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Abstract
Accurate assessment of body composition is essential for evaluating the risk of chronic disease. Access
to direct imaging methods is limited due to practical and ethical constraints. 3D body shape correlates
strongly with body composition. However, large-scale datasets containing 3D body shapes with paired
anthropometric and metabolic traits are scarce. Here, we present a novel method that fits a 3D body
mesh to a dual-energy X-ray absorptiometry (DXA) silhouette which is paired with anthropometric
traits, using a large dataset from the UK population-based Fenland study (12,435 adults, age 30–65 years
at baseline phase 1). We predict total and regional body composition metrics using these meshes, and
monitor changes to body composition between the two Fenland phases. We also evaluate a 3D body shape
smartphone app, which reconstructs a 3D body mesh from the phone images. We use these smartphone-
generated meshes to predict body composition metrics, and compare the results against the reference
methods DXA and air plethysmography (BODPOD). For the Fenland study, total and regional body
composition metrics are predicted accurately, achieving r > 0.86 for all metrics on phase 2 validation
data. Accuracy is as high as r = 0.96 for total fat mass, and r = 0.95 for android fat mass. Predictions
for changes achieve r > 0.60 for all metrics. Using the smartphone-generated avatars, we achieve r > 0.84
for all predicted metrics. We demonstrate that the 3D mesh approach is a valid alternative tool that
can be easily implemented into clinical practice and large-scale population studies to track and monitor
changes in body composition accurately.

1 Introduction
Body composition is strongly related to the risk of chronic disease morbidity and mortality [2], and can
be assessed accurately using medical imaging methods such as dual-energy X-ray absorptiometry (DXA),
magnetic resonance imaging (MRI) and computed tomography (CT) [6, 12, 44]. However, these methods are
not readily available to be used routinely in clinical practice and in epidemiological studies due to practical
and ethical constraints, nor are they easily accessible to the general public [10, 14]. In these settings,
conventional anthropometry such as body mass index (BMI), waist, hip circumferences and waist-hip ratio
are typically used to infer body composition. However, these indirect methods of assessing body composition
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are insufficiently accurate or convenient for longitudinal use as they often require face-to-face clinical visits
and trained staff. Furthermore, these surrogate measures do not differentiate between fat and lean mass or
their distribution [31, 45].

There is a need to develop simple, accessible, and relatively inexpensive tools to improve the accuracy of
assessing body composition. This would provide better prediction of metabolic health and identify people at
high risk of disease in the long term so that remedial action can be taken. Significant works in recent years
have focused on the development of 3D optical (3DO) scanning [43] to estimate body composition [3, 4, 29, 42].
3DO scanners use depth sensors by projecting infrared patterns onto the scan subject to rapidly construct a
3D point cloud using multiview stereo, and subsequently capture 3D surface shape information. Rather than
predicting body composition from anthropometric measurements alone, 3D body shape as a whole provides
more visual and implicit cues for predicting body composition more accurately. Additional 3D shape cues
can either be additional landmark diameters, circumferences, surface areas and volumes from 3DO scans [28],
or parameters of a PCA shape space [3, 29, 42]. More recently, Leong et al. [24] use a variational autoencoder
(VAE) [20] to learn latent DXA encoding, and map 3DO scans to pseudo-DXA images. These works have
shown that 3D shape information could augment conventional prediction models using anthropometry, or
outperform them as a standalone predictor for a variety of body composition metrics. However, while the cost
of 3DO scanners is comparatively lower than that of DXA, MRI or CT, obtaining 3DO scans still requires a
dedicated apparatus, which makes it less accessible to the general public.

To derive shape information without full reliance on 3DO scanners to reconstruct 3D body meshes, recent
works have taken advantage of developments in computer vision and machine learning algorithms, which have
enabled accurate segmentation [21] and pose estimation [36] of objects including the human body from RGB
images, which are easily obtainable using a smartphone camera. Majmudar et al. [27] train a convolutional
neural network (CNN) to directly predict percentage body fat from front and back images. Xie et al. [48]
construct a PCA shape space from 2D DXA silhouettes and predict body composition. Tian et al. [41] derive
a 3D body mesh from a pose-constrained 2D coronal silhouette and predict body composition. Sullivan
et al. [40] derive body volume from a single image by measuring horizontal landmark diameters, and use
the volume in a 3-compartment model (body mass, body volume and body water) to calculate percentage
body fat. Smith et al. [38] compare circumference estimation accuracy using a smartphone app and 3DO
scanners, and claim that circumferences estimated from images can be relatively accurate. McCarthy et al.
[28] derive lengths, circumferences and volumes from body shape images, and predict skeletal muscle mass
from these measurements alongside demographic variables. Graybeal et al. [11] evaluates two smartphone
apps, and compare circumference and circumference ratio prediction accuracy. The remote data capture
and modeling of 3D shape has numerous applications, including helping patients track individual changes
over time for commonly assessed anthropometric measurements. Furthermore, patients are not required
to physically attend clinics to have these measures done, thus lowering the burden on health services and
providing a more cost-effective way to monitor aspects of patient health.

Unfortunately, there are few large-scale datasets containing 3D body meshes with paired anthropometric and
metabolic traits. Bennett et al. [4] worked with a cohort of size 501, McCarthy et al. [28] had a cohort size
of 322, Ng et al. [29] had a cohort size of 407. These small cohorts prevent larger deep learning models
from being leveraged for body composition predictions. Klarqvist et al. [23] used a large-scale MRI database
from the UK Biobank [7], to predict body composition from coronal and sagittal silhouettes. To the best of
our knowledge, this is the only study that contains MRI data at this scale, as the use of MRI in population
studies is limited due to cost and accessibility for research. 3D body shape datasets are therefore scarce, while
datasets containing 2D DXA images with anthropometric and metabolic traits are in abundance. Therefore
in this work, we present a novel method that first fits 3D body meshes to DXA silhouettes and paired
anthropometry measurements consisting of height, waist and hip circumferences. We generate a large 3D
database using our method. We then show that using the fitted meshes, total and regional body composition
metrics can be predicted accurately.

We also test and evaluate the performance of a smartphone app (3D Body Shape App) that uses phone
images alone to make it easier for individuals to visualise and track changes in their body shape [37]. The app
captures four photographs (front, back, left-side, and right-side profiles of the participant), and reconstructs
a 3D body mesh using these images. McCarthy et al. [28], Smith et al. [38] also generate 3D body meshes
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from RGB images using an app, which is the most similar to our smartphone approach. However, their app
requires constrained A-pose for the photographs, and could fail due to noisy background in our testing. In
contrast, our method is robust to background, participant pose, camera orientation, and could be extended
to accept an arbitrary number of input images. We show preliminary body composition prediction results
using the app. Our aim is to improve performance by increasing reconstruction accuracy in the future.

In summary, we make the following contributions in this study:

• Construct a large 3D body shape database derived from 2D DXA silhouettes and paired anthropometry
measurements (height, waist and hip circumferences);

• Predict, from 3D body shape, total and regional body composition metrics including:

– Total fat mass;

– Percentage body fat (PBF);

– Android fat mass;

– Gynoid fat mass;

– Peripheral fat mass;

– Visceral adipose tissue (VAT) mass;

– Abdominal subcutaneous adipose tissue (SCAT) mass;

– Total lean mass;

– Appendicular lean mass;

– Appendicular lean mass index (ALMI).

• Evaluate and show preliminary results of a smartphone app that predicts body composition by recon-
structing 3D body meshes from images only.

To the best of our knowledge, our method is the first that fits 3D body meshes to DXA images, and predicts
downstream body composition metrics. In this way we show that accurate 3D meshes can be derived from
a single 2D silhouette plus simple anthropometry (height, waist and hip circumferences), from which body
composition metrics can be predicted.

2 Methods
2.1 The Fenland Study
DXA scans, paired anthropometry data and metabolic health variables used for our method come from
the Fenland study. Details of the study have been described elsewhere [25]. Briefly, the Fenland study is
a population-based cohort study established in 2005. It comprises mainly participants of white European
descent, born between 1950 and 1975, and recruited from general practice lists in Cambridgeshire (Cambridge,
Ely, and Wisbech) in the United Kingdom. A total of 12,435 people took part in phase 1 of the study (2005–
2015) and 7,795 in phase 2 of the study (2014–2020). Exclusion criteria for the Fenland study were pregnancy,
diagnosed diabetes, inability to walk unaided, or psychosis. The study was approved by the Cambridge Local
Research Ethics Committee and performed in accordance with the Declaration of Helsinki. All participants
provided written informed consent to participate in the study.

In the current analyses, we excluded participants whose DXA scans had technical irregularities such as missing
tissues or other scan artefacts. The analyses included 11,359 individuals (5,333 men and 6,026 women) from
phase 1, 6,102 individuals from phase 2 (2,979 men and 3,123 women). 5,733 individuals participated in both
phases. 80% of the Fenland phase 1 sample was used for the derivation and training of the 3D body shape
composition models, and the remaining 20% of phase 1 was used to test the validity of those models. The
phase 2 sample was used as a test dataset for validity in a now older population and to assess the sensitivity
of prediction models to track within-individual changes over time.
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2.2 Smartphone Validation Study
We also conducted a separate study which in addition to DXA scans also included air plethysmography
(BODPOD) and a smartphone app capturing front, back and two side pose images. This was carried out
in a sample of 119 healthy adults (39 men and 80 women) aged between 18 and 65 years old, free from
disease and medications between July and November 2023. The participants in this study were recruited
locally through advertisements and approval was granted by Cambridge central ethics committee (REC
06.Q0108.84). Written informed consent was obtained prior to the participants’ visit. This independent
sample was used to test the validity of our derived models from the Fenland study, as well as to evaluate the
accuracy of the 3D shape obtained from smartphone images alone.

2.3 Anthropometry and Body Composition
In the Fenland study (both phase 1 and phase 2), weight was measured to the nearest 0.2kg with a calibrated
electronic scale (TANITA model BC-418 MA; Tanita, Tokyo, Japan). Height was assessed to the nearest
0.1cm with a wall-mounted stadiometer (SECA 240; Seca, Birmingham, United Kingdom). Body mass
index (BMI; in kg/m2) was calculated as weight divided by height squared. Waist circumference and hip
circumference were measured to the nearest 0.1cm with a non-stretchable fiber-glass insertion tape (D loop
tape; Chasmors Ltd, London, United Kingdom). Waist circumference was defined as the midpoint between
the lowest rib margin and the iliac crest, and hip circumference was defined as the widest level over the
trochanters. All measurements were taken by trained field workers. Body composition was assessed by DXA,
a whole-body, low-intensity X-ray scan that precisely quantifies fat mass in different body regions (models
used: Lunar Prodigy Advanced fan beam DXA scanner, or an iDXA system; GE Healthcare, Hatfield, UK).
Participants were scanned supine by trained operators, using standard imaging and positioning protocols.
All images were manually processed by one trained researcher, who corrected DXA demarcations according
to a standardised procedure. In brief, the arm region included the arm and shoulder area (from the crease of
the axilla and through the glenohumeral joint). The trunk region included the neck, chest, and abdominal
and pelvic areas. The abdominal region (android region) was defined as the area between the ribs and the
pelvis, and was enclosed by the trunk region. The leg region included all of the area below the lines that
form the lower borders of the trunk. The gluteofemoral region (gynoid region) included the hips and upper
thighs, and overlapped both leg and trunk regions. The upper demarcation of this region was below the top
of the iliac crest at a distance of 1.5 times the abdominal height. DXA CoreScan software (GE Healthcare,
Hatfield, UK) was used to determine visceral abdominal fat mass within the abdominal/android region. This
software uses a proprietary inbuilt algorithm [1] to derive visceral abdominal fat mass within the android
region, validated by the manufacturer using computed tomography and magnetic resonance imaging. The
inbuilt algorithm estimates visceral abdominal fat mass by firstly estimating the subcutaneous fat width
and the anteroposterior thickness of the abdominal wall. These parameters together with derived geometric
constants are implemented to extrapolate the amount of subcutaneous fat mass in the android region. Visceral
abdominal fat mass is then calculated by subtracting the estimated subcutaneous abdominal fat mass from
the total android fat mass. Subcutaneous abdominal fat is therefore android fat mass minus visceral fat
mass. The other body composition variables used in these analysis are derived as follows: Appendicular lean
mass (ALM) is the sum of the lean tissue mass in the arms and legs. Appendicular lean mass is scaled to
height to derive appendicular lean mass index ALMI (ALM/height2) [22]. Peripheral fat mass is the sum of
the fat tissue mass in the arms and legs.

In the smartphone validation study, demographic information on age, sex, ethnicity was self-reported. Trained
staff acquired all clinical measures. Height and weight were measured using a column scale (Seca GmbH &
Co. KG, Hamburg). Waist and hip circumferences were measured using a tape measurer (CEFES-FIBRE
by Hoechstmass Germany). Body volume was assessed using air plethysmography (BODPOD ADP system,
Cosmed Srl, Rome, Italy), for which participants were in fitted clothing without shoes, and wearing a swim
cap before entering the system. Total and regional body composition was measured using an iDXA scanner
(GE Healthcare, Hatfield, UK). Four 2D photographs were captured by a smartphone camera (iPhone X,
Apple Inc. IOS v15.6.1) using our purpose-built 3D Body Shape app, which constructs a 3D body mesh
using phone images only. Participants wore form-fitting clothing, without shoes, and were asked to stand in
an ‘A’ pose for the four photographs (front, back, left-side, and right-side profiles).
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Figure 1: SMPL model which uses a low rank PCA representation of the body shape space. The model requires 24
joint rotation parameters and 10 shape parameters as input, and returns an expressive body mesh in a differentiable
manner.

3 Model Derivation
Firstly, our method fits a 3D body mesh to a DXA silhouette with paired anthropometric measurements
(participant height, waist and hip circumferences). Then, the fitted mesh shape parameters (SMPL shape
β ∈ R10 detailed in Section 3.1.1) are used to predict body composition metrics. Our smartphone validation
study generates 3D body meshes from RGB images by averaging avatars across multiple views according to
the uncertainty of shape parameters in each view [37].

This section describes our fitting pipeline, the body composition regressor, and smartphone avatar generation.

3.1 Fitting the 3D Body Mesh to DXA Image
DXA images are single view and orthographic [33, 49], and hence lack depth information. To fit a 3D mesh,
we therefore augment DXA silhouettes with paired anthropometry measurements, namely height, waist and
hip circumferences.

Directly fitting a high dimensional point cloud to a single silhouette is challenging. We utilise Skinned Multi-
Person Linear Model (SMPL) [26], a low rank PCA shape representation, which provides a strong prior for
human body shape. Predicting SMPL pose and shape accurately in one go is also challenging, thus we utilise
a two-stage approach where an optimiser refines an initial guess.

3.1.1 SMPL

SMPL [26] is widely used for Human Pose and Shape (HPS) regression tasks [35–37]. Given input pose
and shape parameters θ ∈ R24×3, β ∈ R10, SMPL returns a 3D mesh M ∈ R6890×3 in a fully differentiable
manner. Fig. 1 shows the structure of the SMPL model.

3.1.2 Initial SMPL Pose and Shape Prediction

To reconstruct a 3D mesh from a DXA image, we first make an initial guess of pose and shape using an
off-the-shelf method. Most existing HPS networks take in RGB images as inputs and do not readily apply
to DXA images [5, 17]. Instead, we utilise proxy representations of DXA images, consisting of edge images
and joint heatmaps [35] in an attempt to bridge the domain gap between DXA and RGB images. Our initial
pose and shape guess uses Hierarchical Kinematic Probability Distributions (HKPD) by Sengupta et al. [36],
which adopts this proxy representation, and regresses probability distributions over SMPL pose and shape
parameters. Regressing distributions also enables us to aggregate information across different views for the
smartphone validation study detailed in Section 3.3.

While initial predictions from the HKPD method yield an estimation of body pose and shape from a single
coronal view of the DXA participant, it is not sufficiently accurate for downstream metric regression tasks.
The reason for this is two-fold: firstly, the coronal DEXA silhouette provides little information about the
body shape in the depth dimension, which is important in terms of assessing body composition metrics such
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Figure 2: Our 3D body mesh fitting method. Given a DXA image, an initial pose and shape estimation is made using
HKPD. Then, the output pose and shape parameters are optimised using losses constructed from DXA silhouettes
and paired anthropometry data. Optimised shape parameters are used for body composition regression.

as visceral fat, which is correlated with the sagittal abdominal diameter (SAD) [15]; Secondly, HKPD is
trained using synthetic body shapes sampled from Gaussian distributions, and tends to predict body shapes
biased towards the SMPL mean.

3.1.3 Optimisation

Therefore, we construct an optimisation method to refine the initial guess, taking advantage of paired anthro-
pometry measurements, DXA silhouettes, and further losses derived from special properties of DXA scanning
(e.g. participants lying flat on the scanbed). We detail the optimisation losses below.

Anthropometry loss. We ensure that the mesh agrees with anthropometry measurements consisting of
waist, hip circumferences and height by minimising the following loss:

L1 = λ1||ĈW − CW ||22 + λ2||ĈH − CH ||22 + λ3||Ĥ − H||22 (1)

where ·̂ are measurements from the optimised mesh. [CW , CH , H] stand for waist, hip circumferences and
height of the participant respectively. Height of the mesh is measured using the extrema vertices of the
T-pose mesh.

To inject waist and hip information to the mesh whilst maintaining differentiability, we use a local ellipsoidal
approximation to estimate circumferences. This is done by selecting a ring of keypoints around waist and
hip, then fitting an ellipse using least squares. The selected keypoints are projected onto the horizontal plane,
as SMPL vertices usually do not share the same height, and their relative heights vary across different body
shapes.

DXA silhouette loss. Our optimiser also fits to the silhouette of the scan by differentiably rendering the
silhouette of the optimised mesh onto the image. We also impose a joint regulariser to prevent the optimised
mesh from straying too far from the initial guess. This forms the second part of the loss function,

L2 = λ4||R(M(θ̂, β̂), ĉ) − Sgt)||22 + λ5||Ĵ2D − J2D||22 (2)

where R(·) is a PyTorch3D [32] differentiable silhouette renderer, c = [s, tx, ty] are weak perspective camera
parameters consisting of scale and translation. Sgt is the ground truth silhouette obtained by thresholding
the DXA image. J2D are 2D joint locations obtained by,

J2D = sΠ(J M(θ̂, β̂)) + [tx, ty] (3)

where Π(·) is orthographic projection, J is a linear vertex-to-joint regressor.

Scanbed alignment loss. Due to the orthographic nature of DXA images, pose of the DXA participant
can be ambiguous from a single silhouette. As a result, initial guesses from HKPD often produce meshes that
have forward-leaning torsos, or legs that are not fully extended. Since DXA participants are lying flat on the
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Figure 3: Our body composition regressor. The model is a simple feed-forward neural network which takes in optimised
SMPL shape parameters, and outputs mass predictions.

scanbed, we impose an additional ‘scanbed alignment constraint’. During implementation we also impose a
pose regulariser on the arms as well as a deviation from z loss to regularise arm poses.

L3 = λ6||θ̂(1)|x,y||22 + λ7||θ̂(2) − θ(2)||22 + λ8||zarms − zpelvis||22 (4)

where θ(1) is a subset of SMPL pose parameters containing spine and leg joints, θ(2) is a subset of SMPL
pose parameters containing arm and wrist joints.

We optimise body pose, shape and camera parameters using the following total loss function,

L(β, θ, c) = L1 + L2 + L3 (5)

where λi are manually tuned to produce the best fits. Fig. 2 shows our full mesh fitting pipeline. Optimised
SMPL shape parameters β̂ ∈ R10 are used for the next phase which regresses body composition metrics.

3.2 Body Composition Prediction
We construct a simple feed-forward neural network to regress body composition metrics from the 3D meshes.
The inputs to the network are the 10 SMPL shape parameters obtained from DXA optimisation, height,
weight, BMI, and gender of the participant. The outputs of the network are the estimated body composition
metrics such as total fat mass, total lean mass, etc. We use residual connections in the first two layers as
they slightly improve our lean mass predictions. The structure of our network is shown in Fig. 3.

The network is trained using a mean squared error (MSE) loss function constructed from target and predicted
mass values. We weight the loss function using homoscedastic uncertainty [18], and learn these metric-wise
uncertainties automatically,

L(W, σ) =
∑

i

1
2σ2

i

||ŷi − yi||22 +
∑

i

log σi (6)

where ·̂ are model predictions, σi are metric-wise uncertainties.

The network is relatively small, with around 16,000 parameters, to prevent overfitting. We train the network
using an Adam [19] optimiser for 100 epochs with a learning rate of 0.01. Dropout [39] is adopted to regularise
the network. We train our model using an 80%–20% train–validation split on Fenland phase 1 data. We test
our method on Fenland phase 2 and the smartphone validation study.

3.3 Shape Prediction for Smartphone Validation Study
The validation study uses the HKPD [36] method, and generates SMPL avatars using multiview information
from RGB images. Given a group of images [I1, I2, ...] of the same participant, each photo is firstly processed
using HKPD to generate a Gaussian distribution over SMPL shape parameters p(β|In). A final body shape
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Table 1: Participant characteristics. Data are mean ± SD.

Fenland Study
Smartphone
Validation

Study
Phase 1

(training)
Phase 1

(validation) Phase 2

n = 9087 n = 2272 n = 6102 n = 119
Variables units
Age yrs 48.7 ± 7.5 48.8 ± 7.6 55.8 ± 7.05 42.3 ± 12.3
Weight kg 77.6 ± 15.3 77.6 ± 15.3 77.3 ± 15.2 69.9 ± 13.5
Height cm 170.0 ± 9.3 170.0 ± 9.3 170.4 ± 9.3 168.4 ± 9.8
BMI kg/m2 26.8 ± 4.5 26.7 ± 4.5 26.6 ± 4.4 24.6 ± 4.2
Sex n (%) male 4298 (47.3) 1035 (45.6) 2979 (48.8) 39 (32.7)
Total body fat mass kg 26.4 ± 9.0 26.5 ± 9.2 26.3 ± 9.0 21.0 ± 9.0
Percentage body fat % 33.5 ± 7.7 33.8 ± 8.0 33.7 ± 7.8 29.4 ± 9.5
Android fat mass kg 2.3 ± 1.2 2.3 ± 1.2 2.4 ± 1.2 1.5 ± 1.1
Gynoid fat mass kg 4.4 ± 1.6 4.4 ± 1.6 4.3 ± 1.5 3.9 ± 1.5
Visceral fat mass kg 1.0 ± 0.8 1.0 ± 0.8 1.0 ± 0.8 0.5 ± 0.5
Abdominal SCAT massa kg 1.4 ± 0.6 1.4 ± 0.7 1.3 ± 0.6 1.1 ± 0.8
Peripheral fat massb kg 11.6 ± 4.0 11.7 ± 4.1 11.3 ± 4.0 10.2 ± 4.0
Total lean mass kg 48.8 ± 10 48.4 ± 9.8 48.2 ± 10 46.8 ± 10
Appendicular lean massc kg 22.3 ± 5.5 22.1 ± 5.4 21.6 ± 5.3 21.7 ± 5.5
ALMId kg/m2 7.6 ± 1.3 7.5 ± 1.3 7.4 ± 1.3 7.5 ± 1.3

a SCAT = subcutaneous adipose tissue
b Peripheral fat mass = arms + legs fat mass
c Appendicular lean mass = arms + legs lean mass
d ALMI: appendicular lean mass index = appendicular lean mass / height2

is derived by combining shape information across multiple views according to,

p(β|{In}N
n=1) ∝

N∏
n=1

p(β|In) (7)

where we have assumed conditional independence across views [36, 37].

3.4 Statistical Analysis
Statistical analyses were performed using STATA version 17 (StataCorp, College Station, Texas, USA) and
Python. A P value less than 0.05 was considered statistically significant. Descriptive data were reported as
mean ± standard deviation (SD) or n (%). Using the methods described in Section 3, we constructed our
model to predict total and regional body composition metrics. The performance of the derived model was
compared by calculating the Pearson correlation coefficients r for each outcome parameter and root-mean-
square error (RMSE) values. Pearson correlation coefficients were used to investigate associations between the
different predicted values of body composition and the measurements of total and regional body composition
from DXA. Scatter plots were used to visualise the associations between predicted and measured values.
Bland-Altman analysis was used to investigate the agreement between the predicted body composition from
our approach against DXA reference measures of total and regional body composition. In the Bland–Altman
plot, the y-axis represents the difference or bias between predicted values and measured values (e.g. from
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Figure 4: DXA image inputs (Row 1), initial fits using HKPD (Row 2) and optimised fits (Row 3). Initial fits are not
accurate enough to represent the participant. Optimised fits have better agreements with the DXA silhouettes.

DXA) with limits of agreement (LoA) described as the 95% confidence range (mean bias ± 1.96SD), while
the x-axis represents the mean value of the reference method (e.g. DXA) rather than the mean between
the two methods. Mean differences/biases between the two methods were calculated and significance was
tested against zero by paired t-tests. For all the variables, change in body composition was defined as the
difference between predictions from Fenland phase 2 (follow up assessment) and Fenland phase 1 (baseline
assessment). Scatter plots were used to compare changes in body composition from our predictions with
DXA body composition changes. Bland-Altman plots were implemented to assess the agreement between
changes in body composition predicted by our method and those measured by DXA. Root-mean-square error
(RMSE) was used to assess the accuracy of these comparisons.

4 Results
The demographic and anthropometric characteristics of the Fenland study samples and the smartphone
validation study are summarised in Table 1. Participants in the smartphone validation study were younger,
lighter and leaner, compared to participants in the Fenland study. In terms of body volume, we observed a
mean (SD) of 64.4 (13.2) liters in the smartphone validation study, the only dataset with air plethysmography
measures.

4.1 3D Body Mesh Fitting
Fig. 4 shows samples of our fitted 3D body meshes. Row 1 shows the raw DXA scans. Row 2 shows the
initial pose and shape estimations obtained using HKPD [36]. These roughly captures the pose and shape
of the body, but the fit to the coronal silhouette is often poor. Row 3 of Fig. 4 shows samples of optimised
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fits. We found that optimised meshes agree much better with the silhouettes of DXA images compared with
the initial fit. Furthermore, Fig. 8 in the appendix shows samples of meshes before and after optimisation in
sagittal view. We observed that the optimisation has resulted in significant changes to the body shapes in
the depth dimension when comparing the initial meshes to the optimised meshes. This further shows that
initial fits do not represent the actual body shape, and that waist and hip circumferences were needed to
generate meshes that better represent the true body shape of participants. Our method, in conclusion, has
generated body meshes that are injected with 3D body shape information using paired anthropometry, while
creating an improved fit to the DXA silhouettes. SMPL shape parameters corresponding to these optimised
meshes are then used for the body composition regressor.

4.2 Body Composition Prediction
Table 2 shows the model performance on Fenland and smartphone datasets in the form of mean bias (95%
limits of agreement), root-mean-square error (RMSE), and Pearson correlation for the agreement between
ground truth body composition values from DXA and model predictions using the 3D meshes. The last
column in this table is the model performance using the smartphone method. Fig. 9 in the appendix shows
selected scatter plots of model predictions against target values on Fenland phase 2 data. Fig. 5 shows scatter
plots and Bland-Altman plots for percentage body fat for Fenland phase 1 (validation), phase 2 (validation),
smartphone study using DXA silhouette optimisation, and smartphone study using RGB images.

In the Fenland phase 1 validation sample, correlation coefficients between predicted and measured DXA
parameters were strong (r > 0.89) for all fat mass and lean mass variables. Bland-Altman analyses revealed
no significant mean bias for the following predicted DXA parameters: fat mass, android fat, appendicular
lean mass, percentage body fat and appendicular lean mass index (all P > 0.05). However, significant
(P < 0.05) mean bias was observed for total lean mass, visceral fat, abdominal SCAT mass, gynoid fat,
and peripheral fat: mean biases (95% LoA) were 0.11 (−4.7; 4.9)kg, −0.03 (−0.7; 0.6)kg, 0.05 (−0.5; 0.6)kg,
0.04 (−1; 1)kg, −0.06 (−2.7; 2.6)kg respectively. In the Fenland phase 2 validation sample, which included
older individuals, correlation coefficients between predicted and measured DXA parameters were also strong
(r > 0.86) for all the body composition variables. Agreement analyses revealed significant (P < 0.05) mean
bias for all predicted DXA measured parameters. Mean bias was −0.24 (−6.7; 6.2)% for percentage body fat
and for the other body composition metrics, the mean bias ranged between −0.04 to 0.41 kg. Similar results
for the DXA silhouette method were also observed in the external validation (Column 3 of Table 2), which
included younger individuals. Correlation coefficients between predicted and measured DXA parameters
were r > 0.89. Mean bias was 1.13 (−7.2; 9.5)% for percentage body fat and for the other body composition
parameters, the mean bias ranged between −1.21 to 1.13kg.

Results using SMPL shape generated directly from the four smartphone images in this external validation
is shown in Column 4 of Table 2. The correlations coefficients between DEXA metrics and all the predicted
body composition values were r > 0.84. Mean bias (95% LoA) was 1.62 (−9.2; 12.5)% for percentage body
fat and for the other body composition parameters, the mean bias ranged between −1.51 to 0.93kg. Volume
derived from the smartphone achieved RMSE of 5.21liters compared to BODPOD volume, with mean bias
(95% LoA) of 5.36 (−4.9; 15.6)liters. We also compared accuracy of waist, hip, calf, and arm circumferences
from the smartphone avatars. Mean biases were 2.49 (−7.4; 12.4)cm, 2.25 (−6.3; 10.8)cm, −4.09 (1.3; 6.7)cm,
and −3.03 (−7.8; 1.7)cm respectively. RMSE were 5.04cm, 4.38cm, 2.76cm and 2.42cm respectively.
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Fenland phase 1 (validation) Fenland phase 2 (validation)
Smartphone Study (DXA

silhouette)
Smartphone Study (phone

RGB)

Figure 5: Scatter plots (Row 1) and Bland-Altman plots (Row 2) for agreement between predicted and measured
percentage body fat in the Fenland samples and the external validation set. All predictions are based on 3D meshes
derived from DXA silhouettes, except last panel which is based on 3D meshes derived from four RGB photos from
smartphone.

4.3 Comparison between Prediction Models
We conducted a comparison study on different regressor model inputs, to verify that 3D body meshes provide
crucial information for the downstream composition regressor. Results of the different models investigated
in the comparison study are shown in Table 3. Model A (weight and height only) achieved some level of
predictive ability. Performance of the model was improved by adding waist and hip circumferences (Models
B and C), as waist and hip are strong indicators of composition metrics such as android fat mass and gynoid
fat mass. In the final model (Model E), we quantified the contribution of the SMPL shape parameters in
addition to using height and weight only. This model substantially improved the estimation of the body
composition metrics compared to anthropometry alone. The explained variance (R2) in percentage body
fat increased from 73% to 82%; total fat mass from 88% to 92%; total lean mass from 91% to 93%; gynoid
fat from 81% to 89%; android fat from 81% to 89%; peripheral fat mass from 80% to 87%; appendicular
lean mass 90% to 93%; appendicular lean mass index from 74% to 86%; visceral fat from 70% to 80% and
abdominal SCAT from 70% to 72%. We also attempted to predict body composition using a simple linear
regressor (Model D), but the neural network approach (Model E) outperforms it noticeably.
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Table 3: Comparison study on model inputs. Best R-squared values are in bold font. We verify that the addition of
shape parameters is crucial for the model to perform well. Our model using SMPL outperforms the other models in
almost every metric.

Model Name A B C D E

Model Inputs

- - - SMPL SMPL
Height,
Weight

Height,
Weight

Height,
Weight

Height,
Weight

Height,
Weight

- Waist Waist, Hip - -
Method Network Network Network Linear Network
Metrics Fenland phase 2 R2

Total fat mass 0.884 0.909 0.910 0.897 0.922
Percentage body fat 0.739 0.792 0.797 0.766 0.823
Android fat mass 0.809 0.887 0.884 0.880 0.894
Gynoid fat mass 0.811 0.830 0.863 0.843 0.886
Visceral fat mass 0.698 0.779 0.792 0.774 0.802
Abdominal SCAT massa 0.701 0.727 0.730 0.716 0.723
Peripheral fat massb 0.802 0.824 0.832 0.821 0.872
Total lean mass 0.910 0.925 0.921 0.916 0.934
Appendicular lean massc 0.895 0.921 0.911 0.906 0.927
ALMId 0.739 0.853 0.824 0.833 0.853

a SCAT = subcutaneous adipose tissue
b Peripheral fat mass = arms + legs fat mass
c Appendicular lean mass = arms + legs lean mass
d ALMI: appendicular lean mass index = appendicular lean mass / height2

4.4 Predictions of Body Composition Changes
A total of 5733 individuals participated in both Fenland phase 1 and phase 2, which enabled us to examine
the model’s ability to detect within-individual body composition changes over a mean (SD) of 6.7 (2.0) years.

Table 4 shows model predictions of changes in body composition metrics for individuals present in both
Fenland phases. Our model was able to detect change for numerous fat mass metrics. The agreement
between predicted body composition values and DXA parameters (r) for changes in percentage body fat,
total fat mass, gynoid fat mass, android fat mass, peripheral fat mass, visceral fat mass and abdominal
SCAT mass were 0.92, 0.76, 0.87, 0.83, 0.74, 0.76, 0.82 respectively, with RMSE of 2.3%, 1.75kg, 0.39kg,
0.29kg, 1.00kg, 0.26kg, 0.21kg respectively. Changes in lean mass were less well captured, mainly due to
the fact that lean mass largely remains unchanged for most individuals over this time period. r values for
change for total lean mass, appendicular lean mass and ALMI were 0.60, 0.64, 0.63 respectively, with RMSE
of 1.82kg, 1.06kg, 0.36kg respectively. Fig. 6 shows selected scatter plots between the predicted changes in
percentage body fat, lean mass, android and gynoid fat mass against changes measured by DXA for the same
variables and the corresponding Bland-Altman plots.

5 Discussion
In this paper, we derived a novel computer vision-based method that fits a 3D body mesh to a single DXA
silhouette with paired anthropometry data (height, waist and hip circumferences). Using our method, we
generated a large database of 3D body meshes (n = 17, 461) with paired anthropometric and metabolic traits.
We then showed that total and regional body composition metrics could be predicted accurately using these
meshes. In the comparison study, we showed that shape parameters provide additional cues for predicting
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Table 4: Predictions of composition changes for participants in both Fenland phases. Our model is able to predict
meaningful changes in body fat masses.

Metrics Bias (95%LoA) RMSE r

Total fat mass -0.11 (-3.5; 3.3) 1.75 0.92
Percentage body fat -0.25 (-4.7; 4.2) 2.30 0.76
Android fat mass 0.01 (-0.6; 0.6) 0.29 0.87
Gynoid fat mass -0.02 (-0.8; 0.7) 0.39 0.83
Visceral fat mass -0.02 (-0.5; 0.5) 0.26 0.74
Abdominal SCAT massa 0.03 (-0.4; 0.4) 0.21 0.76
Peripheral fat massb -0.05 (-2.0; 1.9) 1.00 0.82
Total lean mass 0.32 (-3.2; 3.8) 1.82 0.60
Appendicular lean massc 0.45 (-1.4; 2.3) 1.06 0.64
ALMId 0.16 (-0.5; 0.8) 0.36 0.63

a SCAT = subcutaneous adipose tissue
b Peripheral fat mass = arms + legs fat mass
c Appendicular lean mass = arms + legs lean mass
d ALMI: appendicular lean mass index = appendicular lean mass / height2

Figure 6: Selected scatter plots (Row 1) and corresponding Bland-Altman plots (Row 2) for prediction of change in
body composition metrics.

body composition by comparing the performance of models with different inputs. We demonstrated the
derived model’s ability to detect longitudinal change in these characteristics over time by making predictions
for individuals that were present in both phases of the Fenland study. In our smartphone validation study,
we showed how avatars were generated using four smartphone photographs directly, without the use of
optimisation. Finally, we showed preliminary body composition prediction results using these avatars.

The model using optimised 3D meshes predicted body composition metrics with sufficient accuracy to assess
relative differences between individuals, and was sufficiently accurate to predict absolute values for total
and regional body composition including visceral fat and abdominal SCAT mass, as well as lean mass,
appendicular lean mass, and ALMI. All the body composition metrics predicted from the optimised 3D
meshes showed Pearson correlation coefficients r > 0.86. In a similar study, Xie et al. [48] which used a
2D PCA shape space constructed from keypoints selected on a silhouette achieved the following results on
a cohort of size 1,554: percentage body fat R2 adj. (adjusted R2) = 0.728, RMSE = 3.12% for boys, and
R2 adj. = 0.691, RMSE = 3.39% for girls. However, this comparison is limited as this study was conducted
in children, as they have proportionally larger body surface area to volume ratio than adults, as well as sex
differences in dimensions of body shapes such as central:peripheral ratio [34]. In a more relevant study, Ng
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et al. [29] which predicted composition using PCA parameters of 3DO scans on a cohort of size 407, observed
similar results to our analysis: total fat mass R2 = 0.91, RMSE = 3.07kg for males, R2 = 0.95, RMSE =
2.63kg for females; percentage body fat R2 = 0.70, RMSE = 3.55% for males, R2 = 0.72, RMSE = 3.88%
for females. Similarly, Tian et al. [41] fitted a 3D shape to a single coronal silhouette on a cohort of size
416, and predicted body composition with the following results: total fat mass R2 = 0.90, RMSE = 3.63kg
for males, R2 = 0.94, RMSE = 2.29kg for females; percentage body fat: R2 = 0.725, RMSE = 3.90% for
male, R2 = 0.74, RMSE = 3.29% for female. In comparison, we achieved similar performance on a much
larger dataset n = 6102, with the following results: total fat mass R2 = 0.922, RMSE = 2.5kg; percentage
body fat R2 = 0.823, RMSE = 3.28% overall. In addition, our approach also injects information in the
depth dimension by using waist and hip circumferences, while the fitting by Tian et al. [41] is limited to the
coronal silhouette. In Klarqvist et al. [23], stronger correlations were observed for visceral fat, abdominal
SCAT mass and gynoid fat, using coronal and sagittal silhouettes derived from MRI, the gold standard for
those measures of adiposity. Our estimates for these metrics were based on an in-built algorithm from the
DXA manufacturer, which is not a criterion method. However, compared to Klarqvist et al. [23], our analysis
included more body composition metrics such as appendicular lean mass and its index, which are used as a
proxy for the assessment of sarcopenia [22, 46]. Even though comparison to these studies may be limited as
they were conducted in cohorts of different ages, using different body composition instruments and computer
vision approaches, we have shown that our method produced meshes that were comparably accurate to 3DO
scans [29], by predicting body composition to a similar accuracy on a large test dataset. This allows for the
construction of large 3D shape databases using our method, and in turn enables larger deep learning models
to be used to analyse 3D body shapes. Our prediction results for change in body composition were similar
to Wong et al. [47] which report predicting DXA metrics from 3DO scanning images from 133 participants,
where the change in fat mass is slightly underestimated, and lean mass overestimated.

The strengths of our study include the large sample size of the Fenland study, the same DXA instruments
in the different samples, the same DXA analytical software, and the robust validation in two separate inde-
pendent cohorts (Fenland phase 2, representing an older group from the derivation sample and the external
validation, which consisted of younger individuals). Furthermore, our method assesses changes to body com-
position over time. Another benefit of the 3D body mesh approach is to enable anonymity of user data.
Our method does not require raw images of the participants to be retained, rather we only store the gener-
ated body meshes, which could also be done efficiently by only storing the SMPL shape parameters. This
provides additional incentive in scientific and clinical studies for participants to partake in data collection,
since concern over sharing sensitive information is largely eliminated. Compared to other smartphone apps
that estimate body composition from photographs, we note that they either do not reconstruct 3D meshes
[27, 40], or they require strict pose constraints [28, 40]. Our app works robustly for noisy backgrounds, can
be extended to incorporate an arbitrary number of images, and in practice works for arbitrary body and
camera poses.

This work is not without limitations. We acknowledge that our study samples were predominantly adults
of white European origin. Future analyses should assess the validity of these models in other ethnic groups
as well as younger populations, since there are significant racial and age differences in body composition
[9, 13, 16, 30, 34]. Future work should also focus on improving the avatar accuracy generated using the
smartphone app. While our findings support the validity of our method in Fenland phase 2 data and in
the smartphone validation study, we expected and found lower performance using avatars derived from RGB
images, as avatars obtained using the phone app can be inaccurate. We do not optimise our smartphone-
generated avatars although this would improve prediction accuracy, since we do not retain the photographs
due to ethical constraints and data security. Alternatively, using domain-agnostic representations such as
waist-hip ratio, waist-height ratio might produce stronger results as they are normalised with respect to
height. Choudhary et al. [8] showed that accurate waist-hip ratio could be derived directly from images using
attention based networks, which could prove useful in this regard. With improvements to avatar accuracy,
app-generated avatars would be able to approach the prediction performance on Fenland.

Through the implementation of the app, users will be able to visualize their body shapes, and track potential
changes using a portable and relatively inexpensive but accurate device. Using our method in clinical re-
search studies, we could potentially identify individuals at the highest risk of preventable complications (e.g.
significant increase in body fat from their first assessment). For instance, Fig. 7 shows the modeled body
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Figure 7: Each three columns show one participant who lost (Column 1–3), maintained (Column 4–6) or gained
(Column 7–9) fat mass, their DXA scans and fitted meshes for Fenland phase 1 (Row 1) and phase 2 (Row 2).
Changes in body shape for the first and third participant is significant.

shapes at phase 1 and 6 years later at phase 2 of three participants who either maintained, gained, or lost fat
mass. The first and last three columns show two participants who lost and gained lots of fat mass between
the two phases. Significant changes could be seen comparing the two sets of meshes. The end goal would be
to encourage users to adopt a healthier way of life, by visualizing changes to their body shapes with time,
rather than just focusing on numerical values (e.g. increase in BMI).

In conclusion, capturing two-dimensional (2D) images coupled with appropriate inference techniques to re-
construct a 3D model of the body, may be a viable alternative tool to clinical medical imaging, and it could
offer a readily accessible health metric for monitoring the efficacy of lifestyle interventions.
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6 Appendix

Figure 8: Column 1, 2: Initial body shape fits using HKPD (in T-pose, front and side view); Column 3, 4: Opti-
mised fits (in T-pose, front and side view). Initial fits lack information in the depth axis. Using anthropometry
(height, waist, hip circumferences), optimised body meshes reflect the actual body shape much better.

Figure 9: Scatter plots of model predictions against target values on Fenland 2. Our model is capable of predicting
numerous composition metrics with high accuracy.

21


	Introduction
	Methods
	The Fenland Study
	Smartphone Validation Study
	Anthropometry and Body Composition

	Model Derivation
	Fitting the 3D Body Mesh to DXA Image
	SMPL
	Initial SMPL Pose and Shape Prediction
	Optimisation

	Body Composition Prediction
	Shape Prediction for Smartphone Validation Study
	Statistical Analysis

	Results
	3D Body Mesh Fitting
	Body Composition Prediction
	Comparison between Prediction Models
	Predictions of Body Composition Changes

	Discussion
	Appendix

