem to straight tunnels, but can be used for any curved tunnel
provided its gradients are smooth and shallow enough to be
accurately approximated as locally straight.
Query image(s) acquisition. Query images, I qi , are acquired
at time t1 �= t0 using either the same capture device or a new
device such as a human inspector’s camera. In the former
case, the query image data will be dense and overlapping
and hence can be used as a new reference dataset for t1;
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in the latter case, the query image data will be sparse and
unordered. In our evaluation, we assumed the latter, making
localisation more challenging.
Query image localisation/camera resectioning.Approximate
k-nearest neighbours matching using a k-d tree is used to
match the descriptors of the N largest 2D SIFT features in
the query image to the atlas database. In our experiments,
we set k=5 and N = 300. Each match is a weighted vote
and votes are aggregated to find the highest scoring refer-
ence image subset. Within the subset, RANSAC-based reg-
istration is performed over all SIFT features and the query
image camera is accurately resectioned with radial distor-
tion estimation. This method of localisation was found to
be sufficiently discriminative on concrete tunnel surfaces to
correctly register all of our query image dataset.
Change detection. Images from the reference dataset which
overlap with the query image are then back-projected onto
the recovered tunnel surface and re-projected into the query
image. This provides a set of matching images, {Imi }i=1,...,M ,
for change detection, as described in Sect. 3.
Unsupervised clustering and ranking of changes. To present
the detected changes to the user in an efficient manner, we
employ an unsupervised clustering and ranking approach.
The benefit of clustering, even if the number of clusters is
large, is that it can remove the need for the user to address
each image change individually. This is especially useful as
entire groups of real but unimportant changes can be quickly
disregarded (e.g. the addition/removal of a cable along the
complete length of the tunnel or the addition of a yellow
chainage marker on every panel along the tunnel, which
would appear as a change in many images).

The change probability maps are first thresholded with
hysteresis to give a discrete set of connected changes. Each
connected change is then represented as a 6Dpoint in a simple
colour and shape-based feature space:

– mean colour of (MSR-corrected) change as it appears in
the query image (3D),

– perimeter to area ratio (1D),
– ratio of principal axes (1D),
– morphological Euler number (1D)—the number of
unchanged connected components surrounded by the
change.

The feature space is normalised and mean-shift clustering is
used with an adaptive bandwidth to over-cluster the changes.
In our experiment, we set the number of clusters at 100, far
greater than the ∼ 10 types of changes applied. The moti-
vation for over-clustering is to ensure that clusters remain
homogeneous to avoid grouping together different types of
changes.

Changes within each cluster are then ranked by a user-
defined importance measure. In our experiment, we choose

this measure as the sum of the pixels within the change
weighted by their change probabilities. Large, high proba-
bility changes therefore appear before small, low probability
changes.

5 Experiments

We captured data covering 180◦ of a 3-m-diameter tunnel
section of 100m length. This comprised 1,000 images at a res-
olution of 3, 888×2, 592 pixels.Next, artificial changeswere
applied to the concrete tunnel surface to simulate the visual
changes that might be observed in a real environment—such
as leaking, cracking and spalling. A query set of 232 images
was taken, of which 131 contained relevant changes. All 232
images were labelled with ground truth for the presence of
absence of change, 60 of which were labelled at the pixel
level.

5.1 Qualitative results

Figure 6 shows three sample queries as well as differ-
ent distance functions, the geometric prior mask and final
change detection results. Relevant changes in seq. 1 and
2 include leaking, fine chalk markings, discolouration and
objects attached to the surface. The three illustrated dis-
tance functions—gray-world, regression andNCC—pick out
changes with different degrees of success. Gray-world tends
to amplify changes and has good resolution, comparing each
pixel individually without taking into account its neighbour-
hood, but the model we use is a global one and hence illu-
mination effects are also undesirably amplified. Polynomial
regression, implemented here as cubic regressionwith a 9×9
window, picks out fine changes such as cracks which disrupt
the smooth relationship between query and matching image
intensities, but predictably fails to detect larger changes such
as water leaks where the entire window (and therefore rela-
tionship) is transformed.NCC, implemented herewith a 5×5
window, reaches something of a compromise, highlighting
both fine and coarser changes by taking into account intensity
and spatial information, but at the cost of reduced resolution
of the resulting distance image. All methods falsely detect
changes from the lighting units and cabling. This is espe-
cially evident in seq. 3, where there is significant parallax
and specularity in the scene.

The geometric prior in all three cases correctly identi-
fies and removes most of the nuisance change caused by
off-surface features. The final column shows a probabilis-
tic output change mask, formed by a combination of gray-
world and NCC features, multiplied by the geometric prior
as per Eq. (5). In seq. 1 and 2, its performance is close to
ground truth. Seq. 3 illustrates a failure case, caused by the
unusual presence of some thread on the normally featureless
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Fig. 6 Illustrative results for three cases. Two sequences (1 and 2) feature relevant change: water leakage, chalk marks, added features; all three
sequences feature nuisance change: lighting change (significantly in 1 and 3) and cables, fixtures and other off-surface geometry (significantly in 2
and 3)

red cable. The large downweighted area in the geometric
prior of seq. 3 corresponds to an area of unknown geometry,
as the query image is at the edge of the reconstructed area.

5.2 Quantitative results

5.2.1 Pixel-level performance

The pixel-level detection performance of various combina-
tions of features is compared in the ROC curves of Fig. 7a.
Distance functions which explicitly take into account local
spatial information (NCC and DSIFT) performed better than
methods which compare individual query pixels against indi-
vidual reference pixels (MSR and gray-world) or against
a locally fitted relationship (regression). Grayscale NCC
returned the best performance, detecting 98 % of positive
change pixels at a 20 % false positive rate. NCC was also
tested on MSR and gray-world normalised images, although
no significant difference in performance was observed.

5.2.2 Effect of geometric prior

We compared the image-level detection performance of two-
feature combinations, gray-world and gray-world NCC, in
three scenarios: without a prior; using the mean-shift-based
geometric prior described in Sect. 3.4; and using an alter-
native SLIC superpixel-based geometric prior [1]. The SLIC
superpixel prior is calculated in the samemanner as described
inSect. 3.4, but replacing themean-shift algorithmwithSLIC
superpixelisation in the segmentation stage. ROC curves are
shown in Fig. 7b. Classification performance after the intro-
duction of the geometric priors increases substantially. With

no prior, gray-world is initially far more discriminative than
NCC, which is more prone to detect changes across nuisance
areas of the image space. When a prior is introduced, how-
ever, nuisance regions are masked out and NCC can safely
exploit local spatial information solely in the regions of inter-
est (i.e. the tunnel surface), allowing it to outperform gray-
world. Finally, the quantitative performance of our proposed
mean-shift prior is shown to be improved versus the more
local, SLIC-based prior. We tried several parameter settings
for each and found that qualitatively, mean-shift performed
better than SLIC. Despite larger computational expense, it
was able to capture both irregularly shaped thin structures
(e.g. cables) and large flat structures (the tunnel surface) of
non-uniform size at the same parameter setting, thus return-
ing amore semanticallymeaningful and useful segmentation.
SLIC, in comparison, could not capture such different struc-
tures with a given region size and regularisation parameter.

5.2.3 Image-level performance

The image-level detection performance of various combi-
nations of features is shown in the ROC curves of Fig. 7c.
Consistent with our pixel-level results in Sect. 5.2.1, NCC
performed best, detecting 81 % of true positives at 20 %
false positive rate. Furthermore, running NCC on MSR and
gray-world normalised images returned no significant quan-
titative difference in performance.

One difference of note when comparing Figs. 7a and c is
that while gray-world and regression have worse pixel-level
performance than MSR, their image-level performance is
notably better. In the case of regression, this can be attributed
to its failure to detect large areas of change such as the centre
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Fig. 7 ROC comparison. a Pixel-level performance of various fea-
tures; b image-level performance with and without geometric prior; c
image-level performance of various features with mean-shift geometric

prior. Area-based methods gave the best performance and image-level
performance was significantly improved with the introduction of a dis-
criminative geometric prior

of the white circle in seq. 2 of Fig. 6. This reduces pixel-
level performance, but it still detects the boundaries of such
areas accurately (where there is overlap with an unchanged
area) and therefore correctly flags the image as containing
change. Gray-world returns a higher rate of false positive
pixels because it offers little invariance to local lighting
changes, but there are relatively few images in which this
is a problem so image-level performance is not significantly

degraded. Conversely, MSR resolves lighting change using
local rather than global image statistics, and so has improved
pixel-level performance but is more susceptible to artefacts
at sharp local boundaries, e.g. between gray concrete and
brightly coloured cables. This results in a higher number of
false positive images.
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Fig. 8 Top-ranked changes in a subset of the clusters returned after unsupervised clustering and ranking

5.3 Clustering and ranking results

The top-ranked changes in a subset of the clusters returned
after the unsupervised clustering and ranking stage described
in Sect. 4 are shown in Fig. 8. The method employed showed
good qualitative performance at picking out groups of sim-
ilar changes, although it was found that due to the vari-
able visual nature of the false positives, larger clusters with
more variationwould often contain some contamination (e.g.
two instances of yellow cable in cluster 3). Smaller clus-
ters such as clusters 5–9 were generally more homogeneous,
although offer less benefit in terms of reducing the work-
load for the human inspector. It should be noted that in a real
system, adding location to the feature space should enhance
the results of the method, by allowing for example all crack-
like changes in the crown of the tunnel or all leakages in a
particular tunnel segment to be grouped together.

6 Discussion

We have presented a system which is suitable for the auto-
mated monitoring and detection of general visual changes
on smooth, unpainted, concrete tunnel surfaces. Our sys-
tem is inexpensive to implement and reduces the work-
load for visual inspection, enabling higher frequency, more
effective tunnel inspections and better use of visual inspec-
tion data. The change detection framework we present is
broadly applicable to any situation where an accurate geo-
metric model can be recovered of the area of interest, such
that reference images may be accurately synthesised from
the viewpoint of a query image.

6.1 Limitations

A key limitation of the proposed system is that there must be
sufficient texture on the tunnel surface to allow reconstruction

at a single time instance, and sufficient stable texture to allow
registration of images between time instances. Our experi-
ence is that concrete and cast iron tunnels are sufficiently
textured for both, provided they have not been painted or
panelled. However, we have thus far tested in relatively sta-
tic (utility) tunnels, not in more dynamic environments such
as road or subway tunnels, where the build up of dust and
dirt over time might mask the image texture used for local-
isation. Similar problems may occur between wet and dry
environments or at tunnel extremities. The variability intro-
duced by such factors could be mitigated to some extent by
using odometry and/or 3D information from the reconstruc-
tion to improve query image registration. However, further
tests are needed.

A second limitation is that we assume the tunnel geom-
etry has a locally uniform cross-sectional shape, which can
be retrieved from the 3D reconstruction. Our experience is
that this is a fair assumption in modern pre-cast concrete tun-
nels which are precisely fabricated, but does not hold true of
all tunnels. A significantly varying tunnel geometry would
require a more precise approach to surface reconstruction.

Finally, despite the inclusion of the geometric prior, many
false positives are still detected around areas such as cables.
Performance might be further improved by adding domain-
specific knowledge such as segmenting out all cable-like
structures which appear as a certain colour in the images. A
more generally applicable method would be to segment out
cable structures by first reconstructing them using a model-
based approach.

6.2 Future work

We are currently developing our capture device to acquire
much larger volumes of data automatically. In the future,
we plan to test our system in an active tunnel environment to
detect real changes on a larger scale and tomake amore direct
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comparison of our system against existingmanual inspection
techniques.

We also plan to further explore nuisance invariant features
and extend our system to more complex tunnel geometries.
Another interesting avenue for research is designing the sys-
tem to scale efficiently in time as well as space, so that his-
torical data may be stored and used efficiently.
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