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Abstract
Reconstructing the 3Dshape of an object using several images under different light sources is a very challenging task, especially
when realistic assumptions such as light propagation and attenuation, perspective viewing geometry and specular light
reflection are considered. Many of works tackling Photometric Stereo (PS) problems often relax most of the aforementioned
assumptions. Especially they ignore specular reflection and global illumination effects. In this work, we propose a CNN-based
approach capable of handling these realistic assumptions by leveraging recent improvements of deep neural networks for
far-field Photometric Stereo and adapt them to the point light setup. We achieve this by employing an iterative procedure of
point-light PS for shape estimation which has two main steps. Firstly we train a per-pixel CNN to predict surface normals
from reflectance samples. Secondly, we compute the depth by integrating the normal field in order to iteratively estimate
light directions and attenuation which is used to compensate the input images to compute reflectance samples for the next
iteration. Our approach sigificantly outperforms the state-of-the-art on the DiLiGenT real world dataset. Furthermore, in
order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first
real-world ’dataset for near-fieLd point light soUrCe photomEtric Stereo’ of 14 objects of different materials were the effects
of point light sources and perspective viewing are a lot more significant. Our approach also outperforms the competition on
this dataset as well. Data and test code are available at the project page.
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1 Introduction

Retrieving the 3D shape of a static object from observations
under varying illumination is a very challenging problem
in Computer Vision under the name of Photometric Stereo
(PS). PS has been used in the past for inspection tasks such as
the examination of the fracture of sandstone samples (Kon-
stantinou et al., 2021) or defect detection of steel components
manufacturing (Saiz et al., 2022).

Originally, (Woodham, 1980) proposed a mathematical
model of the PS problem relying on four main assumptions:
orthographic viewing geometry, diffuse light reflection, uni-
form light propagation and the lack of global illumination
effects (cast shadows, self reflections, ambient light). Due to
restrictive assumptions, suchmethodwas limited to very nar-
rowly specified scenarios. Since then an extensive research
has been carried out to relax these assumptions.
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Shape reconstruction from shading information is a dif-
ficult problem, due to the complexity of the underlying
physical process describing how a light beam bounces on the
surface. Thus, it becomes very important to take into account
the parametrization of all elements that influence the image
formation. After (Woodham, 1980), most of the literature
dealing with PS still assume diffuse reflection (i.e., uniform
in all directions), reducing the mathematical model to a lin-
ear problem where the normal field can be easily computed
(Tankus & Kiryati, 2005) and finally integrated (Frankot &
Chellappa, 1988; Quéau & Durou, 2015). Realistically, this
approach contains too many assumptions which fail as soon
as the method is used in a real-world application. There are
at least two reasons why the reconstruction in particular of
specular surfaces still remains a challenging task in the PS
field. First, the Bidirectional Reflectance Distribution Func-
tion (BRDF) for specular reflections is highly non-linear,
which means that analytical solutions are intractable. Sec-
ond, the behaviour of light before and after it starts bouncing
on the object needs to bemodeled accurately. Asmany recent
methods (Ikehata, 2018; Logothetis et al., 2021; Santo et al.,
2020) aim at retrieving the geometry at a per-pixel level,
light-object interaction requires proper modeling.

With the aim of solving the PS problem under more
realistic conditions, researchers have modelled perspective
viewinggeometry (Prados&Faugeras, 2003;Tankus&Kiry-
ati, 2005; Onn&Bruckstein, 1990), specular light reflections
(Mecca et al., 2016) and point light sources parameteris-
ing radial propagation of light (Iwahori et al., 1990; Clark,
1992). These effects lead to highly non-linear models requir-
ing sophisticated optimisation strategies (Wetzler et al., 2014;
Quéau et al., 2018).As the complexity of themodels becomes
intractable, especially when dealing with physical mate-
rial properties, several recent works have opted to neglect
specular highlights and instead rely on robust optimisation
techniques (Ikehata et al., 2012; Ikehata & Aizawa, 2014).
Furthermore, real objects experience a number of complex
physical effects which make the explicit mathematical mod-
eling very hard to invert.

In fact, these global illumination effects (cast shadows,
self reflections, ambient light) are one of the most challeng-
ing aspects of PS. Logothetis et al. (2016); Yuille et al. (1999)
tackle the case of fixed ambient light which however is too
simple of a model to cover realistic inter-reflections. The
global illumination issue is firstly adequately addressed in
Ikehata (2018) by employing a Convolutional Neural Net-
work (CNN). This method works by arranging reflectance
samples into a fixed size observation map for each pixel.
Observational maps are then provided as an input to the CNN
which is trained to output a surface normal per pixel. Logo-
thetis et al. (2021) extends thiswork and shows howa training
data augmentation strategy can be used to deal with general
BRDFs such asMERL dataset (Matusik et al., 2003) or Bidi-

rectional Scattering Distribution Functions (BSDF) such as
Disney (Burley, 2012) and global illumination effects in the
far-field setting. However, these approaches are only directly
applicable to the far-field photometric stereo since the non-
linear light attenuation of near-field images does not allow
to directly compute valid observation maps.

Usually the concept of near-field PS is relevant when the
images are acquired with the camera/light setup nearby the
object. Differently from the far-field case where incoming
light is parametrised as a uniform 3D vector, light directions
at every pixel location are dependent on the geometry of the
light source. Instead of dealing with general lighting mod-
els (Quéau et al., 2016), most of the approaches consider
a point-like light source which actually matches the widely
available LED based illumination. It is important to notice
that even far-field PS datasets are acquired by using point
light sources (Shi et al., 2016). In this work we use the con-
cept of point-light based PS and, instead of constraining it in
the near-field, we provide a method which is able to improve
state-of-the-art also in the far-field.

To do so, we use a three step process. Firstly, the effect of
the light attenuation is compensated using an estimate of the
object geometry, to produce equivalent far-field reflectance
samples. Secondly, a CNN is used to regress pixel normals
from these samples. Finally, a numerical integration is used
to update the estimate of the object geometry for the next
iteration step. We evaluate our method on both artificial and
real point-light image datasets. We significantly outperform
competing approaches (Quéau et al., 2018; Logothetis et al.,
2017; Santo et al., 2020) on both types of datasets (see Fig. 1
and Sect. 6).

We extend our previous approach (Logothetis et al., 2020)
by making the network able to train over a general point-
light distribution. We tested over a wide variety of scenarios,
taking into account sparse and dense point-light distribu-
tion as well as synthetic experiments. We finally compare
our method over the real-world point-light PS datasets DiLi-
GenT (Shi et al., 2016) and LUCES (Mecca et al., 2021)
to cover both far and near field setting respectively. We
also extend the preliminary version of LUCES (see Figs. 2
and 5 and Sect. 4) (Mecca et al., 2021) by analysing the
real to synthetic gap among a variety of competing methods.
In addition, we improved ground truth meshes by employ-
ing CT scanning technologies1 to retrieve 3D geometry of
objects made of non-diffuse materials. Under different light-
ing setups between LUCES and DiLiGenT, object materials,
focal length and illumination density, we discuss the vari-
ation of performances for different configuration of several
approaches.

The rest of this work is divided as follows. Section 2
discusses relevant work in Photometric Stereo. Section3 pro-

1 www.zeiss.com/metrology
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Fig. 1 Our proposed approach
accurately reconstructs highly
specular objects, in various
datasets including DiLiGenT
(Shi et al., 2018) and LUCES
(Mecca et al., 2021)

Bulldog -
Internal

Predicted 
Shape

Harvest -
DiLiGenT

Bell -
LUCES

Fig. 2 From left to right: (1) the stage of our Photometric Stereo setup, (2) a top view of a sample object (Squirrel), (3) acquisition with the GOM
scanner, (4) the 3D scanned mesh

vides details of our proposed method. Section4 outlines the
LUCES dataset. Sections5 and 6 describe the experiment
setup and corresponding results.

2 RelatedWork

In this section we provide an overview of the relevant latest
improvements in PS. For a detailed, fairly recent PS survey,
refer to Ackermann and Goesele (2015).

2.1 Point-light Source PS

Differently from the classical directional-light PS, point-
light source based approaches assume that the illumination
spreads non-linearly with respect to the position of the light
sources, thus making analytical models more complicated
and harder to solve in practice.

Most of the approaches that dealt with point-light illu-
mination were actually trying to solve specific applications
mostly related to endoscopic inspection (Deguchi&Okatani,
1996; Collins & Bartoli, 2012; Parot et al., 2013; Wu et al.,
2010). In particular they were always trying to tackle the
problem under near-field setting, which is the most obvi-

ous scenario where non-linear light behaviour and image
perspective have to be addressed in order to avoid distorted
geometry.

In this particular endoscopic framework, (Wu et al., 2010)
studied the multi-image endoscopic problem by consider-
ing two light sources placed off the optical center. They
developed an irradiance model obtained by simultaneously
illuminating an object with two different light sources. They
then recovered the surface by considering a single irradiance
equation for the sum of Lambertian reflectance functions of
the two different light sources. The use of this reflectance
function results in a loss of information. In order to avoid this
problem and issues related to an unknown albedo, they used
a photometric calibration. Surface recovery is performed
within a variational framework that involves high compu-
tational complexity compared to alternative direct methods
(Mecca&Falcone, 2013). The shape froman endoscopic per-
spective problem solved via a photometric stereo technique
using more than 2 images was first addressed by Collins and
Bartoli (2012). They solved the close-range PS with with an
a-priori light calibration procedure. Furthermore, they used
a prior for a reflectance model learning by adding physical
markers on the inspected object even when the surface was
assumed to be Lambertian. In particular, their mathematical
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formulation is based on the usual two step procedure where
an energy functional is minimized (which allows the compu-
tation of the surface derivatives), and only later is the surface
recovered (Agrawal et al., 2006; Frankot & Chellappa, 1988;
Simchony et al., 1990). Moreover, their energy is based
on the sum of Lambertian irradiance equations rather than
using photometric ratios (Chandraker et al., 2007; Mecca
& Falcone, 2013; Vogiatzis & Hernández, 2010; Wolff &
Angelopoulou, 1994) that lead to more practical problems.
For example, themost important feature of photometric ratios
is to obtain independence from the albedo. Parot et al. (2013)
studied the sameproblembyusing a straightforward heuristic
approach to photometric stereo. In their work, even if cam-
era and lights are close to the inspected object, they assumed
orthographic viewing geometry, with uniform and unatten-
uated light directions calibrated by assuming reasonable
distance between the object and the camera. The discrep-
ancy with respect to the real physics about object proximity
is faced byfiltering the directional gradients depending on the
frequencies. They heuristically handled this by removing the
lower frequencies and the DC components. Then, the result-
ing depth map is computed using a multigrid Poisson solver
(Simchony et al., 1990). The work describes purely qualita-
tive results in the sense that they did not represent accurate
reconstructions of the environment, instead they used their
method as a qualitative tool for detecting lesions.

Some works embedded the non-linearities coming from
the point-light source geometry in a PartialDifferential Equa-
tion (PDE)-based formulation using image ratios (Mecca et
al., 2014, 2015). This way allows to calculate depth directly,
without the intermediate step of approximating the normal
field.Also (Lee&Brady, 1991; Smith&F, 2016) took advan-
tage of image ratios in order to eliminate the dependence on
the surface albedo and thus reduce the number of unknowns.
Image ratios were also used in the variational framework of
Mecca et al. (2016) in order tomake the approachmore robust
to specular highlights by unifying diffuse and Blinn-Phong
specular (Blinn, 1977) reflections into a single mathemati-
cal formulation. This general variational framework is also
applicable in a weakly calibrated setting (Logothetis et al.,
2017) or even a volumetric one (Logothetis et al., 2019).
Recently, a LED-based approach introduced by Quéau et al.
(2018) presented a complicated variational approach based
on alternating weighted least-square scheme also capable of
calibrating the light brightness of the light sources. Further-
more, (Liu et al., 2018) exploited a circular LED setup to
compute the relative mean distance between the camera and
the object.

2.2 Deep Learning (DL) Based Approaches for PS

Computer graphics is a well understood topic andmany tools
capable of rendering highly non-linear irradiance equations

are publicly available2 (Matusik et al., 2003). This allowed
to create reliable datasets for supervised DL approaches. The
potential of DL for solving the PS problem can be divided in
two main advantages. Firstly, CNNs have the capability of
inverting highly non-linear reflectance models comprising of
numerous physically based parameters. Secondly, CNNs can
be made to deal with the complicated real world imperfec-
tion (shadows, self reflections, noise) through the use of data
augmentation. So far, several DL approaches have been pro-
posed (Ikehata, 2018; Logothetis et al., 2021; Santo et al.,
2017, 2020). A preliminary work by Tang et al. (2012); Hin-
ton (2009) considered diffuse reflection only. Yu and Smith
(2017) proposed a library where set of novel layers can be
incorporated into a generic neural network to embed explicit
models of photometric image formation. More recently, sev-
eral approaches have tackled the problem of reconstructing
complex objects. Santo et al. (2017) proposed a method to
find correspondences between simulated observation ren-
dered by the MERL BRDF dataset (Matusik et al., 2003)
and the normal map of the target object, handling non-local
effects using a dropout strategy. Ju et al. (2018) leveraged
DL to learn the information frommultispectral images to get
RGB based PS reconstructions. Taniai and Maehara (2018)
proposed generating training data on the go to minimise the
image re-projection error. Although this method is a training
data free approach, the whole procedure is relatively slow.
Li et al. (2018) proposed a dedicated network to account
for global illumination effects for the case of single mobile
image reconstruction. Recently, (Chen et al., 2018) proposed
rendering patches of different surface materials in order to
get training data. This method is also extended in Chen et al.
(2019) for solving the uncalibrated PS. Ikehata (2018) pro-
posed arranging all the reflectance samples of a pixel (i.e.
different illumination images in the far-field setting) into a
fixed size observationmapwhich is used by aCNN to regress
pixel normals. The CNN is essentially learning to invert the
BRDF with added robustness to global illumination effects,
as training data are made with physics based rendering. In
Logothetis et al. (2021), this method was extended by sim-
plifying the training procedure providing an inline per-pixel
training data generation.

However, none of these DL approaches directly tackle the
point-light PS problem and non-linear attenuation from point
light sources together with the viewing direction dependency
drastically increase the problem space exploding the training
data requirements. Santo et al. (2020) addressed this problem
with a hybrid approach where the light reflected is firstly
interpreted as coming from a directional light source, and
then refined with a point-light model based on a near-light
image formation.

2 www.blender.org and www.disneyanimation.com/technology/brdf.
html
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In this work, we expand our method (Logothetis et al.,
2020) which was limited to provide depth prediction for the
point-light PS problem for a specific light configuration. The
proposed per-pixel training procedure has been improved in
order to include a much wider variety of lighting scenarios.
This allows the proposed network to provide state-of-the-art
predictions in a general point-light setup.

2.3 Photometric Stereo Datasets

Across the years, a number of custom real-world PS datasets
have been created to suit the purposes of the proposed
approaches. Alldrin et al. (2008) proposed a dataset consist-
ing of 3 objects lit by roughly a hundred distant directional
lights. The light calibration in terms of positioning and inten-
sity has been performed by using respectively amirror sphere
and a diffuse sphere. Xiong et al. (2015) have proposed a
dataset of 7 objects using 20 directional lights calibrated with
two chrome spheres. As the approach was mostly modeling
PS images with Lambertian irradiance equations, the mate-
rial of the objects was quite diffuse. A limited number of PS
data has been released by Quéau et al. to prove the working
principle of an edge preserving method (Quéau & Durou,
2015) and a multi-spectral PS approach (Quéau et al., 2016).

Although initially designed for evaluating multi-view
approaches, the datasets released by Aanæs et al. (2012,
2016) are useful for evaluating PS approaches as they also
contain images under varying illumination. As most of the

methods aimed at tackling the PS problem deal with the far-
field setting, recently (Shi et al., 2018) introduced the first
dataset in this category, namely DiLiGenT aimed at evaluat-
ing reconstruction methods over a wide variety of materials
for 10 different objects. This work also contains a well dis-
cussed taxonomy for non-Lambertian and uncalibrated PS
approaches. Their setup consists of 96 LEDs placed several
meters away from the objects to approximate directional illu-
mination and the camera (with a 50mm lens) was placed at
1.5m from the object. Such distance between the object and
the camera/lights system does not provide to this dataset the
near-field light variation studied in many recent approaches.

3 Method

In this section we describe our method for tackling the point-
light Photometric Stereo problem. In particular, we provide
both the details of the assumed image formation model and
how normals can be predicted for Photometric Stereo images
by using CNN’s trained on reflectance samples (also see
Fig. 3).

3.1 Point-light Modeling

Similar to Mecca et al. (2014), we assume calibrated point
light sources at positions Pm (w.r.t the camera center at 0)
resulting in variable lighting vectors Lm = Pm − X. Here

Fig. 3 This figure illustrates two key steps of our proposed approach.
On the left, the network training is illustrated consisting of sampling
points inside the camera’s frustrum and rendering the respective obser-
vation maps. As the depth will only be approximately known at test
time, this is slightly perturbed before mapping resulting to a structured
change of the map (this structured change is shown at bottom left: the
middle image is the map computed with the actual depth (10cm), the

left and right maps are computed with 9 and 11cm respectively). On the
right, the reconstruction process is shown. Images i0 · · · iK−1 are used
with conjunction with previous depth estimate to compensate for light
attenuation ( j0 · · · jK−1), compute observation maps (shown for pixel
at image center here), regress normals and finally update the shape. Note
the improvement of the shape of frogs beak (red square) from iteration
1 to iteration 2. Also see Fig. 4

123



106 International Journal of Computer Vision (2023) 131:101–120

Fig. 4 Iterative refinement of the geometry for the Halloween synthetic
object. On the left, a sample image and GT shape are shown. The other
2 sections show 2 steps of the iterative refinement with the respective

normals (both raw network predictions and differentiated ones), normal
error maps and depth error maps. As the difference is minimal between
steps 1 and 2, the process is converged

X = [x, y, z]ᵀ is the 3D surface point coordinates. We also
model the light attenuation considering the following non-
linear radial model of dissipation:

am(X) = φm
(L̂m(X) · D̂m)μm

||Lm(X)||2 , (1)

where L̂m = Lm||Lm || is the lighting direction,φm is the intrinsic

brightness of the light source, D̂m is the principal direction
(i.e. the orientation of the LED point light source) and μm

is an angular dissipation factor. Defining V̂ = − X
||X|| as

the viewing vector, the general image irradiance equation
becomes:

im = amB(N, L̂m, V̂, ρ). (2)

Here N is the surface normal. B is assumed to be a general
BRDF and ρ is the surface albedo (allowing for the most
general case, images and ρ are RGB and the reflectance is
different per channel). In addition, we allow for the possibil-
ity of global illumination effects (shadows, self reflections)
which are incorporated into B. This can be re-arranged into
a BRDF inversion problem as (for BRDF samples jm):

jm = im
am

= B(N, L̂m, V̂, ρ). (3)

We note that V̂ is known but Lm and am are unknowns due
to the nonlinear dependence on z. Our objective is to recover
the surface normals N and depth z.

3.2 Normal Prediction

The first step of our method includes training a CNN for
per-pixel normal prediction using BRDF samples. This is
done through the the observational map parameterisation

introduced by Ikehata (2018) in order to tackle the far-field
photometric stereo problem. Note that this is equivalent to
BRDF inversion under the special case of V̂ = [0, 0, 1].

As described in Ikehata (2018) an observational map
records relative pixel intensities (BRDF samples) on a 2D
grid (e.g. 32×32) of discretised light directions. Such a rep-
resentation is highly convenient for use with classical CNN
architectures as it provides a 2D input and is of fixed shape
despite a potentially varying number of lights. While (Ike-
hata, 2018) proposes to train CNNs on rendered images of
objects, it is shown in Logothetis et al. (2021) that simpler
per-pixel renderers can be used instead, making the train-
ing procedure much faster and simpler. We use the latter
approach in this work. Following (Logothetis et al., 2021),
an RGBobservationmap Orgb of size d×d×3 is constructed
as:

Orgb

(⌊
d
L̂x
m + 1

2

⌋
,
⌊
d
L̂ y
m + 1

2

⌋)
=

⎡
⎣

jr/φr

jg/φg

jb/φb

⎤
⎦
m

. (4)

In addition, we note that in the case of specular reflection,
the BRDF samples j are dependent on the viewing vectorV.
This variation is only expected to be significant in the case
of perspective projection for points not close to the imag-
ing center. Nonetheless, the set of orthographically rendered
observation maps considered in Ikehata (2018) or Logothetis
et al. (2021) is only a special case of the possible observation
maps. Thus, to make the network training problem easier,
we extend the observation map concept to incorporated the
viewing vector V (which is known and constant for all light
sources m) such as:

O = [Orgb ; 1V] (5)

where 1 is d × d × 3 and; is a concatenation on the 3rd axis
so defining a d ×d ×6 map. Finally, these observation maps
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Fig. 5 On the left the disposition of point-lights for the DiLiGenT
dataset (Shi et al., 2016). On the middle the one for the LUCES dataset
(Mecca et al., 2021). In order to give idea of their scale, both con-
figurations have been rendered facing the same object Queen at exact
distance/orientation from the camera/light setup used for generating the

PS images in the respective datasets (real LUCES and synthetic DiLi-
GenT). On the right, a potential (out of the ones sampled at train time)
point light configuration is shown. This is a rectangle of sides 3x2 with
a hole in the middle of size 0.33x0.66 (sizing is in terms of z) containing
the maximum of 288 lights

are fed into a CNN which regresses surface normal Np. The
CNN is trained with the angular loss defined as |atan2(||Nt ×
Np||,Nt ·Np)| withNp are the predicted normals andNt are
the ground truth normals.

3.3 Adapting to the Point Light Setup

In order to solve the point light PS problem for a realistic
capture setup we adapt the training procedure to only sample
observation maps which are plausible at test time. There-
fore, instead of sampling a random set of light directions
as in Logothetis et al. (2021), we sample 3D points inside
a virtual camera frustum. For each point, a different LED
configuration is simulated.
Configuration sampling. The sampling procedure for a
point begins with sampling normalised image plane coordi-
nates [u, v] ∈ [−1, 1]. Then camera focal length f ∈ [1, 10]
is sampled. f = 1 corresponds to a real fish eye lens and
f = 10 is close to orthographic viewing. For reference
LUCES normalised focal length is ≈ 1.5, DiLiGenT is
≈ 5. Then a depth z is sampled in a range from 10cm to
170cm and this depth is used to back-project image coor-
dinates and obtain 3D point in camera coordinate system
X = [uz/ f , vz/ f , z]T .

The rest of the configuration is sampled proportionally to
z which allows3 for tackling LED arrangement of vastly dif-
ferent scales (see Fig. 5). We assumed that point lights are
approximately on a plane parallel to XY axes. The plane
offset is uniformly sampled in the range [0, 0.25z] and all
lights are positioned at a height with respect to that plane
up to ±0.05z. In terms of distribution of the lights on that

3 We assume that in most cases the radius of the arrangements of point
lights would be of similar scale as the width of the objects which is
being scanned.

plane, we assume a rectangle with side lengths in [0.5z, 3z]
and with a rectangular hole in the middle with side lengths
[0, 0.66z] (see Fig. 5). This plane area is divided into a
grid and a number between 15 and 288 points of this grid
are selected to be the light positions Pm . Light brightness
φm , are sampled uniformly and independently in log scale
from φm ∈ [0.25, 4], dissipation factors μ ∈ [0, 3] and
Dm = [dx , dy, 1 + dz] with dx,y,z ∈ [−0.1, 0.1] (ensuring
||Dm || = 1). Finally, surface normal N, material param-
eters and global illumination approximations are sampled
independently following the exact same hyper-parameters of
Logothetis et al. (2021).
Reflectance rendering. Once the point parameters are sam-
pled, the image samples im are rendered (Eq.2) using the
renderer of Logothetis et al. (2021) with the addition of
point light attenuation (Eq.1). Additional global illumina-
tion approximations for shadows, reflections and ambient
light are also applied as in Logothetis et al. (2021). Schemat-
ically this corresponds to:

{X,Pm, φm,Dm, μm,N} Eq.1−−→ {L̂m, am} N,Render−−−−−→ {im} (6)

Note rendered intensities im are rendered using constant light
attenuation am = φm . The final intensities im are obtained
by using non-linear radial model of dissipation described
in Eq. 1. Also note that 10bit discretisation, and saturation
are applied (i.e. conversion to integer ∈ {0, 1023} and re-
normalisation) when rendering values {im} to approximate
the camera of LUCES.
Observation map generation. After performing the point
rendering to compute im , the aim is to compensate for light
attenuation to compute reflectance sample (Eq.3) and gen-
erate observation maps (Eq.4). In order to get robustness to
imprecise depth initialisation at test time, the training proce-
dure involves perturbing the ground truth depth value z by
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δz ∼ N (0, 5%z)4 to obtain z′ = z + δz. In addition, all
setup parameters are also slightly perturbed to account for
potential setup miss-calibration i.e.:

{z,X,Pm, φm,Dmμm} δ−→ {z′,X′,P′
m, φ′

m,D′
mμ′

m} (7)

The hyper-parameters in Eq.7 are: δP ∈ [−0.1%z, 0.1%z]
(additive), δφ ∈ [0, 1%] (multiplicative), δD ∈ [−0.1, 0.1]
(additive), δμ1 ∈ [0, 0.1] (additive) and δμ2 ∈ [0, 10%]
(multiplicative).We note that we samples these perturbations
both independently for all light sources but also include an
additional amount of perturbation (of same distribution) to all
the lights at the same time to account for systematic errors.
Finally, these perturbed parameters are used to recompute
attenuation, reflectance samples and then observation maps
O ′ i.e.:

{X′,P′
m, φ′

m,D′
mμ′

m} Eqs. 1−−−→ {L̂′
m, a′

m} im , Eq. 3−5−−−−−−−→ O ′ (8)

Specific setup. In the case of aiming to train a network
for a specific dataset (e.g LUCES (Mecca et al., 2021)) the
plausible observation map space is highly reduced since the
camera/light configuration is known, and thus the data gen-
eration process can take advantage of that.We note that setup
knowledge means that the parameters used to compute the
observationmaps at test time, i.e {P′

m, φ′
m,D′

mμ′
m} (inEq.8)

are assumed to be known at train time. Of course, it is still
desirable to have some robustness to potential setup miss-
calibration, therefore the perturbation equation is applied in
reverse order (so as to end up at the map creation stage with
the parameters that will be used at test time). This is sum-
marised as:

Calibration
Copy−−−→ {P′

m, φ′
m,D′

mμ′
m} (9)

{P′
m, φ′

m,D′
mμ′

m} δ−→ {Pm, φm,Dmμm} (10)

Eqs.6, 8 → O ′ (11)

3.4 Iterative Refinement of Depth and Normals

Assuming an estimate of normals, the depth can be obtained
by numerical integration. This is performed using the �1
method of Quéau and Durou (2015). The variational opti-
misation includes a Tikhonov regulariser with z = z0 (z0 is
the previous estimate of the depth map starting from plane)
weight λ = 10−6) and is solved in a ADMM scheme.5

As the BRDF samples j (see Eq.3) depend on the
unknown depth, they cannot be directly computed to be input

4 TheGaussian distribution encourages the network to bemore accurate
when δz is small and thus get an improvement in the iterative setting.
5 Code ported from https://github.com/yqueau/normal_integration.

to the network.Toovercome this issue,we employ an iterative
scheme were the previous estimate of the geometry is used.
The procedure involves computing the near to far conversion
as described, obtaining a new normal map estimate through
the CNN and finally numerical integration. See Fig. 4 for an
example of intermediate results of our iterative procedure.
As it is the case in competing classical methods (Logothetis
et al., 2017; Quéau et al., 2018), this iterative procedure is
initialised with a flat plane at the approximate mean distance.

4 LUCES Dataset

This section gives an overview of the data capture and cali-
bration procedure for the LUCES dataset, first presented in
Mecca et al. (2021).
The Photometric stereo setup. Our setup (see Fig. 2, left)
consists of the following main components:

• RGB camera FLIR bfs-u3-32s4c-c with 8mm lens,
• 52 LED Golden Dragon OSRAM,
• variable voltage for adjustable LED power,
• Arduino Mega 2560.

A customprinted circuit board (PCB) has been designed to
host 52 bright LED controlledwith by anArduinoMega. The
configuration of the LEDs was planar around the camera. A
set of 52 images was captured per object. The camera param-
eters (aperture and shutter speed) and LED voltage were
adjusted to achieve the best object exposure, which is very
critical for specular objects. All camera prepossessing was
turned off during the acquisition, including white-balance
and analog gain. Several optomechanical tools have been
used for holding the camera and the PCB jointly. A manual
XYZ translation stage with differential adjusters has been
used to positioning the camera accurately through the printed
circuit board. In order to limit interreflections and ambient
light, the walls surrounding the setup have been covered with
black, polyurethane-coated nylon fabric.
Camera intrinsics. This is performed using 100 checker-
board images and the OpenCV calibration toolbox. Fourth
degree radial distortion is estimated and this is used to rec-
tify all the images. The calibration re-projection error was
0.42px. The RAW data (before demosaicing and rectifica-
tion) are also available.
Light calibration. This section presents the method used to
estimate all the point light parameters introduced in Sect. 3.1
( {Pm, φm,Dm, μm}). To do so, we captured PS images of a
purely diffuse reflectance plane i.e. 99% nominal reflectance
in UV-VIS-NIR wavelength range (350 - 1600nm). To have
an initial estimate of φm , we measured the brightness of
the LEDs with a LuxMeter. For every object, the calibra-
tion plane was captured twice, at different distances, in order
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Fig. 6 Top view of the objects captured for LUCES dataset. Below every object the acquisition distance between the object and the camera, and
the material of the object are reported

Fig. 7 Demonstration of the processing steps performed per object in
LUCES dataset. Firstly, compensation for radial distortion and demo-
saicing is performed on raw images to get RBG ones (left). CT-scanned

ground truthmeshes are alignedwithRGB images and ground truth nor-
malmaps are rendered (middle). Segmentationmasks are alsomanually
generated

to get data redundancy and produce a more accurate cali-
bration. Thus, the Lambertian calibration object with albedo
ρ and surface normal N, should satisfy the resulting image
irradiance equation:

im = φmamρL̂m · N̂. (12)

The irradiance Eq.12 was implemented into a differentiable
renderer (using Keras of Tensorflow v2.0) with the LED
parameters being themodelweights thus allowing refinement
from a reasonable initial estimate. The parameters were ini-
tialised as follows: φm from the LuxMeter, Dm = [0, 0, 1],
μm = 0.5,Pm from the schematic of the printed circuit board
of the LEDs and ρ = 0.5. We used L1 loss function for 30
epochs and converged to around 0.005 error i.e 0.5% of the
maximum image intensity. The complete calibration param-
eters are included in the dataset.
3D ground truth capture. Initial version of the 3D ground-
truth (Mecca et al., 2021) was acquired with the optical 3D
scannerGOMATOSCore 80/135with a reported accuracy of
0.03mm (see Fig. 2). The GOM scanner uses a stereo camera
set-up and more than a dozen scans were performed and
fused per object. In order to keep the geometry of the object

consistent with the PS data, no spray coating has been used to
ease the acquisition. In this work, we provide more accurate
ground truth meshes for all the non-diffuse objects.6

Alignment. The scans of the objects were aligned and
merged using MeshLab (Cignoni et al., 2008). Some manual
removal of noisy regions was performed and finally Poisson
reconstruction was used in order to obtain full continuous
surfaces which are both useful for rendering normal maps
and for mutual information alignment. As expected, not all
parts of the surfaces of all objects have the same amount
of noise, especially the metallic objects (Bell, Cup). Meshes
were aligned with the photometric stereo images using the
mutual information registration filter of MeshLab (Cignoni
et al., 2008). This was initialised manually and pixel perfect
accuracy was achieved. Using the aligned meshes, ground
truth normal maps were rendered (using Blender). In addi-
tion, manual segmentation was performed to remove regions
where the GT was unreliable (markers on the objects, holes
etc). The steps per object are summarised in Fig. 7.

6 Scans of all the objects except Buddha, House, Owl, Queen were
obtained with the Zeiss CT scanner M1500/225 kV which provides an
accuracy within the order of 9μm.
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Fig. 8 One image example for all synthetic objects rendered as well as
the corresponding real ones in top row (expect for Armadillo and Hal-
loween that have no real counterparts). The second row aims to closely

match the configuration of LUCES (Mecca et al., 2021), the third row
reduces the focal length by a factor of 4 and the bottom row aims to
closely match DiLiGenT (Shi et al., 2016)

Fig. 9 MAE evolution (during training) curves illustrate the perfor-
mance of our setup-agnostic network on predicting normals (NfCNN)
for synthetic (left) and real data (right). We note that we used the real
DiLiGenT dataset as validation loss and selected the checkpoint (35)
were this is minimised. We observe that although the average error
is gradually decreasing, for some real objects (House, Cup) the perfor-
mance is actually getting worse with more training signifying that some
real effect is not properly modelled

Dataset overview. For each of the 14 objects (see Fig. 6), 52
PS images have been acquired using the BayerRG16 RAW
format. The total amount of PS images amounts to 728. For
all objects, rectified RGB PS images are available. We note
that color balancing was not performed on the images as this
distorts the saturated pixels and ultimately looses informa-
tion. Instead, RGB light source brightness are provided along
with the rest of point light source parameters. Both normal
map and depth ground truth are be provided in order to eval-
uate the accuracy of near-field PS methods with either case.

Non GT objects. We also captured 15 light images of 3
additional objects shown in Fig. 13. Metallic-silver Bulldog
statue, a porcelain Frog aswell as amutli-object scene featur-
ing a shiny wooden elephant statue in front of the porcelain
Squirrel. Bulldog and Frog were too hard to scan and the
elephant and squirrel could not be transported in their exact
configuration to the CT scanner.

5 Experimental Setup

In this section we provide various experimental setup details
related to CNN training and datasets used for evaluation.

5.1 CNNTraining

We use the exact architecture of PX-NET (Logothetis et al.,
2021) which is a miniature version of DenseNet (Huang et
al., 2017) with 4.5M parameters. We trained 3 networks, one
with general data data and 2 specific ones, one for the LUCES
configurations and one for theDiLiGenT one. For the general
one, we trained for 50 epochs and selected the checkpoint
with best DiLiGenT performance (35). The MAE evolution
is shown in Fig. 9 for this network. The specific networks
converged more quickly taking 9 epochs for LUCES and 25
epochs forDiLiGenT.Abatch size of 2400 and5000 steps per
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epochwas used in all experiments. It took 20min to complete
an epoch on a machine with 2 Titan RTX GPUs.

5.2 Datasets

We evaluate our method on the real datasets LUCES (see
Sect. 4) and DiLiGenT (Shi et al., 2016). Additional eval-
uation is performed on four synthetic datasets namely
LUCES-52, LUCES-15, LUCES-0.25f and synthetic DiLi-
GenT. More details about each dataset are provided bellow:
DiLiGenT (Shi et al., 2016). It contains 96 images of the res-
olution of 612 × 512px for each of 10 captured objects. It is
usually assumed that this is a far field dataset with the direc-
tional uniform illumination. However, in reality LEDS were
used for the illumination, and their positions Pm , brightness
φm and perspective camera parameters are also provided.
Using the light positions Pm , for each object the mean dis-
tance can be computed to match the average light directions
L̂m . Finally, LEDdirectionsDm were assumed perpendicular
to the LED plane, and μ = 0.5 was also assumed.
Synthetic LUCES-52 (Mecca et al., 2021). In order to have
an estimate of the synthetic to real gap, we chose 4 objects
from LUCES and rendered them in exactly the same posi-
tion and similarmaterials: Buddha, Queen - Lambertian, Cup
- metallic, Squirrel - specular dielectric. We also rendered
two additional synthetic objects: Armadillo and Halloween.
Armadillo was chosen as it has a challenging geometry (with
occlusion boundaries at hands/face) and was rendered with
an ‘intermediate’ Disney (Burley, 2012) material (all param-
eters7 set to 0.5). The Halloween object was chosen to be
rendered metallic-gold as it is very hard to laser scan real
metallic objects with concavities and other high frequency
surface details. All objects were rendered with the Cycles
rendering engine of Blender (Blender-Online-Community,
2018) to generate realistic global shadows and self reflec-
tions. The default path tracing integrator of Cycles was used
using 100 samples per pixel, 8 light bounches as well as no
post-processing de-noising.
Synthetic LUCES-15 and LUCES-0.25f. In addition to
the synthetic version of LUCES described above, we con-
sider another two variations namely Synthetic LUCES-15
and Synthetic LUCES-0.25f. The first one simply contained
15 out of the 52 images per object andwas aimed at providing
an evaluation at a sparse lighting setting which is usually pre-
ferred in practice. LUCES-0.25f was rendered with exactly
the same objects and materials by reducing the camera focal
length from 8mm to 2mm, in order to simulate a fish-eye
lens. Object sizes/positions were also adjusted to keep them
aligned in the middle of the field of view. The purpose of

7 Due to the highly non-linear nature of the BRDF, this material is not
necessarily the average brightness.

this dataset is to test a situation where perspective viewing
becomes significant. See Fig. 8 for example images.
Synthetic DiLiGenT. Finally, the same 6 synthetic objects
were rendered in the DiLiGenT (Shi et al., 2016) configura-
tion. The aim of this experiment was to assess potential per-
formance improvement when the number of lights increases
from 52 to 96 and the capture setup becomes for ‘far-field’ -
higher distance from the camera and higher focal length.

5.3 Evaluation Protocol

This section describes the evaluation protocol for all the
above mentioned datasets.
Competitors. We compare our method against the far-field
CNN approaches of Ikehata (2018), Logothetis et al. (2021),
the near-field variational optimisation methods Logothetis et
al. (2017), Quéau et al. (2018) as well as the recent near-field
CNN-based method of Santo et al. (2020). For all 3 CNN-
based methods, the same network checkpoint was used as
the one in the corresponding papers. For all methods, test
code was available online8. Finally, for the comparison on
the DiLiGenT (Shi et al., 2016) benchmark (see Table 3), we
also report the numbers of some other competing approaches.
Naive vs Compensated usage of far-field methods. In
order to demonstrate the importance of our point-light com-
pensation procedure, we compare the usage of the far-field
CNN approaches of Ikehata (2018), Logothetis et al. (2021)
with/without using it. Naive usage refers to using the raw
image values (i.e. im) without attenuation compensation for
computing observation maps as well as the average light
direction for each LED. The predicted normals are also inte-
grated using our method in order to have a qualitative shape
comparison.
Evaluation metrics. For most experiments, the evalua-
tion metrics are mean angular error (MAE) on normals (in
degrees) as well as mean depth error (in mm) on computed
depthmaps.We note that the real DiLiGenT (Shi et al., 2016)
benchmark only reports ground truth normals and also for 3
of our objects, no ground truth was available so the com-
parison is only qualitative (see Fig. 13). In addition, we note
that the variational optimisation methods (Logothetis et al.,
2017), (Quéau et al., 2018) only output depthmaps, therefore
in order to have comparison in the normal domain for them,
normal maps are generated with numerical differentiation.
Therefore, for the rest of the methods we report 2 types of
normal maps namely NfCNN (normals from CNN-network

8 (Logothetis et al., 2017) https://github.com/fotlogo/
semi_calib_ps_cvpr2017 (Quéau et al., 2018) https://github.com/
yqueau/near_ps (Santo et al., 2020) https://github.com/hiroaki-santo/
deep-near-light-photometric-stereo (Ikehata, 2018) https://github.
com/satoshi-ikehata/CNN-PS
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Fig. 10 Visualisation of the results of Table 1 showing comparisonwith
Logothetis et al. (2017) and Quéau et al. (2018), Santo et al. (2020) and
PX-NET (Logothetis et al., 2021) on all synthetic experiments. All 6
objects of synthetic LUCES-52 are shown and Armadillo is also shown
for the other 3 synthetic datasets. For all objects, average PS image and
GT depth shape is shown at the left. Logothetis et al. (2017), Quéau
et al. (2018) have very high error on the metallic objects (Cup, Hal-
loween) as well as specular highlights on Squirrel and Armadillo. The

naive far-field method PX-NET also has significant global deformation
as it does not model the light attenuation effect. In contrast, the com-
pensated version performs very well everywhere except the hands of
Armadillo in the LUCES-0.25f due to its training data being rendered
without perspective viewing. For Santo et al. (2020), the error is con-
centrated towards the edges of each object as perspective projection
is not modelled (this is especially evident on the LUCES-0.25f). The
proposed approach achieves best performance in all objects

predictions) and NfS (normals from shape-obtained though
numerical differentiation).
Input resolution. Most LUCES experiments (both real
and synthetic), were performed at a quarter resolution i.e.
512 × 384px in order to have a fair comparison with Santo
et al. (2020) which is GPU memory limited (even on their
original paper the authors report unable to run on more than
600 × 600px resolution on a 48GB GPU RAM). However,

it has to be noted that we are unsure if some of their respec-
tive hyperparameters is resolution dependent. For the real
LUCES data, we also present our evaluation on full resolu-
tion (2048 × 1536px) images and show that our method is
resolution independent (with around 0.1mm, 0.1o difference
between quarter and full scale). DiLiGenT (both synthetic
and real) on the other hand offers maximum resolution of
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612×512px which was used for all the relevant experiments
reported.

6 Experiments

In this section we present the results of the various exper-
iments on the synthetic and real datasets introduced in the
previous section.

6.1 Synthetic Experiments

This section explains the synthetic experiments which are
summarised in Table 1. A further breakdown per category
follows.
Shape integration.Thefirst experimentwe conducted aimed
at calibrating the quality of the numerical integration of the
normal map. As no realistic depth map is C2 continuous, GT
normals are not compatible with the GT depth. Indeed, inte-
grating the GT normals and then re-calculating them with
numerical differentiation introduces 3.52o MAE on average
(Table 1 top) on full resolution and even reaches 6.50o at
half resolution as the naive numerical differentiation is very
resolution dependent. Therefore, we do not compare raw net-
work predictions (NfCNN) and MAE after differentiation of
the surface (NfS) and expect the first figure to be lower for
networks trained to regress normals.9

Naiveusageof far-fieldnetworks.Thenext experiment con-
sists of naively using the far-field methods (Ikehata, 2018;
Logothetis et al., 2021) with no point light compensation. As
expected, in all ’near field’ results (except in synthetic DiLi-
GenT), both normal and depth errors are significantly higher
than all other competitors and this is better understood visu-
ally in Fig. 10; the shape is ’locally correct’ with no bumps at
specular highlights or other similar artifacts but still severely
distorted. To add to this point, using these network as part
of our iterative process (marked as Compensated) drastically
improves the result and in fact they outperform the variational
optimisation methods of Logothetis et al. (2017) and Quéau
et al. (2018). The difference between naive and compensated
is significantly lower on the synthetic DiLiGenT as scale of
this dataset is mostly far-field with the point light effect being
less important.
Proposed method. We report results of our method using
the setup agnostic network. We report error at iteration 1 (i.e.
compensation using the initial planar geometry estimate) and
iteration 2 and observe a marginal improvement signifying
that the process has converged.We also report NfCNNwhere
the point light compensation has been performedwith theGT

9 Some more sophisticated shape differentiation method such as Zhu
and Smith (2020) would probably reduce the discrepancy between these
2 metrics but that would not alter the discussion of this section.

depth to estimate the limiting performance of the iterative
method. We again confirm that this is only marginally better
than iteration 2 error confirming that our network is not very
sensitive to depth initialisation.
Material variation. We note that the proposed method per-
forms similarly in all 6 objects despite the significantmaterial
variations. This is not the case for the variational optimisation
competitors ((Logothetis et al., 2017), (Quéau et al., 2018))
which are significantly worse on the metallic objects (Cup,
Halloween) than the Lambertian ones (Buddha, Queen).
Quite surprisingly, (Santo et al., 2020) performs worse on
the Lambertian objects possibly signifying lack of training
data with exact Lambertian reflections.
LUCES-0.25f.We observe no drop of performance between
LUCES-52 and its lower focal length counter part verifying
that our method correctly compensates for the effect of per-
spective viewing. In contrast, for the naive far-field methods
the error is increased.
LUCES-15. We observe small drop of performance in the
normal error between LUCES-52 and the 15 lights version
(7.1o to 6.1o) but the depth error remains practically the same
- 2.9mm. This is probably explained by the fact that in the
low light setting a few points become unsolvable (inflating
the mean error) but the overall surface can still be recovered.
This is not the case for Santo et al. (2020) were both normal
and depth errors increase. The variational optimisation com-
petitors ((Logothetis et al., 2017) and (Quéau et al., 2018))
also have minimal drops of performance in this low light set-
ting. A surprising result is that compensated PX-NET is also
performing similarly between the 52 and 15 lights settings
even though it was trained with a minimum of 50 lights. This
is probably explained by the fact that it was trained to be very
resilient to shadows which essentially reduce the amount of
active lights.

6.2 Real Data evaluation

This section presents the results of the real data evaluation
on the LUCES (Mecca et al., 2021) and DiLiGenT (Shi et
al., 2016) benchmarks.
LUCES (Mecca et al., 2021). Table 2 shows the quantitative
evaluation on LUCES with qualitative comparison through
normal maps in Fig. 11 and shapes in Figs. 12 and 13. We
achieve the best performance in all objects with the excep-
tion of the metallic Cup were Santo et al. (2020) is the best
performer. This may be due to the use of a patch-based net-
work which is able to extract the more information from
noisy metallic data. Finally, on the qualitative only data of
Figure 13, we note that optimisation competitors ((Logo-
thetis et al., 2017) and (Quéau et al., 2018)) struggle at the
metallic Bulldog. This is not the case for Santo et al. (2020)
which seems to struggle at the high curvature region of the
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Fig. 11 Visualisation of the normal error map comparison for all objects of real LUCES (Table 2) and all near-field methods: Logothetis et al.
(2017), Quéau et al. (2018), Santo et al. (2020)

Frog neck. The proposed method performs reasonably on all
3 objects.
Synthetic to real gap. We observe that we perform signifi-
cantly worse on the real LUCES objects with respect to their
synthetic counterparts. As the geometry and lights are sim-
ilarly matched we conclude that more research is needed in
modeling and sampling realistic materials as well as other
potential corruptions of real images (better noise models).
This is most evident for the metallic Cup were the normal
error increases from 4.5oto 14.1o. However, for all CNN-
based methods (ours, (Logothetis et al., 2021; Santo et al.,
2020)) the material’s specularity does not seem be a signif-

icant factor of performance. Indeed, convex regions (where
self reflections are negligible) are consistently recovered cor-
rectly regardless of the material: diffuse head of Queen,
bronze Bell, plastic Hippo, wooden Bowl; with the only
exception being the aluminium Cup. This is a clear advan-
tage of CNN methods against the classical ones that require
diffuse or mostly diffuse materials.
Normal vs depth errors. We notice that the normal pre-
dictions are more noisy as opposed to depth predictions.
This could be due to noisy estimates of the normals from
the ground truth meshes which is inevitable for any laser
scanner (see in particular the Ball in Fig. 11). As the ground
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Fig. 12 Output surface comparison for 6 objects of real LUCES (see Table 2 for quantitative results) and methods of Logothetis et al. (2017),
Quéau et al. (2018), Santo et al. (2020). This is shown qualitatively through the 3D meshes and well as depth error maps (errors in mm)

Fig. 13 Qualitative comparison of the proposed method with Quéau
et al. (2018), Logothetis et al. (2017) and Santo et al. (2020). The first
column shows the average Photometric Stereo image. In contrast to
competition, the proposed approach has no visible deformation on the

metallic object or the specular highlight in the middle of the elephant.
In addition, there is a smooth recovery of belly of the Frog despite the
shadows, as well as the bottom of Squirrel despite self reflection

truth depth is more reliable, it is a better evaluation metric
compared to the ‘ground truth’ normals. See Fig. 12 for depth
evaluation.
Error distribution. We observe that the hardest regions are
the ones containing high frequencydetails (sharp boundaries)
such as House, bottom part of the Squirrel, details of the
Queen, etc. An interesting observation is also that for Santo
et al. (2020) there is growing inaccuracy towards the external
part of the reconstruction (see Bell, Cup and Jar in Fig. 11)

which is probably due to the orthographic camera assump-
tion.
DiLiGenT (Shi et al., 2016). Final evaluation at Table 3.
We note that even though this dataset is usually considered
far-field with directional lights, our point light compensation
procedure improves the performance of PX-NET (Logothetis
et al., 2021) (the best performing far-field method) from
6.28o to 5.85o demonstrating the importance of point-light
modeling in real data. It is also interesting and somewhat
surprising that compensated PX-NET also outperforms our
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general network (5.85o vs 5.89o) and that signifies that per-
spective viewing (which is the most important difference of
these networks) is not significant on this dataset as opposed
to LUCES, as shown in Table 2. Finally, we note that the best
performing method is the DiLiGenT-specific network which
is not really surprising even though the margin is quite small
(5.66o vs 5.85o).
Specific setup network. Finally we note that setup specific
networks are marginally better than the setup agnostic one
(which took more time to converge though) signifying that
the light distribution is not a big challenge for the CNN.

7 Conclusion

In thisworkwepresented aCNN-based approach tackling the
point light Photometric Stereo problem in both near and far-
field setting. We leveraged the capability of CNNs to learn to
predict surface normals from reflectance samples for a wide
variety of materials and under global illumination effects
such as such as shadows and interreflection. Numerical inte-
gration is used to compute the depth from predicted normals
and this in turn is used to compensate the input images to
compute reflectance samples for the next iteration. Finally,
in order tomeasure the performance of our approach for near-
field point-light source PS data, we introduced the LUCES
dataset containing14objects imaged in a configurationwhere
attenuation due to point lights sources and perspective view-
ing are significant.
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