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Embodied Visual Navigation With Automatic
Curriculum Learning in Real Environments

Steven D. Morad , Roberto Mecca, Rudra P. K. Poudel, Stephan Liwicki ,
and Roberto Cipolla, Senior Member, IEEE

Abstract—We present NavACL, a method of automatic curricu-
lum learning tailored to the navigation task. NavACL is simple to
train and efficiently selects relevant tasks using geometric features.
In our experiments, deep reinforcement learning agents trained
using NavACL significantly outperform state-of-the-art agents
trained with uniform sampling – the current standard. Further-
more, our agents can navigate through unknown cluttered indoor
environments to semantically-specified targets using only RGB
images. Obstacle-avoiding policies and frozen feature networks
support transfer to unseen real-world environments, without any
modification or retraining requirements. We evaluate our policies
in simulation, and in the real world on a ground robot and a
quadrotor drone. Videos of real-world results are available in the
supplementary material.

Index Terms—Autonomous agents, reinforcement learning,
visual-based navigation.

I. INTRODUCTION

NAVIGATION forms a core challenge in embodied artificial
intelligence (embodied AI) [1], [2]. Before the embod-

ied AI renaissance, approaches such as active vision [3] and
active visual simultaneous localization and mapping (active
VSLAM) [4] were popular methods for building autonomous
agents. They combined classical motion planning [5], [6] with
non-learned exploration policies such as frontier expansion [7]
to direct the agent. Active VSLAM and active vision work well
in ideal circumstances, but are brittle and lack generalization
ability in real-world situations.

Deep reinforcement learning (DRL) gained traction in the
landmark paper [9], where DRL agents outperformed humans
– all be it in relatively simple arcade games. Since then, the
scope of DRL has expanded to real-world applications. In
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Fig. 1. (1a) The 2019 CVPR Habitat RGB Navigation challenge winner [8]
does not learn an effective policy when the collision-free property is enforced
(episode termination and negative reward upon collision with an obstacle). Plots
represent the mean and standard deviation of a single train/test scene over five
trials. Collision-free agents are important for Sim2Real transfer but are much
harder to train (SPL defined in 3 – larger is better). (1b) Top-down view of fully-
trained navigation agents exploiting collision mechanics to slide along walls.
(1c) Our agents with collision avoidance and automatic curriculum learning.
The agent starts at the pink point and moves towards the green goal, producing
a blue path. Red dots indicate collisions.

robotics and navigation, DRL shows promise as an alternative
to classical models due to its surprising robustness and ability
to generalize to real-world uncertainties. [10] trained visual
navigation agents in a video-game maze, showing that DRL
agents can memorize the layout of a maze from vision alone.
Since then, there has been an explosion of DRL-based visual
navigation, fuelled by the abundance of indoor photo-realistic
simulators and datasets [11]–[15]. Evidence suggests DRL out-
performs traditional methods in such cluttered, realistic indoor
environments [16].

DRL visual navigation tasks can be broken down into
point [8], [16], [17], object [8], [10], [18], or area [19], [20]
navigation based on target description [21]. Object navigation
goals can be represented with images [19], [22] or semantics [8],
[23], [24]. Image-based representations match a reference image
of the target object to the current agent observation, requir-
ing a new image for each specific object instance. Semantic
representations can be specified as a list of instructions [25],
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or as a target label [24]. Language instructions (e.g. left at
staircase) can preclude scene generalization. Semantic labels
show great promise for real-world applications – they are how
humans describe targets to each other, and are not bound to a
specific scene or object instance. Semantic label-based agents
can be deployed to novel environments and duties; suitable for
post-disaster recovery robots or embodied assistance technology
with a wide range of task scenarios.

A. Contributions

We focus on indoor object-driven navigation to semantically-
specified targets. We are interested in generalization to new
environments and targets, including simulator-to-real-world
(Sim2Real) generalization, without any retraining.

Utilizing semantic networks pretrained on large segmenta-
tion datasets like COCO [26], we show agents with test-time
generalization to object classes not seen in training simulations.
To the best of our knowledge, we are the first to demonstrate
this test-time generalization ability in simulation, and further
extend it to the real world. We call this test-time generalization
target-agnostic semantic navigation.

While DRL visual navigation has proven itself in simulation,
it rarely transfers to the real world. One challenge is overfitting to
simulator-rendered images [27]. Using frozen feature encoders
trained on real images, [8] shows compelling generalization
ability across multiple simulators. In our work, we demonstrate
frozen feature networks and collision avoidance help bridge the
Sim2Real gap by showcasing our policies on real robots in real
environments. Another issue present in almost every navigation
simulator is collision modeling exploitation [1]. Agents drive
into a wall at an angle and slide along it, covering the perimeter
of a simulated building (Fig. 1(b)). [28] demonstrates collision-
avoidance policies trained entirely in simulation can transfer
to the real world, but stops short of investigating longer-term
navigation policies. DRL for long-term planning with obstacle
avoidance has yet to be perfected.

Enforcing collision-free paths for agents results in increased
reward sparsity, making training more difficult with state-of-
the-art navigation tools (Fig. 1(a)). We mitigate this elevated
sparsity using automatic curriculum learning. The essence of
curriculum learning is selecting and ordering training data in
a way that produces desirable characteristics in the learner,
such as generality, accuracy, and sample efficiency. Automatic
curriculum learning (ACL) is the process of generating this
curriculum without a human in the loop. Curriculum for neural
networks was proposed by [29], and [30] affords a thorough
overview of ACL applied to DRL. For navigation, tasks can
be represented using low-dimensional Cartesian start and goal
states. Some ACL methods that produce tasks of this form
are asymmetric self-play [31] and GoalGAN [32]. Asymmetric
self-play requires collecting distinct episodes for two separate
policies, which is computationally expensive using 3D simula-
tors. GoalGAN trades performance for generality. It can generate
tasks for arbitrary problems, but uses a generative adversarial
network (GAN) which is notoriously unstable and difficult to
train. Instead, we trade generality for efficiency and propose a

TABLE I
NAVACL GEOMETRIC PROPERTIES

simple classification-based ACL method for navigation, termed
NavACL.

In summary, we cast the visual navigation problem setup as
follows:

1) the agent’s observations consist of RGB images from an
agent-mounted camera and the semantic label of the target
(e.g. “football,” “vase”),

2) the agent’s actions consist of discrete, position-based
motion primitives (i.e. move forward, turn left or right),
without explicit loop closure outside of said primitives,

3) upon reaching the target, collision with the environment,
or exceeding a preset time limit, the episode ends

and contribute:
1) a simple and efficient method to automatically generate

curriculum for navigation agents,
2) target-agnostic semantic navigation – finding objects and

object classes never seen during policy training,
3) a collision-free navigation policy for complex, unseen

environments that bridges the Sim2Real gap without any
sort of retraining.

II. APPROACH

Fig. 2 presents a flowchart of our contributions, which in-
cludes NavACL, the reward function for collision-avoidance,
and the frozen feature networks. We discuss each piece in the
following subsections.

A. NavACL

NavACL is based on evidence that intermediate difficulty
tasks provide more learning signal than random tasks for policy
improvement [30], [32] and that replaying easy tasks alleviates
catastrophic forgetting [33]–[35]. NavACL filters down uniform
random tasks to those that provide the most learning signal to the
agent using predicted task success probability, described below.

Since our navigation problem has well-defined termination
scenarios (agent reached the goal or not), we use binary task suc-
cess as the signal metric. Let task h = (s0, sg), with agent start
position s0 and goal position sg . f ∗

π(h) denotes the probability
of navigation policy π solving task h, zero for certain failure and
one for certain success. We estimate task success probability f ∗

π

using a fully-connected deep neural network we call fπ . Before
each forward pass, fπ preprocesses h into geometric properties
(Table I), allowing fπ to generalize across scenes. We update
fπ alongside π in the training loop (Algorithm 1, 2). We do
not pretrain fπ – it learns only from rollouts produced by our
agent, initially providing random tasks but quickly determining
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Fig. 2. Agent training pipeline, and how our contributions fit within it. We compress observations from the environment into latent features before passing them
to the policy network. NavACL trains on navigation episodes and serves tasks back to the simulator.

Fig. 3. Spatial interpolation of fπ across two geometric properties, at various
training epochs E. Five thousand tasks are drawn randomly during each epoch
and classified using fπ . Longer tasks (geodesic distance) are initially tough
for the policy. As the policy improves, it can handle longer and harder tasks.
Adaptive NavACL accounts for this, shifting its task distribution as the policy
adapts.

regions of varying task difficulty. We define task difficulty as the
complement of the estimated success probability, 1− fπ(h).
In contrast to [32] which formulates scenario generation with
GANs for general frameworks, we optimize NavACL to gener-
ate scenarios efficiently for the navigation task using simple log
loss.

Adaptive filtering: Now that we can estimate the difficulty of
tasks, which tasks should we feed the agent? In one implementa-
tion, we produce goals of intermediate difficulty (GOID) [32], se-
lecting tasks bounded between two success probabilities. GOID
ensures we never select tasks that are too easy or too hard. How-
ever, GOID does not explicitly deal with catastrophic forgetting
of easy tasks. Furthermore, the bounds do not change as the
agent improves and task distribution shifts (Fig. 3). Instead, we
provide a mixture of task types, where certain tasks adapt to
the learner. Easy tasks provide adequate learning signal early in
training and prevent catastrophic forgetting. Frontier tasks teach
the agent to solve new tasks at its current ability. Uniformly
sampled random tasks inject entropy and prevent overfitting to
specific task types. Initially, easy and frontier tasks form the
majority of the task mixture. The mixture decays into random
sampling as the learning agent learns to generalize.

We draw many random tasks and estimate their difficulty us-
ing fπ , producing a difficulty estimate across the task space. We
fit a normal distributionμf , σf to this distribution (Algorithm 1).
μf , σf form an adaptive boundary in task space, partitioning it
into easy and hard regions, predicated on policy π. In particular,
task h is considered an easy task if fπ(h) > μf + βσf and a
frontier task if μf − γσf < fπ(h) < μf + γσf , where β, γ are

hyperparameters. In other words, task difficulty is relative to the
current ability of the agent – if we expect π to do better on task
h than an average task, it is easy. If h is near the difficulty of
the average task, straddling the adaptive boundary, we call it a
frontier task. Intuitively, this should provide a more conservative
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mixture of tasks than pure random sampling, promoting stable
learning in difficult environments. The full algorithm is detailed
in Algorithm 1–3.

B. Reward Shaping

Our reward function provides negative rewards to discourage
collision and intrinsic rewards to encourage exploration and
movement. We define it as:

r(s) = 1succ + δ(−1coll + 1expl) + 0.01 d. (1)

The binary indicator 1succ is true upon reaching the target, and
false otherwise. 1coll is true upon collision and false otherwise.
The hyperparameter 0 < δ < 1 controls the agent’s affinity for
learning exploration and motor skills compared to target-seeking
behavior. 1expl is an intrinsic reward for exploration. We keep
a buffer of past agent positions over an episode, and provide
a reward if the current position of the agent is some distance
from all previous positions. We find that without the intrinsic
exploration term, the agent falls into a local maxima of spinning
in place to avoid the negative reward from collisions, which is
difficult to escape. d is the distance traveled in the current step,
expressing the prior that the agent should be trying to cover as
large a search area as possible. We do not use a distance to target
term, as others have shown binary success to be sufficient [8].

C. Frozen Feature Networks

Traditional visual DRL agents use an autoencoder to trans-
form input RGB images into a latent representation, where the
autoencoder is trained end-to-end with the policy network [36],
[37]. End-to-end training can overfit the policy network to
simulation artifacts, and hurt real-world transfer [27]. We use
spatial autoencoders pretrained on real images [8] and freeze
their weights to prevent overfitting to simulation renders during
training. High-polygon meshes scanned by [11] and photoreal-
istic renderers provided by [16] produce detailed enough visu-
alizations to work with encoders trained on real-world datasets.
Freezing also speeds up policy convergence, as the gradient
backpropagates through fewer layers.

D. Semantic Target Network

We produce the semantic target feature using a Mask R-CNN
with an FPN backbone trained on the COCO dataset [26], [38].
We introduce a small postprocessing layer that enables swapping
target classes without retraining. Given an image, the Mask R-
CNN predicts a binary mask M for each object class, along
with its confidence. We extract the mask with target label l and
do scalar multiplication of the binary mask with the prediction
confidence to get output O.

O(x, y) = P (M(x, y)label=l). (2)

We can change l at runtime to search for different target classes.
Pixels of O still contain shape information on the target object
(e.g. a ball will produce a round mask but a box will produce a
square one). To prevent the downstream policy from overfitting
to one specific object shape, as well as reduce latent size, we
apply a max-pool operation to O which is then stacked along

TABLE II
PPO PARAMETERS

with the other features into a latent representation, which is fed
to the policy network.

III. MODEL DESCRIPTION

Our learner model consists of an actor-critic model with policy
π(s) and value function V π(s) optimized using proximal policy
optimization (PPO) with clipping (Table II) [39], [40]. The
policy network and value function take latent representations
from the feature encoders as input, and produce an action and
value estimate as output. The policy networks consist of feature-
compression and memory sections. The feature-compression
section compresses spatially-coherent latent features into a more
compact representation using convolutional layers. Receiving
features instead of full RGB images reduces time to train and
the likelihood of overfitting to the simulator.

To keep the navigation problem Markovian, the state must
contain information on where the agent has been, and if it has
previously seen the target. The purpose of the memory section is
to store this information. The memory section uses long short-
term memory (LSTM) [41] cells to represent state in the partially
observable Markov decision process (POMDP) [42]. With this,
we aim to reduce the likelihood of revisiting previously explored
areas and to remember the target location if it leaves the view.
While rotating to circumvent obstacles, the agent may lose sight
of the target.

IV. EXPERIMENTS

We present three experiments: an ablation study of NavACL,
a simulation benchmark of our model on unseen environments
and target objects, and a benchmark of our agent operating in
the real world.

A. Evaluating NavACL

Our first experiment compares the impact of NavACL on
visual navigation to GoalGAN as well as the current standard
of uniform random task sampling. We evaluate NavACL with
GOID (NavACL-GOID) and with adaptive filtering (NavACL-
Adaptive). We hold all policy parameters the same, and run five
navigation trials of five million samples on the Cooperstown en-
vironment from the Gibson dataset [11]. Uniform sampling uses
Habitat’s built-in task generator to generate tasks [16]. Goal-
GAN uses an intermediate difficulty value between 0.1 and 0.9,
used in their MazeAnt navigation experiment. When GoalGAN
selects points outside of the scene, we select the closest valid
point to it within the scene. We do not pretrain GoalGAN on past
experiments – we instead use the random initialization provided
by the GoalGAN library, similar to NavACL initialization. For
NavACL-GOID, we filter uniformly random tasks using our fπ
framework, and target tasks with an intermediate difficulty value
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Fig. 4. (4a) Validation SPL over five trials on a single test-train environment. Solid lines and shaded areas refer to mean and one standard deviation, respectively.
(4b) As the policy improves over time, NavACL increases the distance from start to goal – ratcheting up the task difficulty. (4c) NavACL’s simple architecture
provides valid predictions very quickly.

Fig. 5. Simulation test scenes, left to right: Cooperstown (40 m2), Avonia
(60 m2), Hometown (61 m2).

of0.4 ≤ fπ(h) ≤ 0.6. NavACL-Adaptive uses hyperparameters
β = 1, γ = 0.1. For NavACL-Adaptive, GetTaskType uses
random task probability min(0.15, t/tmax), where tmax is the
maximum number of training timesteps. Frontier and easy tasks
split the remaining probability equally. NavACL-Adaptive sam-
ples 100 tasks to estimate μf and σf . In our reward function, we
use δ = 0.25, d = 0.2.

NavACL-GOID performs on-par with GoalGAN, both out-
performing uniform sampling. NavACL-Adaptive performs
best, beating both NavACL-GOID and GoalGAN by a sizeable
margin (Fig. 4). GoalGAN produces difficult tasks with long
paths (Fig. 4(b)), suggesting it has not learned the spatial layout
of the complex scene (e.g. where obstacles lie). Its performance
being on-par with NavACL-GOID suggests that the adaptive
portion of NavACL-Adaptive is responsible for the performance
disparity.

B. Evaluating Model Performance

Using our methodology, we train a policy over twenty million
timesteps using the Habitat 2019 challenge split of the Gibson
dataset. Policies are evaluated over ten trials of 30 episodes
spread across three unseen test environments, held out from
the Habitat split (Fig. 5). The test tasks are randomly gener-
ated using the same uniform sampling as the Habitat challenge
datasets [16]. The target object is an 11 cm radius football (soccer
ball). All policies are limited to 150 moves, and all tasks have
a maximum start to goal distance of 10 m. We find increasing
the number of moves beyond 150 results in little improvement.
The action space consists of a rotation of ±30◦ and forward
translation of 0.2 m.

The Random policy selects random actions to provide a
lower bound on performance. The PPO Baseline policy is
trained using depth, reshading (de-texturing and re-lighting), and
semantic features, along with intrinsic rewards. The NavACL
policy is trained identically to the PPO Baseline policy, with
the addition of NavACL-Adaptive. NavACL Target-Agnostic
is identical to NavACL, but during testing, we change the target
from the ball to a large vase to evaluate target-agnostic semantic
generalization to unseen targets of different shapes and sizes. We
recruit ten volunteers from varying backgrounds to establish an
upper-bound on performance. The Human policies are trained
and tested just like the agent policies. The volunteers played
the training set until they were comfortable with the controls,
receiving the same RGB observations and action space as the
agents. Once comfortable, the volunteers played through the
same test set as the agents. We use the SPL metric defined by [21]

1

N

N∑

i=1

1succ,i
li

max(li, pi)
(3)

where l is the length of the agent’s path, p is the length of the
shortest path from start to goal, andN is the number of episodes.
Results are presented in Fig. 6 and Tabel III.

Our agents are able to find semantically specified targets
in simulation, performing drastically better than random. Our
NavACL methods improve upon PPO Baseline on average, and
particularly in peak performance results of Cooperstown and
Avonia. On Hometown, the NavACL agent is confused by a
photoscanned mirror at the end of a long corridor, producing
a mirage nearly 60 timesteps in length. The baseline policy
behaves more randomly and falls for this trick less often. On
unseen semantic classes, performance decreases slightly, but the
policy shows target-agnostic semantic generalization capability.
On average, humans outperform agents in unseen environments.
However, humans can memorize test scenes during the first few
episodes, giving them an advantage over agents during later
episodes. On Cooperstown, agents are within one standard de-
viation of human-level performance in success rate, suggesting
they outperform some humans in some cases. We found agents
had trouble navigating to new spaces in larger, unseen environ-
ments. Agents did not have as much trouble when navigating
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Fig. 6. (6a) Training and validation results of our model trained with and without NavACL. (6b) As the policy improves, NavACL produces harder tasks.
Qualitatively, the agent learns obstacle avoidance motor skills before learning exploration behavior. Initially, NavACL selects shorter paths (short geodesic
distance) in narrow corridors (low agent clearance) to guide the agent toward the goal. As the policy learns exploration strategies, the agent navigates without
corridor guidance (high agent clearance), and even reaches goals behind obstacles (low goal clearance). (6c) The mean prediction impact each feature had on
NavACL’s task prediction. Mean Shapley values [43] were determined using 1800 background samples, and feature impact was meaned over 200 test samples at
5M timesteps. At 5M timesteps, the agent has learned basic motion, so placing the target behind the agent (turn angle) has little impact. Path complexity has a
smaller than expected impact, suggesting the measure could be improved.

TABLE III
SIMULATION RESULTS OF COLLISION-FREE AGENTS OVER TEN TRIALS ON

UNSEEN ENVIRONMENTS

in large, previously-seen environments. Memory for embodied
visual agents is an active area of research [19], [44]–[46], and
we expect leveraging these memory modules will improve per-
formance in larger environments. Another limitation was model
throughput – it took roughly two weeks to train twenty million
timesteps on a GPU machine, and previous experiments were
still showing policy improvement at sixty million timesteps.
With memory improvements and distributed computing, we
believe our models could approach human performance.

C. Sim2Real Transfer

We transfer our policy without modification to a Turtlebot3
wheeled robot (AGV) and a DJI Tello quadrotor (UAV). The
AGV uses wheel encoders for closed-loop control for motion
primitives (single actions), but does not estimate odometry
across actions. We tested the AGV on seven tasks spanning

TABLE IV
REAL-WORLD RESULTS FROM THE AGV

three environments and three objects, one being an unseen object
and one being from an unseen semantic class. We use wheel
odometry to measure SPL for the AGV (Table IV). The AGV
did not experience a single collision over the 29 m it traveled
during tests and was robust to actuator noise as well as wheel
slip caused by terrain (hardwood, carpet, and rugs).

The UAV uses IR sensors to determine its height and an IMU
to obtain very noisy position estimates for motion primitives
and hovering stability. We did not train a separate model for the
UAV. We used the model trained with the AGV height and camera
field of view, which drastically differ from the UAV (0.2 m vs
∼ 0.75–1.5m and 68◦ vs 47◦ respectively). Policies trained for
the AGV seemed surprisingly effective on the UAV, suggesting
greater model generalization than we anticipated. The UAV was
able to fly in-between legs of a camera tripod, through doorways,
and even around moving people on many occasions without
a single collision. Unfortunately, hover instability resulted in
varying target height making target navigation unstable. While
small changes in height were tolerated, larger differences were
regarded as spurious detections. Still, this surprising generaliza-
tion implies it may be possible to train a single navigation model
for use on diverse types of robots that implement similar motion
primitives. We provide video results of both the AGV and the
UAV in the supplementary material,1 and illustrations in Fig. 7.

1[Online]. Available: https://www.youtube.com/playlist?list=PLkG_dDkoI9
pjPdOGyTec-sSu20pB7iayC
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Fig. 7. (7a) The AGV navigating to the vase target in the house scene, with several never-before-seen obstacles littering the path to the target. Previous semantic
targets (football and pink star ball) are present to emphasize target-agnostic semantic navigation capability. The agent turned 360◦ (1) to evaluate its options, then
took the path between the desk and tent (2), adjusted the trajectory towards the wide-open area in front of the blue tent (3), and rotated 360◦ (4). The agent explored
the areas surrounding the bike, bookshelves, and the blue tent (5, 6, 7). Target detection occurred at (8), and the AGV made a beeline for the target (9,10). (7b)
While flying down a hallway (1), the UAV notices an empty cubicle (2). It threads the needle, flying between the chair wheels and seat (3). After exploring the
cubicle (4, 5), it leaves and heads into the adjacent open office without collision (6).

V. CONCLUSION

We introduce NavACL and present two variants, NavACL-
GOID and NavACL-Adaptive, for navigation task generation.
Both methods significantly improve upon uniform sampling (the
current standard) as well as GoalGAN in sparse-reward settings.
Combining NavACL with frozen feature networks and collision-
free policies produces agents capable of target-agnostic semantic
navigation in simulation and the real world.

A. Future Work

We found LSTMs had issues with generalization to new
environments with the compute power available to us. Future
work will focus on integrating more structured and efficient
memory modules [19], [44]–[46] into our learning pipeline.

The unexpected real-world generalization ability between
mobility types warrants further investigation. Training an agent
with an actuator abstraction layer allows transfer to disparate,
never-before-seen robots. It may be prudent to invest computa-
tional resources in training a single model with abstract actuation
that can be applied to drones, wheeled robots, walking robots,
blimps, etc., rather than train each model individually.

We evaluated NavACL using on-policy reinforcement learn-
ing, but NavACL may be useful for selecting which episodes to
replay when using off-policy methods. It may also prove useful
in selecting and ordering training episodes for imitation learning.
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