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Preface

Computer Vision is the automatic analysis of sequences of images for the
purpose of recovering three-dimensional surface shape. In recent years, sev-
eral branches of mathematics, both ancient and modern, have been applied
to computer vision. Projective geometry, which in its mathematical form
dates back at least two centuries, is used to describe the relationship be-
tween points and lines in different images of the same object. Differential
geometry, which is even older, though it received its definitive modern look
in the first half of the nineteenth century, is used to describe the shape of
curves and surfaces. More recently developments in singularity theory have
enriched the field of geometry by making possible a wealth of detail only
dreamed of fifty years ago. Likewise, developments in the speed and power
of computers over the last decade have turned other dreams into reality, and
made possible real-world applications of mathematical theory.

The goal of this book is to reconstruct surfaces from their ‘apparent con-
tours’, that is the outlines which they present to us when we view them from
a distance. It is not obvious that these apparent contours contain enough
information to reconstruct an unmarked smooth surface at all. It is even
less obvious that without accurate knowledge of the observer’s motion they
contain this information; in fact, at the time of writing, we do not know in
generality whether this is true. We have, however, successfully implemented
the reconstruction when the observer’s motion is only partly known — that is,
when it is constrained to be of a special kind called circular motion. Other
work on more general motion is in progress.

Chapter 1 is introductory, and Chapters 2 to 4 introduce the mathematical
ideas and techniques necessary to the study of surfaces and their apparent
contours under viewer motion. In Chapters 5 and 6 we bring the mathe-
matics to life with the latest techniques in photogrammetry and computer
vision. We describe the real-time implementation of the theory with real
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image sequences. We show that in practice apparent contours can be used
effectively to reconstruct both motion and surface shape.
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1

Introduction

We have tried to make our book self-contained. The underlying differential
geometry and singularity theory is explained with minimal prerequisites in
Chapter 2. We hope that this chapter will prove of value to anyone who
wishes to apply differential geometry to vision problems. To follow the
main thrust of this chapter the reader only needs a working knowledge of
calculus and linear algebra. Most of the material is quite well known, but the
slant given here is towards applications, and we have tried to illustrate the
material with many examples and figures. In particular, we study curvature
of surfaces and special curves on surfaces such as parabolic and flecnodal
curves. We make much use of the idea of contact, between surfaces and
lines or planes. It is this idea which links classical differential geometry
with modern singularity theory, where geometrical properties are studied
by means of functions or mappings which in turn measure contact.

In Chapter 3 we introduce the main character in our story, the apparent
contour. Apparent contours are the outlines or profiles of curved surfaces.
An example is shown in Figure 1.1. We describe apparent contours under
orthographic projection and for perspective projection, and we describe in
detail the singularities which a single apparent contour can be expected
to have. We also obtain geometrical information about surfaces from a
single apparent contour, though this is necessarily limited. Initially results
are stated, but we give three different approaches to proofs, ‘Monge-Taylor
proofs’, which rely on special coordinate systems which are very powerful
for proving results about surfaces; ‘vector proofs’, which are coordinate-
free but require more experience to use effectively; and ‘pure geometric
proofs’; which are more like thought experiments but can sometimes yield
the greatest intuition.

An excellent modern reference for applications of projective geometry to
computer vision is O.D. Faugeras’ Three-Dimensional Computer Vision. On
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the differential geometry side, another book from which we, and others, have
drawn inspiration is J.J. Koenderink’s now classic Solid Shape, published in
1990. Koenderink’s book is replete with geometric proofs and statements,
but sometimes lacks mathematical detail. We have tried to supply some of
this detail in Chapters 2 and 3 of our book.

In Chapter 4 we introduce dynamic contours. That is, we progress from
a single view of a surface to multiple views, from which we can expect to
derive much more information. In fact, in principle, a complete reconstruc-
tion of a surface is possible from a family of apparent contours obtained
by circumnavigating a surface. (Unfortunately in practice some parts of a
surface may be occluded by other parts, and in addition apparent contours
may be hard to track.) The ‘in principle’ reconstruction was first estab-
lished for orthographic projection in Giblin and Weiss (1987), and this was
generalized and placed in a better mathematical framework by Cipolla and
Blake (1990 and 1992).

We describe the dynamic analysis for orthographic and perspective pro-
jection, and introduce the important idea of an epipolar parametrization.
We also give a brief introduction to circular motion, which will play a major
role in the last chapters of the book. The epipolar parametrization breaks
down in certain circumstances, one of which is the ‘epipolar tangency’ situ-
ation. This is bad news for reconstruction but, surprisingly, very good news
for determining motion. In fact the so-called frontier points which arise from
epipolar tangency are instrumental in giving us information about the mo-
tion of the observer, something we exploit in Chapter 6. Other breakdowns
of the epipolar parametrization are caused by degeneracies of the apparent
contour — the ‘visual events’ which we observe when moving our viewpoint
— and we list the possible cases and explain their geometrical significance.

In Chapter 5 we bring the mathematical techniques to life and describe
the implementation of algorithms to reconstruct a surface from the image
sequence of outlines. Details of every stage in the reconstruction, from raw
pixel intensities to a stable description of the three-dimensional surface, are
given. These include the calibration of cameras, localization and tracking of
outlines, epipolar geometry and stereo reconstruction.

In Chapter 6 we address the more difficult problem of recovering the ob-
server’s motion from the apparent contours in different views. The recovery
of the three-dimensional configuration of points and the motion compati-
ble with their views (known as structure from motion) has been an active
area of research in computer vision over the last two decades and a large
number of algorithms and working systems already exist. We review the
key results in the literature, in many cases providing simple geometric and
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algebraic proofs. Finally we show how the motion of the viewer can be
computed from apparent contours instead of points, by using properties of
the frontier. The significance of frontier points seems to have been noticed
first by J. Rieger (1986), and they were then applied to circular motion and
orthographic projection in (Giblin et al. 1994), where it is proved that re-
covery of motion is essentially unique in this simple case. The extension to
general motion and perspective projection was presented by (Cipolla et al.
1995) and (Astrom et al. 1996 and 1999), where an iterative algorithm gives
good results in many cases. We present the latest techniques for estimating
the camera motion. A particularly simple and reliable method is presented
for recovering the motion of objects on turntables, known as circular mo-
tion. This exploits symmetry of the envelope of apparent contours. This
has been used to acquire three-dimensional models of arbitrary objects from
an uncalibrated camera.
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Fig. 1.1. Two views of a semi-transparent surface (sculpture) by David Begbie.
For curved surfaces, the dominant image feature is the apparent contour or outline.
This is the projection of the locus of points on the surface which separate visible and
occluded parts. The apparent contours are rich sources of geometric information.
In particular, their deformation under viewer motion can be used to recover the
geometry of the visible surface. The geometry of the viewpoints can also be inferred.
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Differential geometry of curves and surfaces

In this chapter we aim to introduce the reader to all the differential geometry
of curves and surfaces in 3-space needed for a full understanding of the
remainder of the book, and of the literature on apparent contours and their
applications in computer vision. Our aim is to give all the useful formulae
and to make the concepts and results clear. We give several methods of
proof, and in some cases apply all these methods to the same problem, to
give a flavour of the strengths and weaknesses of the different techniques
available. We begin with ‘first-order properties’, that is properties which
depend only on first derivatives, and work up to those depending on second
or higher derivatives.

2.1 Curves and their tangents
A curve in 3-dimensional space is nearly always represented by a parametriza-
tion

r:I — R?,

where I is some interval a < t < b of real numbers (a could be —oco or b
could be oo, or both). Also I could be a circle for parametrizing a closed
curve, in which case the components of r will be functions of sint and cos¢.
Writing r(¢t) = (X(t),Y(¢), Z(t)) the curve is regular provided the velocity

vector r'(t) = (X'(¢t),Y'(t), Z'(t)) is never the zero vector. (Here the prime
! d

m .
reserve suffixes for partial derivatives where there is more than one variable.)

stands for We might also use a suffix: r; = r', although we normally

The unit tangent vector T(t) is the unit vector in the direction of the velocity,
namely
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Fig. 2.1. A normal plane and tangent vector of a space curve.

The denominator, ||r/(t)][, is called the speed of the curve; unit speed means
that ||r/(¢)|| = 1 for all £. The curve has a normal plane at any point r(ty),
namely the plane through this point perpendicular to the tangent vector.
See Figure 2.1. This plane has equation (x — r(tg)) - r'(¢g) = 0.

The arclength s = I(t) of the curve between r(ty) and r(t) is given by

s=10) = [ Il (2.1)

that is, the integral of the speed. We deduce from (2.1) that % = [|r'(¢)]].
In particular if the parameter ¢ is s itself, then ||r/(s)|| = 1: using arclength
as the parameter, the curve is automatically of unit speed. In order that
changing from ¢ to s is a valid change of parameter we need to know that
% is never zero. Thus every regular curve can be re-parametrized to be unit
speed. This is often useful when doing calculations. An example of a non-
regular curve is given by r(t) = (t2,3,0), which is a curve in the z,y-plane

with a cusp at the origin. The speed is zero precisely for ¢ = 0.
Example 2.1.1 Helix

Let r(t) = (cost,sint,t), which has 9 = ||r/(¢)|| = V2 for all t. Thus
s = /2t+ constant and, making s = 0 when ¢t = 0, the reparametrized
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curve
R(s) = (cos %, sin %, %)

is unit speed. O

2.2 Surfaces: the parametric form

With a surface the matter is quite different. There is no natural concept
of ‘unit speed’. The geometry of surfaces is also much richer than that
of curves, and it is well worth having several representations of a surface
available for different purposes. We shall describe three of these.

We take a plane—the parameter plane—with coordinates (u,v) and an
open and connected region U of this plane. Then we can parametrize a
surface by

r(u,v) = (X(u,0),Y (u,v), Z(u,v)),
where X,Y, Z are functions with sufficiently many continuous derivatives

(at least two and often infinitely many). The condition corresponding to
the ‘regularity’ of a space curve is that, for every (u,v) € U, the Jacobian

matric
Xu Xy
Yo Y,
Zy Ly

(where suffixes stand for partial derivatives) should have rank 2. The content
of this is that the rank should not drop below 2. If it does drop, the two
columns r, and r, are parallel (or zero) as vectors in R3. Note that

ry, r, are parallel or zero < r, Ar, =0.

In fact r,, evaluated at (u,vp), is the tangent vector to the space curve
r(u,vg) where v has a fixed value vy, and similarly r, is the tangent vector
to the space curve r(ug,v). If these two vectors are parallel then the per-
pendicular coordinate curves u = wug,v = vy are transformed into tangential
curves by r, which is not allowable.

When the Jacobian matrix always has rank 2, i.e. r, A r, is never the
zero vector, we say that the map r is an immersion, and that r defines an
immersed surface, namely M = r(U). The surface M has a tangent plane
at r(u,v) for every parameter point (u,v), namely the plane through r(u,v)
spanned by the vectors r, and r,. This is a genuine 2-dimensional plane
by the immersion condition. So an immersed surface can be thought of as
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Fig. 2.2. Surface normal and tangent vectors r,,r,. Note that the lines drawn are
not u,v coordinate curves; they just give a shape to the surface.

one where, corresponding to every parameter point (u,v), there is a definite
tangent plane at r(u,v).
All surfaces will be assumed immersed unless the contrary is stated.
Note that r, and r, are not perpendicular in general. The normal to the
tangent plane is also called the normal to the surface and is in the direction
ry A ry,. See Figure 2.2. The unit surface normal n determined by the

ordering u, v of the parameters is
ry, Ay

n—=_——.
||rw Ayl

Note that interchanging u and v takes n into —n, and that the normal
depends only on first derivatives of the parametrization.

Sometimes it is convenient to use a slightly different parameter space, for
example where one, or both, of the parameters is naturally taken to be an
angle. (Formally we would say the parameter space was the product of a
circle and a line, or of two circles.)

Example 2.2.1 Sphere

A unit sphere, centre (0, 0,0), minus the north pole (0,0, 1) can be parametrized
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Fig. 2.3. Stereographic parametrization of a sphere minus the north pole. Note
that the sphere is cut away simply to show the line from the north pole penetrating
the sphere; the whole sphere minus the north pole is covered.

by stereographic projection as

r(z,y) 4z 4y w?+y? —4
€T =
Y 2?4yt 4422+ y2+ 4722 +y2 +4

where (x,y) ranges over the whole plane. Here, the point (z,y,—1) in the
plane z = —1 is joined to the point (0,0,1) and this segment meets the
sphere again at A(z,y,—1) + (1 — X)(0,0,1) where \ = 4/(z% + y? + 4).
See Figure 2.3. It can be shown that r; A ry is never zero, so this r is an
immersion.

A sphere, radius p, minus the north and south poles, can be parametrized
by spherical polar coordinates as r(6, ¢) = (p cos @ cos ¢, p cos fsin ¢, psin 0)
where =5 <6 < Z, 0 < ¢ < 27. (Here, ¢ is regarded as an angle parameter
which covers a whole circle.) See Figure 2.4. The tangent vectors and unit
normal are

—psinfcos ¢ —pcosfsin ¢ —cosf@cos ¢
rg = | —psinfsing ro= | pcosfcos¢ n=| —cosfsing
pcosé 0 —sinf

The normal is (of course!) parallel to r. Note that if § = +7 then ry = 0;
this is why we exclude the north and south poles from the parametrization.
O
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Fig. 2.4. Cut away picture of 0 (latitude) and ¢ (longitude) coordinates on the
sphere minus north and south poles.

Example 2.2.2 Cylinder

A cylinder, radius p, with axis along the z-axis, can be parametrized by
cylindrical polar coordinates as r(¢,z) = (pcos ¢, psin ¢, z). (Again, ¢ cov-
ers a whole circle here.) The tangent vectors and unit normal are

—psing 0 cos ¢
ro=| pcos¢ r,=10 n=| sing
0 1 0

The normal is orthogonal to the cylinder’s axis. O

Example 2.2.3 A non-surface

Let r(u,v) = (u + 2v,2u + 4v, 3u + 6v). Although r is parametrized by two
parameters, the tangent vectors
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are parallel, so a surface normal is undefined. In fact this r gives a curve—
indeed a straight line—not a surface. O

Example 2.2.4 Almost an immersed surface: the crosscap

A less drastic failure—which we include here simply to show what the im-
mersion definition allows—is r(u,v) = (u,v?, uv). Here, r, = (1,0,v)",r, =
(0,2v,u) " and these are parallel (vector product zero) if and only if u = v =
0. So excluding the origin (0,0) from the parameter plane, r gives an im-
mersed surface. See Figure 2.5. The surface is called a ‘crosscap’ or ‘Whitney
umbrella’t and has a line of self-intersection corresponding to u = 0: we have
r(0,v) = r(0,—v) for all v. Thus at points (0,v2,0) (v # 0) there are two
normals, corresponding to the two ‘sheets’ of the surface which cross at that
point. Note that the two parameter points (0,v) and (0, —v) are distinct,
for v # 0. This means that each different parameter point (u,v) does give a
definite tangent plane.

The (non-unit) normal at a general point works out to be (—2v2, —u, 2v),
so that at (0,v2,0) the normals are in the direction (£v,0,1). At u = v =0,
which is the origin, these two normals have coincided in (0,0, 1) but at this
point the Jacobian matrix actually fails to have rank 2, and the surface is
not immersed. (Note that the normal at r(u,0), say, is in direction (0, —1,0)
for u # 0 so the limit of these normals is not the same as the limit of normals
as we approach the origin along r(0,v). At the origin there is no normal
even in a limiting sense.) O

In practice the surfaces which arise in computer vision do not have self-
intersections such as those on the crosscap, and from now on we shall stick
to surfaces where two distinct parameter points never give the same surface

point, so tangent planes and normals to the surface M in R? are uniquely
defined.

Example 2.2.5 Surface of revolution

Let p(t) = (X(t),Y (t)) be a regular plane curve, which we place in the z, y-
plane of z,y, z-space. We assume that the curve does not cross the z-axis
(Y (t) never zero), and rotate about this axis to give the surface

r(t,0) = (X(t),Y (t)cos6,Y (t)sinh),

where 6 is an angle parameter covering a whole circle. Using ' for % the

1 The handle of the umbrella is actually the negative y-axis, which is not present in this
parametrized form but is present in the ‘equation’ form z?y = 22.
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Fig. 2.5. A crosscap or Whitney umbrella (Example 2.2.4), showing the normals to
the two sheets at a point along the self-intersection line. In this picture, the origin
is at the pinch point near the top and the positive y-axis points downwards along
the self-intersection line. The z-axis lies on the surface and is nearly horizontal left
to right.

vectors

r; = (X',Y'cos6,Y'sinf) and ry = (0,—Y sinf,Y cos )

are independent since Y is never zero and X',Y’ are never both zero, so
the surface is immersed and has a well-defined tangent plane at each point,
spanned by r; and ry.

For example, taking p(t) = (cost,sint 4 2), which is a circle of radius 1
centred at (0,2,0) in 3-space, the surface is a torus. See Figure 2.6.

As another example, take X (t) = ¢, Y(¢t) = 1: rotating this line gives a
cylinder. The vectors r; and rg are (1,0,0), (0, —sinf, cos #) and the normal
is (0, — cos 8, —sin#). This particular normal points inwards. O

The above is an example of a ‘global parametrization’: the whole surface
of revolution is given by r, which is always an immersion (r¢,rg indepen-
dent). On the other hand for the sphere in Example 2.2.1 either the north
pole or the north and south poles are missing if we want a well-behaved
parametrization. This is the more typical case: parametrizations tend to
cover parts of whole surfaces.
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zZ

Fig. 2.6. A torus generated by rotating a circle about a line (the z-axis) in space.

2.3 Monge form

In the Monge form (named after Gaspard Monge, 1746-1818) the surface
(now called a Monge patch) is written as the graph of function: z = f(x,y).
We can regard the Monge form as a special kind of parametrization:

r(x,y) = (w,y,f(w‘,y)), Ty = (1’07fw)’ ry = (07 Lfy)-

Note that r; Ary is never 0, so this r is always an immersion. (Furthermore
we never have two distinct parameter points giving the same surface point.)
We have

Non-unit normal i =ry Ary = (—fz,—fy,1);

(_fwa _fy, 1)

unit normaln = ———————. (2.2)
Note that the normal is never ‘horizontal’, that is, never parallel to the
x, y-plane.
We often use a special Monge form in which, at z =y =0, f, f; and f,
are all zero. Then at £ = y = 0 the normal is (0,0, 1) and the tangent plane
to the surface at the origin is the x, y-plane. See Figure 2.7.



14 Differential geometry of curves and surfaces

Fig. 2.7. A Monge patch in which the tangent plane at one point is the plane z = 0.

In that case the equation of the surface can be written in the ‘special
Monge form’

z = %(0@0%‘2 + 20,111:3/ + a02y2) + %(O/goxs + 3a21x2y + 3a12:cy2 + a03y3) +-een
(2.3)
Binomial denominators 2 = 2!,6 = 3! are inserted here, and coefficients are
named to reflect the powers of z and ¥ in the terms of the Taylor expansion.
In special applications we might choose to abandon one or both of these
conventions.
By a rotation about the z-axis, that is by replacing « by x cos 6 + y sin 6
and y by —xsinf + ycosf for a suitable 6, the zy-term in (2.3) can be
eliminated. The coefficient of xy becomes

1
§(a20 — agz) sin 26 + a3 cos 26.

If & makes this zero so does 6+ 3, and there are always at least two values of 6
in 0 < 0 < w. When there is no zy-term, we shall say later (Definition 2.8.8)
that the x and y-axes are in principal directions at the origin. (Note that
in this context a positive or negative axis is regarded as giving the same
‘direction’. Really ‘principal line’ would be a better term but ‘principal
direction’ is traditional.) Since the two values of 8 differ by 7, the second 6
gives the same pair of principal directions but they are interchanged.
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When the zy-term is eliminated then of course all the other coefficients in
(2.3) change, but terms of a particular degree stay of the same degree—for
example, the new cubic terms of (2.3) will depend only on the original cubic
terms and 6.

Example 2.3.1 Monge form of a sphere

A sphere of radius p > 0 centred at (0,0, p) is tangent to the x,y-plane at
the origin. The equation is 22 +y2 + (2 — p)? = p?; if we want the part of the
sphere near the origin we must take the negative square root when finding
z, to give z = p — y/p? — x2 — y2. Thus the Monge form starts out with

1 2 2 1 4 2 2 4
Z:%(QJ —l—y)—l-@(x +2x%y +y)+”‘7 (2'4)

on expanding the square root by the binomial theorem. O

Notice that in this case, which is typical, the Monge form does not give us
the whole sphere. In fact just the sphere below the equator will be covered
by (2.4). For this reason, the phrase Monge patch is sometimes used. See
Figure 2.8. To obtain the upper hemisphere (which does not pass through
the origin) we need to take the + sign in front of the square root above.
The equator, itself, where the normal is horizontal (parallel to the x,y-
plane) cannot be part of any parametrization as the graph of a function

If a surface or a surface patch is in Monge form, then the intersection of the
surface with its tangent plane at the origin is simply the curve f(z,y) =0
in the plane z = 0. For example the surfaces z = 22 + ¢?, z = 22 — y? and
z = x2 + y3 meet their tangent plane at the origin in respectively a point,
two intersecting lines and a cusped curve. See Figure 2.14.

2.4 Implicit form

The Monge form, or indeed any graph z = f(x,y), is a special case of a
surface given ‘implicitly’ by an equation F(z,y,z) = 0. This is the most
‘global’ of the three representations. A unit sphere centred at the origin is
given completely by the equation 2% + 32 + 22 — 1 = 0, for example. But
the implicit form is often the hardest to handle, and we shall not often have
occasion to use it.

The normal vector is easy to obtain, however: it is along the gradient of
the function F, that is along (F,, Fy, F;). Notice that for this to be nonzero,
we need at least one of the partial derivatives to be nonzero. But in fact
this is also the condition for the surface given by F = 0 to be free from
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zZ

Fig. 2.8. Monge patch for a sphere.

singularities such as self-crossings, cuspidal edges, etc. The condition that
F, F,, Fy, F, are never all zero at the same point (z,y, z) is also expressed by
saying that 0 is a ‘regular value’ of the function F'. See for example (Bruce
and Giblin 1992, Ch. 4). The equation of the tangent plane at (xo, yo, 20),
where F(z¢,y0,20) =0, is

(x —20)F + (y — yo) Fy + (2 — z0)F> = 0.
Example 2.4.1 Quadric surfaces

A quadric surface M is a surface in z,y, z-space given by an equation con-
taining only terms of degree 0, 1 and 2 in the variables z,y and z. They are
of interest in the general context of this book since they have very simple
‘contour generators’. The contour generator of any surface M relative to a
point c in space is the curve of points on M where the tangent plane passes
through c. Equivalently, consider the cone of rays through ¢ which are tan-
gent to M; the contour generator is the curve on M along which this cone is
tangent to M. From Chapter 3 onwards we shall call ¢ the ‘camera centre’.
See Figure 3.4.

When M is a quadric surface it can be represented as X QX = 0 where
X is a 4-vector, X = (z,y,2,1)", and Q is a 4 x 4 symmetric matrix. The
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matrix Q is partitioned as

Q=

Qs q
01T Qa4

where Qg3 is a (symmetric) 3 x 3 matrix, q a 3 x 1 column vector and Q44
a real number. For a quadric centred at (0,0,0), that is, for which (z,y, 2)
lies on the quadric if and only if (—z, —y, —z) does, we have q = 0, and the
quadric is then often written as x' Q3x = constant, where x = (z,y,2)".
The quadric is nonsingular—that is, it is not a cone or a plane pair—if and
only if the matrix Q is nonsingular.

We go on to explore a little further properties of quadric surfaces which
depend only on tangents. Given a point ¢ = (c1, ¢z, c3) in 3-space, write C
for the column 4-vectort (ci,co,c3,1)"

Definition 2.4.2 Polar plane

The equation X ' QC = 0, being linear in x,y, z, defines a plane. This plane
is called the polar plane of ¢ with respect to the quadric. See Figure 2.9.

When the quadric is nonsingular and ¢ is outside, we show below that
the polar plane contains the points of contact of the cone of rays through c
tangent to the quadric—the ‘contour generator’ for camera centre c as we
call it later. As c approaches the quadric the cone of rays becomes more
and more planar, and in the limit when c is on the quadric, the cone of rays
and the polar plane both become the tangent plane to the quadric at c.

For a sphere of radius a centred at (0,0,b) the quadric matrix has the
form

1 0 O 0

01 0 0
Q= 0 0 1 —b

0 0 —b b*>—a?

for which X" QX = 22+ y2 + (2 — b)2 — a%. The polar plane of the origin is
the plane X7 Q(0,0,0,1)" = 0, that is the plane z = (b*> — a?)/b. If b = +a
we obtain the tangent plane at the origin, the plane z = 0.

Proof of the above property of the polar plane

Taking x = (z,y,2)" on the quadric, any point on the line [ joining x to c is
(writing ¢ as a column vector) v = Ac + (1 — A)x. Let V be the column 4-vector

(vT,1)7, so that we have V = AC + (1 — A\)X. The condition for v to lie on the
quadric, namely VT QV = 0, gives a quadratic equation for \:

ACT + (1= NXTQ(AC + (1 — N)X) =0.

1 This is essentially passing to ‘homogeneous coordinates’. We shall use these again in Chapter 5.
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Fig. 2.9. Polar plane of a quadric surface with respect to a point outside it.

When this quadratic equation is multiplied out, there are three terms, involving
A2, \ and a constant term. The constant term is X' QX, and this is zero by
definition of x, since x lies on the quadric. Thus one solution of the quadratic
equation is A = 0. The coefficient of A is

C'QX+X'QC-2X"TQX =2(X"QC -X"QX) =2(X"'QQC).

In the first equality we use the fact that, since CTQX is a 1 x 1 matrix, it is equal
to its transpose X ' QT C, which in turn is equal to X T QC since Q is symmetric.

The condition for the coefficient of A to vanish is the condition that both roots
of the quadratic for \ are zero, which means that the line from c to x is tangent to
the quadric at x. This condition is simply X" QC = 0, as asserted. O

We shall study contact between lines and surfaces in more detail in §2.13.

2.5 First fundamental form for surfaces

Consider a curve on a surface M with parametrization r(t) = r(u(t), v(t)),
where ¢ is the curve parametrization, which is not necessarily arclength. By
the chain rule,

r'(t) = ryu’ + 0,
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and
!
T . Iy Ty Ty-Ty u
P = [ o ][ H]
E F o
— ! !
- [u v][F G][v'l
= Eu?+2Fuv + Go.
Note that
E=r, ry, F=ry - rp,and G=r, 1, (2.5)

are functions defined on M via its parametrization.

First fundamental form The quadratic form Eu? + 2Fu'v' + Gv™ (or
Edu?® + 2Fdudv + Gdv?) is called the first fundamental form of the surface.
If a vector on the tangent plane has components (£, 7), so that the vector is
&ry, + nry, then the form assigns its length as

||éry + nry||> = EE2 4 2F€n + G (2.6)

Thus the form is a metric for the surface. We can also interpret this as
saying that an ‘infinitesimal segment’ given by du, dv in the parameter space
becomes, on the surface, an ‘infinitesimal curve element’ of length Edu? +
2Fdudv + Gdv?.

The dot product (inner product) a; - as of two tangent vectors a; =
&iry + mry and as = €ary + Mor, at the same point r(u,v) can be written

in the form
I(al,az):[fl 771}[? gl [iz]

The 2 x 2 matrix occurring here and above is called the matriz of the first
fundamental form I relative to the given parametrization. This matrix is
often called I, too, pronounced ‘one’ and not to be confused with the iden-
tity matrix I, pronounced ‘eye’! In fact on the rare occasions when we
mention the identity matrix we shall call it ‘id.” to avoid confusion. The
first fundamental form ¢s the identity when r, and r, are perpendicular unit
vectors.

Notice that this version of the first fundamental form is a bilinear form
on the tangent plane to the surface at a point: it associates with each pair
of tangent vectors a number, namely their dot (inner) product. Sometimes I
is used also for the quadratic form given by putting a; = as : I(a) = [|a||?.
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AV

Fig. 2.10. An infinitesimal surface element.

Note that EG — F2 = (ry, A1y) - (ry ATy) = ||ry Aryl|? > 0, since 1, and
r, cannot be parallel, by the immersion condition (§2.2).

Remark 2.5.1 Area and invariance

(i) The area of a region of surface is given by

A:/”ru/\I‘UHdudv:/\/EG—deudv. (2.7)

Note, the term (EG — F?) is the determinant of the first fundamental form ma-
trix, and arises from the Jacobian of the transformation from (u,v) to r. Again,
we can say that an ‘infinitesimal rectangle’ of area dudv in the parameter space
becomes, on the surface, an ‘infinitesimal surface element’ of area v EG — F2dudv.
See Figure 2.10.

(ii) The first fundamental form does not change if the surface is bent without
stretching. An example is developable surfaces, which are ruled surfaces formed
as envelopes of planes in space. Developable surfaces are of three kinds, cones,
cylinders and ‘tangent developables’ of space curves—that is, for a given space
curve we take the union of all the (infinite) tangent lines of the curve. See (Bruce
and Giblin 1992, pp. 178-182) and Figure 2.18 below. A developable surface can
be formed from a flat sheet of paper by rolling and bending it without stretching
or tearing. The tangent plane at any point along a given ‘generator’, that is one of
the straight lines making up the surface, is the same. This implies that all points
of these surfaces are ‘parabolic’ (compare Property 2.8.14).

In fact it can be shown that two surface patches are isometric (related by a
smooth invertible map with smooth inverse which takes each curve to a curve of
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the same length, rather like bending one surface to form the other) if and only if
they can be parametrized to have the same first fundamental form everywhere. O
Example 2.5.2 Sphere

For the parametrization of the sphere minus two points in Example 2.2.1
the first fundamental form is given by

r=|” 0
| 0 p?cos?h |
Clearly, the coordinate curves are orthogonal since F' = 0. The length (2.6)
of an infinitesimal curve element has the familiar form dr? = p?d6? +

p? cos? Bd¢?. The area (2.7) of an infinitesimal element is dA = p? cos 8dOd¢.
d

Example 2.5.3 Cylinder

The first fundamental form for the parametrization in Example 2.2.2 is given
by

The coordinate curves are orthogonal and the length (2.6) of an infinitesi-
mal curve element has the form dr? = p?d¢? + dz?. The area (2.7) of an
infinitesimal element is dA = pd¢pdz. O

Example 2.5.4 Graph of a function, z = f(z,y)

When a surface is given as the graph of a function, then we can parametrize
it by r(z,y) = (@,y, f(z,y)) and the matrix of I becomes

1+ f2 fafy
fafy 1+ f{j’

When f, = f, = 0 at some point (horizontal tangent plane) this is the
identity matrix. We then say that the surface is given in ‘special Monge

I=

form’. We shall make much use of this form later in the chapter, especially
when f, = f, =0at z =y = 0.

2.6 Curvature of curves

We turn now to properties of curves, and later of surfaces, which depend on
second derivatives: ‘second-order properties’.
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Let C be a regular space curve, parametrized by r(t), where r'(¢) is never
zero. The curvature k(t) of C is measured by the rate at which the unit
tangent vector turns. The curve is naturally oriented by increasing values of
t and the unit (oriented) tangent is T = r'/||r’|| (recall §2.1). The formula
T’ = kN||r’|| defines the real number £ > 0 and, so long as k # 0, the unit
vector N, which is called the ‘principal normal’. Note that N is perpendic-
ular to T, since the derivative of a unit vector is always perpendicular to
that vector. In fact in a precise sense ‘most’ space curves have no zeroes of
curvature (Bruce and Giblin 1992, Ch. 9).

Writing s for arclength we have s’ = ||r'|| from (2.1), and

r =5'T, " =4"T+s?kN.
Taking the vector product we have

[|x" A x|
k= 113
I’

so that x # 0 if and only if v’ and r” are not parallel. Assuming now that
K is never zero, the plane spanned by T and N is the osculating plane and
is the limit of planes intersecting C at three nearby points. See Figure 2.11.
The normal B = T AN to the osculating plane is called the binormal of the
curve. It is parallel to r’ A r”. See Example 2.6.1 for what happens to the
binormals when x is zero at a point.

The circle in the osculating plane with centre r + N/« is called the oscu-
lating circle of C' at r. It is in fact the limit of circles through three nearby
points of C. See Figure 2.11. Note that if k is very small the osculating cir-
cle is nearly a straight line; in fact zeroes of curvature are sometimes called
‘linear points’ of a space curve.

The torsion of C measures the tendency of the curve to leave its osculating
plane: if the torsion is always zero then the curve is actually a plane curve
lying in the constant osculating plane. The general formulae are

T' = gN||t/||, N'=(-«T +7B)||r||, B’ = —-7N||r'||,

B ||rl/\rll|| B [rl,rll,rlll]

— . 2.8
W T T A 28)

Here, [ | stands for the triple scalar product of three vectors. Either the
equation for N’ or that for B’ can be regarded as providing a definition of
7. For more details, see for example (Bruce and Giblin 1992, Ch. 2). Note
that ||r'|| = 1 for a unit speed curve so that some of these formulae simplify
considerably.
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Fig. 2.11. The circle through three neighbouring points on a space curve, and the
plane through these points. As the points tend to coincidence, the circle tends to
the osculating circle and the plane to the osculating plane.

For a plane curve the principal normal N is just called the normal
and it can be given a direction: turn anti-clockwise 90° from the oriented
tangent. (Note that this does not make sense in R3: a clockwise turn from
one viewpoint is an anti-clockwise turn from another viewpoint.) Then the
curvature acquires a sign:

T' = &N||t'|| (2.9)

has k < 0 when T’ is in the opposite direction to the oriented normal, that
is, T' is 90° clockwise from T. A zero of curvature of a plane curve is called
an inflezion. The binormal is constant, perpendicular to the plane of the

curve, as noted above. Standard formulae for x are:
For a parametrized plane curve r(t) = (X (¢),Y (¢)):
lell _ X”Y,
(XI2 + Y12)3/2 ’

For a curve given implicitly by an equation f(z,y) = 0:

 F3fe = 2fafyfuy + £y
a (f2+ f2)3/2 ’
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where the latter is only up to sign since the equation f = 0 does not give
an orientation to the curve.

It is easy to obtain the ‘Taylor expansion’ of a space curve about a point
r(tp) say. Let us assume r(t) is a unit speed parametrization where ||r/(¢)|| =
1 for all ¢, and use suffix 0 to mean evaluation at tg. Then

v =T, r" =T =«&N, 1" = (kN) = kN + &N’ = 'N + k(—«T + 7B),

SO
— / 1 2.1 1 3..m
r(t) = r0+(t—t0)r0+§(t—t0) ro—l—g(t—to) el
1
= 1o+ (t—t)To + §(t —t9)%koNp
1
+ g(t — t0)*(kuNo — k5 To + KomoBo) + - -
Kj

= ro+ T (t_to)_F(t_tO)B‘i‘"'

1 1
+Np (5(75 — to)zlﬁio + E(t — t0)31€6 + - >

1
+By (g(t —t0)*KoT0 + - - ) -

In particular this implies that if we project the curve into the plane of T
and By, and if 7y (as well as kg) is nonzero, the resulting plane curve is like
(t+---,t3+--.) (putting tg = 0), that is, the curve has an inflexion. Likewise
for projection to the Ty, Ny-plane (the osculating plane) the resulting plane
curve is like (¢ 4 ---,t? +--.), which does not have an inflexion, and for
projection to the N, B plane—the normal plane—the result is (t24---,#3 +
-++), which has a cusp. These are illustrated in Figure 2.12.

Example 2.6.1 A curve family

Let r(t) = (¢,t3,t* + ut?) where u is a constant > 0. Note that r'(t) =
(1,32, 4¢3 + 2ut), v (t) = (0,6t,12t2 + 2u), and these can only be parallel
if r’’(t) is zero, which requires ¢t = u = 0. Applying the formula (2.8) for
torsion, there are zeroes of torsion where

1 3t 4¢3 + 2ut
¢/, 0" "] =|0 6t 12t2+2u |=0.
0 6 24t

This gives 62 = u so there are two solutions for ¢ as u > 0. When u — 0 the
two torsion zeroes approach the same point of the curve given by ¢t = 0. If
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Rectifying
lane

Normal

plane [

Osculating
plane

Fig. 2.12. Views of a space curve. The three pictures show ‘exploded’ projections
of the same space curve into three planes. Left: along the T direction into the
N,B-plane (normal plane), giving a cusp; Right: along the N direction into the
T,B-plane (rectifying plane), giving an inflexion; Below: along the B direction
into the T,N-plane (osculating plane), giving an ordinary point. The three planes
actually pass through the middle of the cube; exploding them outwards makes for
greater clarity. See §2.6.

u = 0 then the formula for the curvature x given above shows that x(0) = 0.
The binormal at these torsion zeroes, being parallel to r’ A r”, is parallel to

(—2u*?, —1201/%, £3V) .

When u is small and > 0 these two directions are almost opposite: as t moves
along the curve from one torsion zero to the other the binormal violently
swings almost through an angle of 7. When u = 0 the binormal is undefined
at t = 0 since k(0) = 0: the binormal has become discontinuous with a
sudden swing of 7 in direction as t goes through 0. See Figure 2.13.

We now turn to properties of surfaces which depend on second derivatives,
‘second-order properties’. These tell us not just what the tangent planes are
but how the tangent planes are turning as we move around the surface.
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/

fi
Fig. 2.13. The binormals of a space curve with a zero of curvature. This shows

v = 0 in Example 2.6.1, where the binormal swings through an angle of m: the
binormal is discontinuous.

2.7 Three surface types

We begin with three examples illustrating the different local behaviour of
surfaces with respect to their tangent planes at the origin. These examples
of surfaces M are all given in Monge form. The terms ‘elliptic’, ‘hyperbolic’
and ‘parabolic’ will be defined formally in a different but equivalent way in
Definition 2.8.13 below.

Example 2.7.1 Three behaviours of the tangent plane at a point

(i) Elliptic point: M is the paraboloid of revolution, given by z = 2% + y2.
This is ‘elliptic’ at O = (0,0,0) since the tangent plane z = 0 there meets
the surface in an isolated point: 2?4 y? = 0 has only the solution z = y = 0.
See Figure 2.14, top left.
(ii) Hyperbolic point: M is the saddle surface, given by z = 22 — 2. It is
‘hyperbolic’ at O since the tangent plane z = 0 there meets the surface in
two curves (in this example actually lines) which cross transversally at O.
These curves are x = +y. See Figure 2.14, top right.
(iii) Parabolic point: M is given by z = 2% + y3. The tangent plane z = 0
at O meets the surface in the cuspidal curve 2 + y3 = 0, and we say that
O is a ‘parabolic’ point of the surface. See Figure 2.14, centre, for a generic
example like this one, and the bottom line of the same figure for non-generic
examples. Note that at a generic parabolic point a surface does not look like
a cylinder: Figure 2.14, centre, is the correct picture to have in mind. O
Algebraically, we shall shortly distinguish the three types by the Gauss
curvature K, which is > 0 for elliptic points, < 0 for hyperbolic points and



2.7 Three surface types 27

Fig. 2.14. The tangent plane at a point. Top left: elliptic point, where the tangent
plane meets the surface (locally) in an isolated point. Top right: hyperbolic point,
where the tangent plane meets the surface (locally) in a pair of intersecting curves.
Centre: general parabolic point, where the surface meets the tangent plane in a
cusp. Bottom: non-generic examples, a cylinder and a torus, where the tangent
plane intersects the surface in a single curve.

= 0 for parabolic points (Definition 2.8.13). In §2.8 we give formulae for
the case of a surface in the ‘parametrized’ form r(u,v). In §2.9 we give
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corresponding formulae for a Monge patch and in §2.11 for a surface in
‘implicit’ form f(z,y,z) = 0.

Note that these different contacts with tangent planes are preserved by
any smooth invertible transformation of space which sends planes to planes,
for example by an affine transformation, which is a linear transformation
followed (or preceded) by a translation. This necessarily preserves contact
between planes and smooth surfaces, and so preserves the notions of elliptic,
hyperbolic and parabolic points.

2.8 Second fundamental form and curvatures: parametrized
surfaces

We now want to investigate the way in which the tangent plane to a surface
patch M = r(u,v) moves as the point of tangency moves around on the
surface. Since tangent planes depend on the first derivatives of r we can
expect to be involved with second derivatives now. We seek ways to encode
in a single object all the local variations in the tangent plane. This amounts
to describing how the normal n to M varies as we move away from a given
point p = r(ugp, vp) along any curve contained in M. We shall describe two
ways to encode the information: via the ‘second fundamental form’ II and
via the ‘shape operator’ S. Either of these objects captures essentially the
local shape of M.
The basic setup then is to have a curve

r(t) = r(u(t),v(t)) (2.10)

on M, given by taking the curve (u(t),v(t)) in parameter space and using
the parametrization r to throw this on to M. At any point on the curve r(t)
we can ask how the normal n (the surface normal, not the curve principal
normal) varies in the direction of the velocity vector r'(t), that is, we can
ask for n'(t), the derivative of n along r'. Since n is a unit vector, its
derivative n’ is perpendicular to n, and hence is a tangent vector to M.
Every tangent vector is a linear combination of the basis vectors r, and r,,
so it is natural to ask how to express n’ as {r, + nr, for suitable scalars £
and 7. See Figure 2.15. Recall that r,, r, are always assumed to be linearly
independent (§2.2).
We differentiate n(t) = n(u(t),v(t)) to obtain (omitting ¢ from the nota-
tion)
n' = n,u + nyo' (2.11)

where ' means differentiation with respect to t. (In terms of differentials we
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Fig. 2.15. Left: unit surface normals (called n(¢) in the text) along a curve r(¢) on
a surface M. Right: r’ is tangent to the curve r(t) and n' is also in the tangent
plane to M, which in this example meets M in two intersecting curves (hyperbolic
point). Note that to avoid cluttering the picture, the curve r(t) is not drawn again
in the right-hand figure.

can write dn = n,du + n,dv.) We need to express this in terms of r,, and
r, as above.

n' = n,u' +n,v' = €ry, + . (2.12)
Taking the dot product of (2.12) with r,, and r,:

r,-n = r,-nu +r, nov =¢€r, v, +nr, -r,=E(E+nF
r,-n = r,-nuu +r, no =¢r,-r, +nr,-r, = EF + G,
using the notation of (2.5).
We can now write down how to transform the velocity vector (u/,v') in
parameter space into the corresponding tangent vector to M. In matrix
form this transformation is

3 _ -1 u'
HEE 219

where II is the matrix of the second fundamental form at r(u,v) with entries

L, M, N defined by

H:l L M]:_[ru~nu rv~nu]:[ruu~n ruv~n] (2.14)

M N Iy N, Ty Ny, Fyy "N Ty N

(We apologize that pressure of notation has resulted in the use of M for



30 Differential geometry of curves and surfaces

both the surface and an entry in a matrix. There should be no possibility
of confusion between these two!) Note that differentiating r,, - n = 0 gives
r,-n, +ry, -n =0 so that ry, -n = —r, - n,. This and similar calculations
show that the last two matrices in (2.14) are equal. This also shows the
symmetry of the matrix II, since ry, = ryy.

Note that —I~'II itself is the 2 x 2 matrix of coefficients when n,, n, are
expressed as linear combinations of ry, ry:

n, = ary, + /Brvy Ny =Yy + (Srv, ( g g ) = _IilII.

In particular
II is singular (LN = M?) < n,, n, are parallel. (2.15)

So far, II is just a matrix which depends on the particular parametrization
of M, as well as on the point p of M under consideration. But we can turn
I into a bilinear form which takes a pair of tangent vectors to M at p and
produces a real number in such a way that the entries in the matrix II are
produced by taking for tangent vectors the basis vectors r,, and r,. We now
define II(a, b) where a and b are tangent (column) vectors to M at the same
point. To do this, we write a and b as linear combinations of ry,r,, say
a = aqry + asry; b = biry + bor,. Then we define

II(a,b) = (a1, az)II(b1, ba) ", (2.16)

where II is the above matrix. Note that II(a,b) = II(b,a) since II is a
symmetric matrix. Thus

II(r,,r,) = (1,0II(1,00" = L
II(ry,r,) = (1,0)I1(0,1)" M
II(r,,r,) = (0,DI(1,0)" = M
II(r,,r,) = (0,1)I1(0,1)" = N. (2.17)

The matrix equation (2.14) gives various ways of expressing the quantities
L, M, N, for example L = —ry, - n, = 1y, - 0.

The ‘second fundamental form’ itself is the bilinear form on the tangent
space associating to a pair of tangent vectors a, b the number II(a,b). As
usual ‘bilinear’ means linear in each variable; for example, linearity in the
first variable means II(Aa+ ub, ¢) = AIl(a, ¢) + pII(b, c) for all real numbers
A, t. Beware that we are using the same symbol II to denote both a bilinear
form and a 2 x 2 matrix. The context will make it clear which one is intended
at any moment.
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Remark 2.8.1 Invariance of II(a,b)

The value of II(a, b) is the same whatever parametrization of M we start from. It
is of course possible to verify this directly, and we say something about how the
matrix IT changes when we change parametrization in Remark 2.8.10 below. But we
can also interpret II(a, a) geometrically as ||a||> times the curvature of the section
of M by a plane containing n and a (see Definition 2.8.7 below), and then we can
use the standard relation between a quadratic form and a symmetric bilinear form:

II(a+b,a+b) = II(a,a)+ 2II(a,b) + II(b,b), so
II(a,b) = % (II(a + b,a + b) — II(a,a) — II(b, b))

to deduce that II(a,b) also has a geometrical meaning and so is unchanged by local
reparametrization of M. O

The second fundamental form encodes the change in n which occurs when
we move away from some point p in any direction on the surface. It is useful
to have a formula for the dot product a - n’ where a is any tangent vector
at p and n’ is measured in any other (or the same) tangent direction at p.
In fact, writing a = ayry + aor, as before we have

a-n = (airy +azsry) - (u'nyg +v'ny)
_ ) L M u
- WMty N\
= _II(av I‘I),

the last using ' = u'r, +v'r,, and the definition (2.16). Thus, for any curve
r(t) on M through p, and any tangent vector a at p,

II(a,r') = —a-n'. (2.18)

Remember that, in (2.18), n is the unit normal, but r’ need not be a unit
vector. If say n is any nonzero normal field on M then the equation becomes

a-n
II(a,r') = ——
’ 18]
where the denominator contains i, not o' | (Write i = An, where \ = ||n]|.

This gives o' = X'n + An’, so that a-n’ = A\a - n’, since a is tangent to M,
making a-n = 0.)

Definition 2.8.2 Conjugacy

The tangent directions a and b (equivalently, b and a) at the same point
r(u,v) are conjugate if II(a,b) = 0. (Note that a can be replaced by any
nonzero multiple of a without affecting the definition, and similarly with b.)
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Remember that to evaluate II(a, b) we express a, b and the matrix for II in
terms of a basis for the tangent plane at r(u,v) and use (2.16).

Taking a curve r(t) having r(tg) = r(uo,vp), say, and r'(ty) = b, the con-
jugate direction a is therefore, by (2.18), perpendicular to n'(ty) where n is
the unit surface normal:

Property 2.8.3 Derivative of unit normal The derivative of the unit
normal in any direction is perpendicular to the conjugate to that direction.

This is equivalent to saying that the conjugate to r’ is parallel to n’ A n.
Note that if fi is any nonzero normal field (not necessarily unit), then say
n=Anson =XNn+ An' and @' An = A%2n’ A n; so to find the conjugate
direction we can use any normal field. Of course, if n’ = 0 then we have
a degenerate situation where all directions are conjugate to r’ (the point r
is then parabolic and the direction r’ asymptotic there; see Property 2.8.14
and Definition 2.8.11 below).

The following is immediate from Equation (2.17):

Property 2.8.4 If the vectors ry,r, are in conjugate directions, then the
matriz of the second fundamental form is diagonal, that is, M = 0.

For examples of conjugacy, see Example 2.8.16 below.
There is an alternative way of describing the way in which n changes in
tangent directions at the point p, based on (2.18).
Definition 2.8.5 Shape operator S

We write S(b) for (minus) the derivative of n along the tangent vector b at
p. Thus S(b) is also a tangent vector to M at p, and by (2.18) we have

a- S(b) =1I(a,b) (2.19)
for every tangent vector a at r.

Note that S(a)-b = a-S(b) by the symmetry of II, and that S(r,) -r, =
L, S(ry)-rty=S(ry) ry,=M, S(r,)-r,=N.
From the above, it follows that

the matrix of the linear map S is I 'II.

This matrix is relative to the basis ry, r, of tangent vectors to M at r. Note
that this matrix is not necessarily symmetric. It will be symmetric if I is a
scalar matrix, that is, if ry, r, are orthogonal vectors of the same length.
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Remark 2.8.6 Weingarten map

Equation (2.13) defines a map between the tangent vector &r,, + nr, of the surface
M and the vector n’. We can regard n as a point of the unit sphere S? consisting
of unit vectors in 3-space—the map taking r to n is called the Gauss map of M,
and in this context S2 is referred to as the Gauss (or Gaussian) sphere. Since n’
is orthogonal to n, we can think of n’ as a tangent vector to the Gaussian sphere.
As such, (2.13) is known as the Weingarten map. It is the differential of the Gauss
map. O

Definition 2.8.7 Sectional (or normal) curvature

Taking a = r' in (2.18) the sectional curvature of M at r(u,v) in the direction
a is (up to sign)
_ II(a,a) II(a,a) S(a)-a a-n'

k= = = == (2.20)
I(a,a)  |a]|? |[al|? |[al|?

where n' is the derivative of the unit surface normal in the direction of the
tangent vector a. Note that reversing the direction of n reverses the sign of
k. In particular, if a is in the direction of the tangent vector r, then the
sectional curvature k is given by

k=L/E =ry, n/r,-r, (2.21)

since II(ry,ry) = L = ry,-n by (2.17) and (2.14). In general, ifa = {ry, +nr,
then

_ L+ 26M +n°N
- EE+2%nF +1°G’

k (2.22)

In fact k is, up to sign, the curvature of the plane curve obtained by inter-
secting M with the plane containing n and a. See Figure 2.16. (Compare
(Koenderink 1990, p. 197), and see §2.10 below.) The number £ is also called
the normal curvature of M in the direction a and is sometimes denoted by
ky,.

For a non-unit normal n, we have

a-n

= (2.23)
|la||?|a]|

Let us use the first equality of (2.20) to locate the maxima and minima of
the sectional curvature at a point. It is a standard result of linear algebra,
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Fig. 2.16. Intersection of a surface with a normal plane, the tangent to the inter-
section curve being a.

called ‘Rayleigh’s principle’ in (Strang 1988, p. 349), that the extrema of a
ratio of quadratic forms

II(a,a)

I(a,a),

where the denominator is ‘definite’, that is never zero for a # 0, are given

k=

by the values of the (necessarily real) relative eigenvalues:
ITa = kla.

Further, these extrema occur in the directions a given by the corresponding
relative eigenvectors, which are the eigenvectors of I"'II.  Applying this
to the present case, we can make the following definition.

Definition 2.8.8 Principal directions and curvatures

The maximum and minimum values of & will occur for a in the direction
of a vector which makes the vector Ila parallel to Ia. These directions
are eigenvectors of I"'II, that is of the shape operator S. They are called
principal directions at r and the corresponding curvatures k the principal
curvatures k1, ko at r. If K1 = ko then every direction is principal and the
point is called an umbilic. Otherwise there are two principal directions and
 The principle is proved as follows. Using our notation for I and II, we have k(E¢2 + 2F¢n +

Gn?) = L& + 2Mén + Nn?. Now a direct calculation shows that the extremum condition

k¢ = ky =0 for some (¢,71) # (0,0) is equivalent to (IT — EI)(¢, n)T =0, provided I is definite.

Note that the value of k is unaffected by multiplying (£, n) by a nonzero scalar, and taking this
vector of unit length the extrema will exist since the function k is bounded.
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they are perpendicular. Note that for this purpose a and —a count as the
same ‘principal direction’.

We can characterize principal directions by the way in which the normal
changes in these directions. If a, which does not have to be a unit vector,
is a principal direction at r then S(a) = Aa for some scalar A. Suppose r(t)
is a curve through r = r(ty) say, with r'(¢9) = a, and that n(¢) is the unit
normal at r(¢). Then S(r')-b =1II(r',;b) = —n’ - b for any tangent vector
b at r(t), by (2.19), (2.18) and the symmetry of II. Thus (Ar' +n')-b =0
for all tangent vectors b, which is only possible if n' = —Ar'.

If n is a non-unit normal, i = An say, then n’ = An’ + A\'n so the extra
component of i’ as compared with n’ is in the n direction, and we have
the triple scalar product [0’ fi, a] = 0, that is, the three vectors n’, h, a are
coplanar. Hence:

Property 2.8.9 Principal directions can be characterized by the property
that they are those tangent directions a where the derivative of the unit
surface normal n in the direction a is parallel to a. See Figure 2.17. In
terms of conjugacy (Definition 2.8.2) this says that, for a to be principal,
the conjugate of a is perpendicular to a (and the conjugate of a is also
principal). For a non-unit normal field i we have ', 11, a are coplanar when
a s principal.

Remark 2.8.10 Change of basis

Since S = I7!II is not a symmetric matrix in general, it is not obvious that its
eigenvectors and eigenvalues are real, though the interpretation of the eigenvalues
as extreme sectional curvatures does indeed prove this! We note here the effect of
re-parametrization on the matrices I, IT and S. Thus consider a new parametrization
of our surface patch, s = ro¢ where ¢ is a smooth invertible change of coordinates in
the parameter plane (a ‘diffeomorphism’, possibly just locally defined). Let J be the
(nonsingular) Jacobian matrix of ¢ (relative to standard bases in both parameter
planes). Then calculation shows that the matrix of the first fundamental form
obtained from the parametrization s is say I’ where I' = J "IJ. Now we can always
choose J so that I’ = id. where id. here stands for the identity matrix. In fact
the two columns of J can be thought of as two ‘conjugate points’ on the ellipse
Ez? + 2Fzy + Gy? = 1 in the z,y-plane, that is the diameter through each point
is parallel to the tangent line at the other.

Let us choose ¢ to be any linear map; this applies in particular if ¢ is chosen as
above to make I' = id. Let the matrix of ¢ be J. Then the matrix of II obtained
from the parametrization s works out to be J "ILJ.

The matrix of S in the new parametrization is therefore

S = (JTLNTLITIL = JS
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Aﬁ

Fig. 2.17. Principal direction a at a point on a surface: n' (derivative of the unit
normal n in the direction a) is parallel to a, and i’ (derivative of an arbitrary
normal in the direction a) is in the plane of i and a.

This is the matrix of the same linear map but referred to the new basis given by s.
In particular if J is chosen to make I' = id. then S’ = JTILJ, which is symmetric
(and so has real eigenvalues). O

Definition 2.8.11 Asymptotic directions

When the sectional curvature k is zero, we refer to the direction a as an
asymptotic direction. (The directions a and Aa for any nonzero A count as
the same asymptotic direction.) Thus

a asymptotic < II(a,a) =0« S(a)-a=0.

This can also be expressed by saying that asymptotic directions are self-
conjugate—compare Definition 2.8.2. If r(¢) is a curve in the direction a
through r then n' is perpendicular to a when a is asymptotic.

Property 2.8.12 Asymptotic directions can be characterized by the property
that they are those tangent directions a where the derivative of the unit
normal vector n in the direction a s perpendicular to a, or equally well
directions a which are conjugate to themselves. For a non-unit normal field
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n = A\n we have i -a = An’' - a for any tangent vector a, so we can also use
a non-unit normal field to detect asymptotic directions.

See §2.9 for a determination of the numbers of these asymptotic directions
at different points of a surface.

We record here the definitions and standard formulae for Gauss curvature
K and mean curvature H; see (O’Neill 1966 or 1997, Ch. V). Here, S is the
shape operator.

L M E F LN — M?
-1
1 1 E F L M
H = §trace[S] = §trace (l r oG ] l M ON ])
EN +GL-2FM
= 2.2
2(EG — F?) (2:25)
Thus from properties of eigenvalues,
K=rm, H=270)

The principal curvatures k1 and ko are the roots of the quadratic equation
K2 —2Hk+ K =0

with solution

Hl’zzﬂﬂ:\/Hz—K.

Definition 2.8.13 Elliptic, parabolic, hyperbolic
A point of a surface is called

e Elliptic if K > 0 there, that is k1, ko have the same signs;
e Parabolic if K = 0 there, that is k1 = 0 or ko = 0;
e Hyperbolic if K < 0 there, that is k1, k2 have opposite signs.

Compare Figure 2.14. Note that K = 0 if and only if IT is a singular matrix,
which by (2.15) occurs if and only if n,, and n,, are parallel. Taking any curve
r(t) = r(u(t),v(t)) on the surface through a given point r(¢y), the derivative
of n in the direction r'(tg) = ryu'(to)+ryv'(to) is n'(to) = nyu'(to)+ny0'(to),
so when n, and n, are parallel all the vectors n'(¢() are in the same direction.
Furthermore the derivative of n in a suitable tangent direction will be zero: if
n, = An, for a real A then choose u'(tg) and v'(tg) so that v'(tg) = —Au'(to).
Conversely if n’ = 0 in some direction then n, and n, must be parallel, and
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the point is parabolic. So parabolic points can be characterized in several
ways:

Property 2.8.14 A point ry of a surface is parabolic if and only if any of
the following hold:

e The Gauss curvature K is zero there;

e The matrix 11 is singular there;

e There is a nonzero tangent vector a such that II(a,b) = 0 for all
tangent vectors b;

e The derivatives n, and n, are parallel;

e All derivatives n' are parallel;

e Some derivative n' is zero.

If n, and n, are both zero—so that n' = 0 in every direction—then the
point vy is called flat parabolic: all sectional curvatures there are zero. Oth-
erwise, the direction in which n' = 0 is unique. All tangent directions at
ro are conjugate to this direction: if it is a then II(a,b) = 0 for all b. It
1s both the unique asymptotic direction and one of the two perpendicular
principal directions (n' is both parallel and perpendicular to r' at ry; see
Definitions 2.8.8 and 2.8.11).

Definition 2.8.15 Geodesic curvature

Suppose M is a surface and p = r(tp) is a point of M. Suppose as above
we are given a curve C on M, parametrized as r(t) and passing through p.
The geodesic curvature g of C, as a curve lying on M, at p is given by

B I'”(to)
SREOIE

where v is a unit vector in the direction n(tg) A r'(¢g), that is, normal to

v, (2.26)

the curve r(t) at r(tg) and lying in the tangent plane to M there. Compare
(Koenderink 1990, p. 197). Note that, unlike sectional (normal) curvature,
this depends on the curve C, not just on the point p and the tangent to C
at p. For a curve lying in a plane surface M this is the ‘usual’ curvature of
a curve. We postpone further discussion until Property 2.10.2 below.

Example 2.8.16 Conjugacy, principal and asymptotic directions

(i) Sphere Here all points on the sphere satisfy r = pn where p is the radius
of the sphere. So r' = pn’ for any curve on the sphere, that is, n’ is parallel
to the tangent r’ to the curve. (In ‘differential’ form, dr = pdn.) Thus
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conjugacy s the same as perpendicularity for tangent vectors to the sphere.
All directions are principal and there are no asymptotic directions.

(ii) Circular cylinder Let the axis of the cylinder M be in the direction
of the unit vector a and the radius be p. Along the direction a on M
the normal is constant: n' = 0. This is a degenerate case, where every
direction is conjugate to the axis direction a, and every point is parabolic
by Property 2.8.14. If b = r’ is a tangent direction to M at a point then
the formula

pn' =b— (b-a)a

works when b is parallel or perpendicular to a. Therefore the formula, being
linear in b, is valid for any tangent direction as these directions form a basis
for the tangent plane. It can be written in the ‘differential’ form

pdn = dr — (dr - a)a.
Principal directions are along a and perpendicular to a.

(iii) Developable surface A generalized cylinder consists of lines through
the points of a space curve all parallel to a given direction, and a generalized
cone consists of lines through the points of a space curve all passing through
a fixed point in space. Along a particular one of the lines forming such
a surface the tangent plane—assuming that it exists—is constant, so the
surface normal n is constant and by Property 2.8.14 all points of such a
surface are parabolic.

The same holds for the surface formed by the (infinite) tangent lines to a
given space curve r whose curvature x never vanishes—the so-called tangent
developable of the space curve. This surface is parametrized R(t,u) = r(¢) +
uT(t) where T is the unit tangent to r. Thus the tangent plane at R(u,t)
is spanned by Ry = (T 4+ usxN)||r'|| and R, = T. This plane is the plane
spanned by T(¢) and N(¢) (the osculating plane of r at r(¢)), independently
of u, so long as u # 0. (Along u = 0 the vectors R; and R, are dependent
and in fact the surface has a cusp edge there. See Figure 2.18.)

(iv) Saddle surface M with equation z = zy, parametrized r(z,y) =
(z,y,2y). A (non-unit) normal vector is i = (—y, —z, 1) and if we consider
the curve r(t) = (t,kt,kt?) on M for a fixed k this passes through the
origin in the direction a = (1,%,0). Non-unit normals along the curve
are n(t) = (—kt,—t,1) and the conjugate direction to a is n'(0) A n(0) =
(—1,%k,0). (See the note following Property 2.8.3.) Thus conjugacy at the
origin amounts to reflexion in the z-axis, or equally well—since a and —
a are not distinguished—the y-axis of the x,y-plane. The self-conjugate
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Fig. 2.18. The tangent developable surface of a space curve, with a cusp edge along
the curve.

a, P a,

Fig. 2.19. Principal directions p and asymptotic directions a on a saddle surface.

(asymptotic) directions are along the z-axis and along the y-axis and the
principal directions are at 45° to these. Compare Property 2.10.1 below and
see Figure 2.19.
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2.9 Second fundamental form and curvatures: Monge form of
surface

The surface is now represented as a graph z = f(z,y), that is r(z,y) =
(z,y, f(z,y)), where u and v are here replaced by the more familiar « and y

respectively. For the moment we allow f, f., f, to be nonzero at x =y = 0.
Then

r, = (]-,Oa fm) ry = (0> 1afy)
ree = (0,0, fou) Fyy = (anafyy) Tgy = Lyz = (anafa:y)
(_fa:a_fya 1)

The matrices of I and II become

Lo [T fehy q. L | fe fwy]' (2.27)
fofy 17| Ji+8+ et

The matrix of the shape operator is, as always, I II.
Thus, from (2.24) and (2.25),

Surface area = / 1+ f2+ f2dudv,

facacfyy - f:?y
1+ 12+ 1)
fmc + fyy + f:c:cfg + fyyf:c2 - 2f:cfyfwy

" 201+ 72+ f)°

Since only the sign of K is necessary to distinguish the three basic types
of surface points, we have the following.

Property 2.9.1 Suppose M is given by z = f(x,y) for some function f
(that is, the surface is a graph). Then the surface is, at v = (x,y, f(z,v)),
e elliptic if and only if feofyy — fgy >0
e hyperbolic if and only if feufyy — fwzy <0
e parabolic if and only if foofyy — f7, = 0.

This applies whether or not the tangent plane at (x,y, f(x,y)) is parallel to
the plane z = 0.

Using Definition 2.8.11 the condition for a vector (u,v,w), at a point of
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M given by (z0, yo, f(z0,%0)), to be asymptotic is

Feat® 4+ 2fzyuv + fv? = 0, (2.28)
fau+ fyv = w

where the derivatives are evaluated at x = xy,y = yo and the second condi-
tion just says that (u,v,w) is tangent to the surface: the tangent vector is
urg + vry. The equation (2.28) is quadratic in /v and has real roots if and
only if fuzfyy < fgy at © = x9,y = ¥o.

Hence by Property 2.9.1

Property 2.9.2 At an elliptic point there are no asymptotic directions; at a
parabolic point there is one asymptotic direction; at a hyperbolic point there
are two asymptotic directions.

Finally let us note the condition for two tangent vectors
a = airy+asry = (a1,a2,01 fe+azfy), b =bire+bory = (b1, b2, b1 fo+bafy)

to be conjugate. According to Definition 2.8.2 and the formula for II in
(2.27) the condition for conjugacy comes to

a1bi fzo + (a1b2 + a2bi) foy + a2bafyy = 0.

Of course, the condition for self-conjugacy (asymptotic direction) is just a
special case of this.

2.10 Special Monge form

When we take the surface to pass through the origin (f(0,0) = 0) and also
to have a ‘horizontal’ tangent plane z = 0 there (f,(0,0) = f,(0,0) = 0),
the surface near O takes the form

1
z=f(z,y) = §(a;v2 + 2bzy + cy?) + hoo.t., (2.29)

where ‘h.o.t.” stands for ‘higher order terms’, that is cubic and higher terms.
Note that a = fz2(0,0), b = f4,,(0,0), ¢ = f,,(0,0), so that K = ac — b*
at the origin and the conditions for the surface M to have different types
(§2.7) at the origin become

elliptic b? < ac;

hyperbolic b* > ac;

parabolic b = ac.



2.10 Special Monge form 43

The first fundamental form at (0,0) is now the identity, and the matrix of
the second fundamental form II at the origin is

a b
o] -

Since the first fundamental form here is the identity, the shape operator
S at the origin has matrix (2.30). The principal directions at the origin
(Definition 2.8.8) are the (necessarily real) eigenvectors of the matrix (2.30).
The principal curvatures at the origin are the (necessarily real) eigenvalues
of this matrix.

A (non-unit) normal vector to M is

n=(—azx—by+---, —br—cy+---, 1), (2.31)
where each --- represents terms of degree > 2.

We make some calculations in this special Monge form to illustrate how
useful it is. These often involve some further special choice of coordinate
system.

1. Sectional curvature formula

Consider a surface M in the form (2.29) and consider a tangent vector a at
the origin. We can rotate the surface about the z-axis until a becomes in
the z-axis direction, say a = (1,0,0). Consider a curve in the z, y parameter
plane whose tangent at O is along the z-axis, say y = Az? + ---. Thus the
normal n(x) along this curve is, using (2.31),

(_ax_i_..., _bx_’_’ 1),

since all terms coming from y give degree > 2 in . The derivative n'(0)

d%) is then (—a, —b,0). Thus the sectional curvature at the

origin in the direction a is (compare (2.23))

(where ' means

a-n’
||52]|

Note that a is the curvature of the section of M by the plane containing

a.

a and the normal (0,0,1) at O, since this curve is z = %a;vz + .-+ in the
x, z-plane. This confirms the statement made in Definition 2.8.7, and indeed
proves in the general case that the curvature of the normal plane section of M
containing a tangent direction a is measured by (2.20); see also Figure 2.16.

Note that a is asymptotic at the origin if and only if a = 0.

2. Sectional curvatures in all directions
Consider a straight line in the z, y-plane given by & = tcosf,y = tsinf.
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Take the corresponding curve on the surface (2.29) to be the r of Defini-
tion 2.8.7 (equation (2.20)), so that to =0, a = (cos#,sinf,0). Then using
the normal vector (2.31) n'(0) comes to (—a cos @—bsin @, —bcos f—csin b, 0).
Using the formula of (2.20), the sectional curvature k at the origin in the
direction of a is

acos® @ + 2bsin f cos @ + csin® 4. (2.32)

3. Euler’s formula

Rotating the surface about the z-axis to make b = 0 (compare §2.3) the
principal directions at the origin become the directions (1,0, 0), (0,1,0) and
the principal curvatures 1, k2 become a and c¢. Thus the Monge form is

1
z = §(n1x2 + k29%) + hoo.t. (2.33)

The sectional curvature in a direction (cos#,sin#,0) in the tangent plane at
the origin is (compare (2.32))

k(6) = k1 cos? @ + ka sin? . (2.34)

See Figure 2.20. This formula is due to L. Euler (1760). The asymptotic
directions at the origin in (2.33) are, when ki1kp < 0, given by tan?6 =
—kK1/ke2. Notice that these have the z- and y-axes as their bisectors. Since
we have made no assumptions about M, this is a general result:

Property 2.10.1 At a hyperbolic point which is not an umbilic (i.e., for
which k1 # k2), the principal directions are perpendicular and bisect the
angles between the two asymptotic directions (Figure 2.19.)

The condition for the origin to be a parabolic point when the surface is
in the form (2.33) is simply x; = 0 or k2 = 0, and the unique asymptotic
direction is then (1,0,0) or (0,1,0) respectively.

4. Geodesic curvature

M is still as (2.29). Take a curve C on M through O and rotate M about
the z-axis until the tangent to C is along the x-axis. Let the curve be given
by

y = e® 4+ pxd 4

Referring to Definition 2.8.15,

r(z) = (z, \?+---, Zaz®+-.)),
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AZ
\

Fig. 2.20. Sectional curvature in a direction inclined at angle 6 to a principal di-
rection is given by Euler’s formula (2.34).

where each - - - stands for terms of degree > 3 in . Thus
r'(0) = (1,0,0), r"(0) = (0,2),a)

and the geodesic curvature at O is (0,2)\,a).(0,1,0) = 2\, which is precisely
the curvature (up to sign) of the projection of C to the tangent plane, that
is the x, y-plane. Since we have made no special assumptions about M, we
have the general property:

Property 2.10.2 The geodesic curvature g of a curve C on M through rg
is (up to sign) the curvature of the projection of C to the tangent plane to
M atrg. In particular, g = 0 (a ‘geodesic inflexion’) if and only if this plane
curve has an inflexion at ry.

Note one other consequence of this calculation: the curvature x of C as
a space curve is given by (2.8), and in the present case, at t = 0, we have
k? = a? 4+ 4)2. Since the sectional curvature k of M at the origin in the
direction of the tangent to C' is (up to sign) equal to a (see above), and the
geodesic curvature of C at the origin is 2\, we have the general result:

Property 2.10.3 For a curve C on a surface M, and a point p of C, the
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sectional curvature k of M at p in the direction of the tangent to C, the
geodesic curvature g of C at p, and the curvature k of C' as a space curve
at p, are related by

k2 = k2 + g2
Example 2.10.4 Some quadrics

The sphere has been considered in Example 2.8.16(3).
Let a,b,c be > 0. Taking the ellipsoid ﬁ—i + s;,é + o’ _ 1, centred

62
at (0,0,c) and with axes parallel to the coordinate axes, we have, close to

(0,0,0)’
2 2 % 2 2
¢y clz® y
ZZC(I—(I—ﬁ—ﬁ>>:§<§+ﬁ>+h.0.t.

Thus the principal directions at (0,0,0) are along the z and y axes and the
principal curvatures are c¢/a? and ¢/b?.

The hyperboloid of one sheet Z’—; - ‘z—z + (Z;—QC)Q = 1 looks like a saddle
surface near the origin (compare Figure 2.14, top right); the Monge form at

the origin is

so the principal directions at the origin are along the z and y axes, the
principal curvatures are c¢/a?, —c/b?, and the asymptotic directions are given
by (cosf,siné,0) where tanf = +b/a. O

2.11 Second fundamental form: implicit form of surface

This is much harder, and we shall not have very much use for it, but we do
record the following formulae for the Gauss curvature K and mean curvature
H of a surface in implicit form f(z,y,z) = 0 which are given in (Berger and
Gostiaux 1988, pp. 384, 392).

Let V f stand for the column vector (fz, fy, f-) T and A for the 3 x 3 matrix
of second partial derivatives of f (the Hessian of f). Define a,b,c by the
identity

=a+ b\ + )\

A—\id. Vf
(VHT o
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(Clearly there is no A3 term present because of the lower right-hand zero.)
Then

a/c
IVF[[?”
_b/e

2IVF||

K

Example 2.11.1 Ellipsoid and hyperboloid

For the ellipsoid given by z—z + g—; + i—z — 1 = 0 the above formula gives
K = p*/(a?b?c?), where p = 2/||Vf|| is the (everywhere positive) distance
from the origin to the tangent plane to the ellipsoid at (z,y, z).

For the hyperboloid of one sheet obtained by changing the sign of 22/c? in
the equation of the ellipsoid, the same calculation gives K = —p*/(a?b?c?):
the Gauss curvature is everywhere negative. O

2.12 Special curves on a surface

The parabolic points on a surface M form a curve or set of curves called
collectively the parabolic curve (or parabolic set) on M. For example, when
M is given by z = f(x,y) the parabolic curve is those points of M where
Jeafyy = fgy—see Property 2.9.1.

At every non-umbilic point of a surface M (k1 # k2) there are two prin-
cipal directions, and these are perpendicular (Definition 2.8.8 and Prop-
erty 2.10.1). The principal curves or lines of curvature on M are curves
which are everywhere tangent to these principal directions. Thus the prin-
cipal directions give two vector fields on M and principal curves are integral
curves of these vector fields. At non-umbilic points there are two princi-
pal curves, but the vector fields have singularities at umbilics and principal
curves end there. There is an extensive theory of principal curves; in par-
ticular the structure around umbilics has been investigated in detail—see
for example (Sotomayor and Gutierrez 1982, Bruce and Fidal 1989, Porte-
ous 1994, pp. 204-5, Bruce and Tari 1995, Gutierrez and Sotomayor 1998,
Hallinan et al. 1999).

Likewise at every hyperbolic point there are two asymptotic directions
(Definition 2.8.11 and Property 2.9.2), coalescing into one at parabolic
points. The asymptotic curves are tangent to these asymptotic directions
at each hyperbolic point. Thus there are two asymptotic curves through
a hyperbolic point, and one through a parabolic point. The structure of
asymptotic curves has also been studied in detail at special points of a sur-
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Fig. 2.21. Cusps on asymptotic curves along the parabolic curve (K = 0) on a
surface. The asymptotic curves lie entirely in the hyperbolic region of the surface
(K < 0), to the left of the central parabolic curve. The right hand portion of
the surface is elliptic (K > 0) and contains no asymptotic curves. The cuspidal
direction is the unique asymptotic direction at the cusp point; note that this is not
tangential to the parabolic curve.

face. An asymptotic curve is in general nonsingular on M (free from cusps
and other singularities), but where it meets the parabolic curve there is a
cusp. See Figure 2.21. At more special points there is more complex be-
haviour; see for example (Banchoff et al. 1982, p. 43, Bruce and Tari 1995).

Example 2.12.1 Surface of revolution

Consider a surface of revolution M swept out by rotating a plane curve C
about an axis in its plane. Thus through any point r of M there is a ‘merid-
ian’ curve Cp,—simply the curve obtained by rotating C' to this particular
position—and a ‘latitude circle’ which is a circle through r with its centre on
the axis. The meridian and latitude circle are orthogonal. The unit normal
n to M at any point r is, by the circular symmetry, in the plane containing
r and the axis, normal to the meridian C; through r. Again, by symmetry,
moving r along this meridian, the normal n has n’ in the same plane as
the meridian, that is along the tangent to the meridian C,. Thus meridians
always point in a principal direction, by Property 2.8.9, so by definition the
meridians are principal curves. Since the latitude circles are perpendicular
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Fig. 2.22. Meridians and latitude circles on a surface of revolution are all principal
curves.

to the meridians they too are principal curves. See Figure 2.22. The normals
to M at points of a latitude circle all meet in one point on the axis. See
Figure 2.23.

If the meridian C, through r has an inflexion at r, then the derivative of
n along C, will be zero at this point (the normal turns one way and then
reverses, turning the other way). So r is parabolic, by Property 2.8.14, with
unique asymptotic direction along the meridian C,.

There are other parabolic curves on M: if the tangent to C at r is perpen-
dicular to the axis then there is a latitude circle through r at all of whose
points M has the same tangent plane and the same normal vector. So n is
constant along this circle, and n’ = 0 in the direction of the circle, so all
these points are parabolic, by Property 2.8.14, with the unique asymptotic
direction along the latitude circle.

For example, when we construct a torus by rotating a circle about an axis
in its plane, there are two such latitude circles, and placing the torus ‘flat
on the table’ gives one of the two circles of parabolic points, where the torus
is in contact with the table. See Figure 2.14 for the other circle of parabolic
points. O

We give here a criterion for an asymptotic direction different from that in
Definition 2.8.11, which leads naturally to the various ‘degeneracies’ which
can occur.
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Fig. 2.23. Normals to a surface of revolution at points of a latitude circle all meet
on the axis; normals at points of a meridian pass through the axis.

2.13 Contact

Contact is most readily studied when the surface M is given by an equation
z = f(z,y).

Consider a line [ through the point ry = (2o, yo, 20), where zo = f (0, yo)-
Thus [ is parametrized

(.’L'(), Yo, ZO) + /,L(’U,, v, w) = (.’L‘O + pu, yo + pv, 20 + /,l/lU),
for a fixed nonzero vector (u,v,w) giving the direction of [, and p € R. This
line intersects M where
20 + pw — f(zo + pu, yo + pv) = 0. (2.35)

Note that ¢ = 0 corresponds to the point ry, so we can find the number
of ‘coincident points of intersection’ which occur at rg by finding the multi-
plicity of u = 0 as a solution of (2.35). The precise multiplicity is the whole
number k such that the first £ — 1 derivatives of the left side of (2.35) with
respect to p are zero at u = 0, but the k' derivative is nonzero. Compare
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Fig. 2.24. A line in an asymptotic direction is perturbed to meet the surface in
three nearby points.

(Bruce and Giblin 1992, p. 19). This amounts to saying that when [ is per-
turbed slightly, it is possible to realize k, but no more, distinct intersection
points. See Figure 2.24. But in practice some of these intersection points
may have complex coordinates.) Note that an odd degree of contact implies
that the line [ passes through the surface while an even degree of contact
means that it is tangent but stays locally on one side of the surface. See
Figures 2.25 and 2.26.
The first two derivatives are

w_facu_fyv: _fxxuz_2fxyuv_fyyvz;

where the derivatives of f are evaluated at z = xg,y = yo.

This gives the following conditions for k-point contact between M, given
by z = f(z,y), and the line [ through ry in the direction (u,v,w). All
derivatives of f are evaluated at x = g,y = yo.

e (i) k = 2 (simple contact): w = fyu+fyv and frpu®+2feyuv+fyv? # 0.
e (ii) k£ > 3 (higher contact): w = fyu+ fyv and fyau® +2fzuv+ fyv? =
0.

Of course, the first condition here (involving w) is exactly what we should
expect: it says that the direction (u,v,w) is tangent to the surface (perpen-
dicular to the normal (—fz, —fy,1)). The second condition is precisely that
for an asymptotic direction which we met before in (2.28).
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Fig. 2.25. A line in an asymptotic direction (3-point contact) pierces the surface.
In fact the curve drawn is a ‘contour generator’ as defined in §3.1.

Property 2.13.1 Asymptotic directions at a point are the directions of
straight lines having at least 3-point contact with the surface at that point.

e (iii) Exactly 3-point contact This requires that the conditions for £ > 3
above are satisfied and also u? fypq + 3u2vfmy + 3uv2fxyy + v3fyyy £ 0,
the derivatives being evaluated at x = xg,y = yo. (Figure 2.25.)

¢ (iv) More than 3-point contact This requires that the conditions for
k > 3 above are satisfied and u? fyz0 + 3u2vfmy + 3uvszyy + v?’fyyy =0.

When a line has more than 3-point contact with M at ro we say that rq is
a flecnodal point of M. This for the first time introduces the need for third-
order derivatives of the surface. There is a curve F'C on the non-elliptic
part of M (Gauss curvature K < 0) called the flecnodal curve, which can be
described in either of the following two ways, where it is assumed that r is
not parabolic (otherwise the asymptotic curve is singular).

e r € FC & a tangent line through r has 4-point contact (or more) with
M at r. (Figure 2.26 shows exactly 4-point contact.)

e r € FC & an asymptotic curve through r has a geodesic inflexion there
(see Property 2.10.2).
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Fig. 2.26. A line with 4-point contact (asymptotic direction at a flecnode) does not
pierce the surface. The curve on the surface here is a contour generator as defined
in §3.1.

The equivalence of these two conditions can be established readily using the
Monge form of the surface. This is sketched at the end of this section.

Drawing lines in the asymptotic directions at all points of F'C' generates
a (ruled) surface in space called the flecnodal scroll (‘scroll’ means ‘non-
developable’ in the context of ruled surfaces, that is surfaces made up entirely
of straight lines).

Suppose that M is in the special Monge form of (2.29), with the point
ro under consideration being the origin and the tangent plane there being
2 =0. Then, at x =y =0, fez = a, fzy = b, fyy = c. It is often convenient
to assume that the z-axis is in an asymptotic direction at the origin. Using
the above conditions this simply says that (u,v) = (1,0) satisfies au® +
2buv + cv? = 0, so that a = 0. The condition for the origin to be a flecnodal
point is then fz;,(0,0) =0. O

Example 2.13.2 Flecnodal curve on a surface of revolution

We take up the example of a surface of revolution given in Examples 2.2.5
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and 2.12.1 to illustrate further the method of contact. To simplify things
we assume that the curve o which is rotated about the z-axis is a graph:
a(z) = (z,Y(x)) for some function Y which is never zero. Thus consider
the surface

r(z,0) = (z,Y(z)cos6,Y(x)sinb).

The equation of the surface is y? 4+ 22 = Y (x)?. We ask the question: writing
Yy for Y(0), when is ry = (0,Yp,0) a flecnodal point? Clearly, when this
happens all points on the latitude circle through ry will be flecnodal.

We consider a line ro+p(u, v, w) through rg (so (u,v, w) is a fixed direction
and p is an arbitrary real number) and study its contact with the surface at
ro. To do this we substitute the parametrization of the line into the equation
of the surface:

(Yo + po)? + pPw? = (Y (uu))?.

To find the condition for some line to have 4-point contact, we differentiate
with respect to p three times and put p = 0: all these derivatives must then
vanish. Leaving out factors of 2, the vanishing of these derivatives at 4 =0
gives (Y and all derivatives are evaluated at = 0):

Yv = YY'u,
/1)2 + w2 — (Y’2 + YY”)U2,
0 = BYY"+YY")ud

The first two specify the asymptotic directions since they say that there is at
least 3-point contact. Thus the asymptotic directions are (1,Y’, £v/YY"),
assuming that YY" > 0. (A ‘concave upwards’ curve is needed to make a
hyperbolic surface patch.) The third equation is a condition on the curve
(note that u cannot be 0 from the second equation). In the special case
when Y’ = 0, that is when the tangent to the meridian curve is parallel to
the axis of rotation, this says that Y = 0, which implies that the meridian
curve has a vertez, that is the curvature is stationary. O

Proof that the two flecnode conditions are equivalent Consider M set up
as in (2.29), with a = 0, so that (1,0,0) is asymptotic. The asymptotic curve A
through (0,0,0) in the direction of the z-axis is say y = g(z),2 = f(z, g(z)), where
g'(0) = 0; its projection to the tangent plane at (0,0,0) is the plane curve y = g(z).
The tangent direction to A as a space curve (lying on M) is (1,¢', fo + fyg') where

" denotes differentiation with respect to z. The line | in this direction consists of
points

(2,9, f(2,9) + 1,9, fo + fy9'), A€ER. (2.36)

We need ! to have 3-point contact with the surface at A = 0 for all z (near to
0), as in (ii) above, so that all the tangents to A are in an asymptotic direction.
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To express the condition for this, we substitute the point (2.36) into the equation
z = f(z,y) of the surface. Putting in all the z variables, this gives

f(z,9(x)) + Al fe(z, 9(2)) + fy(z,9(2x))g' (x)] = f(z + X, g(z) + Ag' ().

To achieve 3-point contact, we need the first two derivatives of this equation with
respect to A to be zero at A = 0. The first derivative gives

fo(z,9(2))+ fy(2,9(2))g' (z) = fo(z+X, g(2)+ g (2)) +fy (z+A, g(2)+ g (2))g' (),

which is automatic at A = 0. The second derivative, at A = 0 and where all
derivatives are at (z, g(z)), is

0= fou + 2fzygl + fyyglz'

This is therefore the differential equation to be satisfied by the asymptotic curve,
and so holds for all (small) z. Differentiating this with respect to z and putting
z = 0 we find, using ¢’'(0) = 0,

famm + 2fmyg” =0.
Now fzy # 0 at £ =y = 0 by our assumption that the origin is not parabolic, so

g"(0) = 0 i.e. asymptotic curve has an inflexion
< frz2(0,0) = 0 i.e. the z-axis has 4-point contact (at least)
with M at the origin.
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Views of curves and surfaces

We shall consider a smooth surface M, without any boundary rim, and
project this either by parallel (orthogonal) or perspective (central) projec-
tion. For a curve or points in space, the image is a curve or points and we
can use the whole image in our investigations. We say a little about the
curve case in Example 3.6.7. The main difference in the surface case is that
we concentrate our attention on those points of the surface which form the
occluding contour in the image—the places in the image where the surface
appears to end, because the visual ray is tangent to the surface.

3.1 Camera models: parallel (orthographic) projection

For orthogonal (or parallel or orthographic) projection in the direction k we
can take an image plane through the origin O, that is an image plane with
equation x -k = 0. Then k is called the view direction and the line through
r in this direction is called the visual ray.

Let r be a point of M; then the corresponding point p of the image plane
satisfies

r =p+ Ak, (3.1)

where ) is the (signed) distance from the image plane to the point r, provided
k is unit. Note that, since p lies in the plane with equation x -k = 0 we
have p - k = 0, and we can find p from r by

p=r—(r-k)k (3.2)

Note also that p is the ‘world coordinates’ name for the image point; as yet
no coordinate system in the image plane has been set up. Real cameras also
include a scaling, s, so that p = s(r — (r - k)k). Such imaging is known as
scaled orthographic or weak perspective. This imaging model is a realistic

57
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one when the surface is distant from the camera compared to its relief, and
the field of view is small.

We are particularly interested in the set of points r of M for which the
visual ray is tangent to M at r, or, equivalently, for which k is perpendicular
to the normal at r. These are the points where, viewed in the direction k,
the surface appears to fold, or to have a boundary or occluding contour.

The rays tangent to M at such points r form a ‘cylinder’ of tangent rays,
and the curve along which this cylinder is tangent to M is the ‘contour
generator’ I'. The curve in which the cylinder meets the image plane is the
‘apparent contour’ «y. Note that both I' and v depend in an essential way
on k. The set I' slips over the surface as k changes. For example, with M
a sphere, I' is the great circle orthogonal to k. In this case, the contour
generator I' is a planar curve, but this is highly untypical.

Writing n for the normal, which here does not have to be a unit vector,
the formal definitions are:

Definition 3.1.1 The contour generator I' on M is the set of points of
M for which n-k = 0. The corresponding apparent contour ~ is the set
of points p of the image plane forming the projection of I in the direction
k to the tmage plane.

See Figure 3.1.

The contour generator I' is of course a curve in 3-space, and we can
consider those points of I' where its distance A from the image plane is a
maximum or minimum. These are the so-called near and far points of the
contour generator. Note that from (3.1), parametrizing I by say s, we have
As = 15 - k, so near and far points occur when the tangent to r; to I' is
perpendicular to the view direction k. See Figure 3.2. See also §3.5 below.
(For the case that M is a sphere the distance [ is actually constant.)

3.2 Perspective projection

The calculations and results here are very similar to those of §3.1 and the
same methods of proof work here, with usually minor modifications. We
give a number of examples below of these analogous lines of argument.

The setup is as in Figure 3.3, with a sphere of radius 1 centred at the
optical centre ¢, which is not allowed to be a point of M. The basic formula
relating image point and surface point here is

r(s) = ¢+ A(s)p(s), (3.3)

where p(s) is the unit vector in the direction of the ‘visual ray’ from c to the



3.2 Perspective projection 59
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generator [’ contour Y

Fig. 3.1. Contour generator and apparent contour for parallel (orthographic) pro-
jection. The figure shows surface point r, image point p and surface normal n at
r, which is also normal to the apparent contour at p.

surface point r(s), and s is some regular parameter on the apparent contour
(formal definitions are below). Thus the image point is ¢ + p(s). Note that
A(s) is the distance from c to r(s); the distance from image point to surface
point is A(s) — 1. The distance \(s) is always taken as positive.

Dropping the variable s from the notation, we can solve for p in terms of
r and c:

r—c

P (3.4)

Clr—c’
since A > 0.

Remark Note that the vector p for perspective projection, being along
the visual ray, plays the same role as the vector k for parallel projection.
Likewise the vector p 4 ¢ for perspective projection, being the image point
as a world point, plays the same role as the vector p for parallel projection.
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Fig. 3.2. Near and far points of a contour generator. Right: view from a point in
the image plane, which therefore appears as a line at the left. In this example there
is one near point.

In Chapter 4, we need also to allow the camera coordinates to be rotated
with respect to p, that is we have p = Rq where R is a rotation matrix.
(See (Cipolla and Blake 1992), where p, q appear as Q, Q.)

Definition 3.2.1 The contour generator I' is the set of points r € M
for which (r —c¢)-n =0, n being a unit normal to M at r, or indeed any
nonzero normal. The apparent contour « s the image of I' in the image
sphere, and is taken to be the set of p (rather than c+p) for which r, given
by (3.3), lies in T

Thus ~, being a set of points p, is contained in a unit sphere centred at the
origin. The world points in the moving image sphere are the corresponding
points ¢ + p. For a given c, we can consider the cone of rays through c
which are tangent to M. See Figure 3.4. The curve on M along which this
cone is tangent to M is the contour generator and the curve where the cone
meets the image sphere is the apparent contour. We can also intersect the
cone with an image plane. For the most part we use the image sphere for
convenience of calculation, but when M is a quadric surface the apparent
contour in a plane has the attractive property of being a conic (degree 2
curve); see Example 3.6.6.

As in the case of orthogonal projection, the contour generator is a space
curve, and we can consider the points of I' whose distance from the (fixed
point) c is extremal, the near and far points of T'. By (3.3), using say s
as parameter on I', we have ry = A\¢p + Ap;s so that Ay = rg - p (note that
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Fig. 3.3. Contour generator and apparent contour for perspective projection. The
upper figure shows surface point r in the foreground, camera centre ¢ which is the
centre of the image sphere, visual ray in the direction p from c to r, and surface
normal n, which is parallel to a normal to the apparent contour. The lower figure
shows a surface in the background, with an image plane, so that the vector from ¢
in the direction p meets the image plane in a point of the apparent contour .
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Fig. 3.4. Cone of rays tangent to a surface through the camera centre c, tangent
to the surface along the contour generator I

as p is a unit vector, ps is perpendicular to p). Thus near and far points,
which are characterized by A\; = 0, are also characterized by the tangent to
I’ being perpendicular to the visual ray direction p. See also §3.6, following
Property 3.6.1.

3.3 Opaque vs. semi-transparent surfaces

The above definitions are framed for the case of a ‘semi-transparent surface’
where light rays penetrate any number of layers before arriving at the image
plane or optical centre.

A light ray proceeding from a point r of an opaque surface M will only
reach the image plane or optical centre c if there are no other points of M in
the way. We then take a point p to be on the apparent contour v provided
the condition of Definition 3.1.1 (resp. 3.2.1) holds and the ray from p to r
(resp. the ray from c to r) meets M for the first time at a tangency point.
See Figure 3.5.

From time to time we shall state what effect the change from semi-
transparent to opaque makes to our discussion.
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Fig. 3.5. Opaque versus semi-transparent surfaces. The dashed line in the image
plane is the part of the apparent contour which is not present when the surface is
opaque.

3.4 Static properties of contour generators and apparent
contours

In this section we shall study individual contour generators and apparent
contours. (In Chapter 4 we study the ‘dynamic’ case where the view di-
rection k or the centre of projection ¢ is moving.) To determine whether a
point r of M is on a contour generator we need only know the tangent plane
to M at r, that is ‘first-order information’ about M. To determine the tan-
gent to the contour generator we need to know ‘second-order information’,
namely the conjugacy relation on M. Although we do not go into this here,
in order to find say the curvature and torsion of the contour generator as a
space curve we should need still higher order information about M. In fact
it is more useful to relate the curvature of the apparent contour with the
Gauss curvature of M.

Bearing in mind that the apparent contour < is obtained by projecting
the contour generator I' along the visual rays we can expect special features
on v when this projection is along a tangent to I': projecting a I' along a
tangent gives a cusp on the projected curve . See Figure 3.7 and §4.9. If
the visual ray is tangent to I' with higher order—at an inflexion point of
I'—then we can expect a degenerate cusp on 7. It is more useful to frame
these conditions in terms of the contact of the visual ray with M itself, and
this is what we do. For the precise definition of contact see §2.13.



64 Views of curves and surfaces
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Fig. 3.6. Bitangent plane to a surface gives bitangent line to an apparent contour.
This figure could apply either to orthogonal or to perspective projection.

The tangent plane to M projects to the tangent line to the apparent
contour; see Properties 3.5.1 and 3.6.1 for precise statements and also Fig-
ures 3.1 and 3.3. Thus if there is a bitangent plane to M containing the
view direction (resp. through the optical centre) then the apparent contour
will have a bitangent line (resp. bitangent great circle in the image sphere
or bitangent line in an image plane). See Figure 3.6.

We give several methods of proof for the properties below, starting in §3.7.

3.5 Properties: orthogonal projection

Property 3.5.1 (i) Assume that T' is a smooth curve on M. Then the
tangent to T at r is conjugate to the view direction k (Definition 2.8.2).

(i) The apparent contour normal at p is parallel to the surface normal n at
r when the apparent contour is smooth. See Figure 3.1. When s is a regular
parameter on the apparent contour, so that ps is along the tangent to v, n
1s parallel to K Aps. In the more special case when the apparent contour has
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an ordinary cusp 1 the ‘cusp normal’—the limit of normals to the apparent
contour at nearby regular points—is parallel to the surface normal. The
tangent plane to M at r meets the image plane in the tangent line to v at

p.

Note that the conjugacy property implies that, for near and far points of I’
(§3.1), the tangent to I', being both perpendicular to and conjugate to k, is
in a principal direction for M at r, by Property 2.8.9.

Property 3.5.2 (i) The apparent contour 7 is smooth at p except when
the view direction k is asymptotic at the corresponding point v of I'. The
apparent contour has an ordinary cusp (for an opaque surface a contour
ending) when the line through r in the view direction k is asymptotic and
in fact has ezactly 3-point contact with M at r. (See §2.13 for a precise
definition.) See Figure 3.7.

(i) The contour generator I' is smooth at r unless the point r is parabolic on
M and k is asymptotic at r. See Figure 3.8, although this is actually drawn
for perspective projection. This is called a ‘beaks’ point (T' has a crossing);

see also (Koenderink 1990, p. 458), and §4.7 below.

Note that a singular contour generator, usually an isolated point (‘lips’)
or a crossing of branches(‘beaks’), is a much less likely event than a singular
apparent contour (usually a cusp).

Property 3.5.3 Koenderink’s formula for Gauss curvature Assume
that the apparent contour is smooth at p. Let kP be the curvature of the
apparent contour at p and k' be the sectional curvature of M at r in the
direction of the tangent vector k (Definition 2.8.7). The curvature k! is
also known as the ‘transverse’ curvature: hence the superscript t. Then
the Gauss curvature K of M at r is given by K = xPx’. In particular an
inflexion of the apparent contour (kP = 0) always indicates a parabolic point
of M (K =0). See below for a note on orientations.

In addition, the sectional curvature k° of M in the direction of the contour
generator is given by k° = kPsin? 0, where 0 is the angle between the view
direction k and the contour generator.

Notes on Property 3.5.3

1. At singular points of the apparent contour the formula has the form
K = 00 x0: acusp has infinite curvature and the sectional curvature of M in

 ‘ordinary’ here means that in a suitable coordinate system the cusp ‘looks like’ y? = 3. The
precise definition is that 4/ = 0 and +',~"" are linearly independent at the cusp point.
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Fig. 3.7. Cusp on an apparent contour where the visual ray is along an asymptotic
direction.

an asymptotic direction (see Property 3.5.2(i)) is zero. See Definition 2.8.11.
This situation is studied in (Giblin and Soares 1988, Fletcher and Giblin
1996, Cipolla et al. 1997).

2. The Gauss curvature of M is independent of orientations, so we should
say what orientations are taken for the apparent contour and the transverse
section. There are a number of ways of doing this and here is one of them.

Suppose we are given an oriented curve C' which lies in a plane, the plane
being in 3-space. We cannot give the curvature of C' a sign until we have
oriented the plane. This is done by choosing two orthogonal axis directions
in the plane, and naming them in a particular order, say a,b. (This is
equivalent to giving an oriented normal to the plane, which would be along
a A b. Reversing the order then reverses the normal direction to b A a.)
‘Looking down’ on the plane so that the rotation through 90° which sends
a to b is anticlockwise, then the normal to C is 90° anticlockwise from the
tangent (remember C is oriented, so the tangent has a definite direction)
and curvature is defined as in (2.9).

In the present instance, given a normal n to the surface, we can choose
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Fig. 3.8. Crossing on a contour generator and two tangential branches on the ap-
parent contour at a ‘beaks’ point.

the tangent T to the apparent contour to be such that T,n,k is right-
handed. Then we orient the ‘transverse’ plane (the plane of k and n) by
giving k, n as the axes, and we orient the image plane by giving T, n as the
axes. Orient the transverse curve itself by declaring that the unit tangent
is k, and orient the apparent contour by T. With these orientations, the
curvatures P, k' give the correct sign for K. Reversing the surface normal
n leaves K unchanged and changes the signs of both x” and x.

In practice the important thing is that, as illustrated in Figure 3.9, convex
apparent contours give positive K and concave ones give negative K.

The contour generator under orthogonal projection consists of those sur-
face points r where the normal is perpendicular to the view direction k.
Note that for a closed smooth surface there is a normal in every possible
direction, so that any two contour generators are bound to meet. For if the
view directions are ki, ko then there will always be a point of M where the
normal is parallel to ki A ko.

In the language of Remark 2.8.6, the unit normal, thought of simply as a
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Concave contour  Convex contour
arising from arising from
hyperbolic region elliptic region

Fig. 3.9. Concave apparent contours from a hyperbolic region (negative K) and
convex ones from an elliptic region (positive K).

vector, i.e. as a point of the Gauss sphere, is constrained to lie on a certain
great circle, namely that perpendicular to k. In other words, the contour
generator can be thought of as the preimage under the Gauss map of the
great circle on the Gauss sphere perpendicular to the direction k.

Example 3.5.4 Sphere and cylinder

For a sphere, I' is the great circle orthogonal to k, and this ties in with
Example 2.8.16(i). The apparent contour is also a circle. For a circular
cylinder, I" is two straight diametrically opposite generators of the cylinder,
and any direction k is conjugate to the direction along a generator (Exam-
ple 2.8.16(ii)). Here, «y is two parallel lines.

We now illustrate Property 3.5.2.
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Example 3.5.5 (i) Cusped apparent contour, (ii) singular contour
generator

(i) Let the surface have equation z = zy+y?+23 and let k = (1,0,0). Then
a non-unit normal at (z,y, z) is

n= (_az/ax) _az/ay) 1) = (_y - 31:2, - — 2y’ 1)>

and the contour generator is given by n-k =0, i.e. dz/0x = 0, which gives
y = —3x2, so that z = —223 +92*. This is a curve I in space, parametrized
by x, whose tangent at O points along k. The projection v to the y, z-plane
is the set of points (—3x2, —2z% 4 92%), which has a cusp at O. Compare
Figure 3.7.

(ii) Let the surface have equation z = y? 4+ 23 + 2%y and let k = (1,0,0).
Then the contour generator I' is given by 0z/0z = 0, i.e. z(3z + 2y) = 0,
which is the singular curve made up of the two lines z = 0, y = —3x/2
in parameter space. These ‘lift’ to two curves on M, the first to the set of
points (0,y,y?) and the second to the set of points (z, —3x/2,92%/4—x3/2).
Thus I' consists of these two curves, which cross at O, making I" singular.
This is a ‘beaks’ point; compare Figure 3.8.

Similarly z = y?+ 2%+ zy? (and the same k) gives I as 3224y = 0, which
is singular because it has an isolated point at O. (This is a ‘lips’ point.)

Note that the simplistic example f(z,y) = y?+2?, which, for k = (1,0,0),
gives I' as ¢ = 0, disguises the truth by being non-generic: I is really given
by 22 = 0, which has two coincident branches at O.

3.6 Properties: perspective projection

The properties here are essentially identical with those in the orthogonal
projection case, but we proceed to give details. Proofs start in §3.9.

Property 3.6.1 (i) If the contour generator I' is smooth at r then its tangent
1s conjugate to the visual ray r — c.

(ii) When vy is smooth, the apparent contour normal is parallel to the surface
normal n (Figure 3.3). With regular parameter s on vy, the normal n is
parallel to p A ps. When v has an ordinary cusp, the cuspidal normal s
parallel to the surface mnormal. The tangent plane to M at r meets the
image sphere in a great circle which ts tangent to the apparent contour at
the corresponding point ¢ + p.

Note that the conjugacy property implies that near and far points on
the contour generator (see §3.2) have the tangent to I' both conjugate and
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perpendicular to the visual ray direction p. Hence for these points, the
tangent to I' is a principal direction on the surface (Property 2.8.9).

Property 3.6.2 (i) The apparent contour 7y is smooth at p except when the
visual Tay v — ¢ is asymptotic at the corresponding point r. See Figure 3.10.
The apparent contour has an ordinary cusp (for an opaque surface a contour
ending) when the line through r in the visual ray direction has exactly 3-point
contact (see §2.13) with M at r.

(ii) The contour generator T' is smooth at r unless the point r is parabolic
on M and the visual ray r — c is asymptotic at r. See Figure 3.8, where I’
has a crossing (‘beaks’); it can also have an isolated point (‘lips’). See also
Figures 4.11 and 4.12.

Property 3.6.3 Koenderink’s formula for Gauss curvature In the
perspective projection case, the geodesic curvature kP of the apparent con-
tour at p in the image sphere (Definition 2.8.15), the ‘transverse’ sectional
curvature k' of M in the visual ray direction p (i.e., in the direction r —c),
and the Gauss curvature K of M at r are related by K = kPr?/\ where \ is
the distance from c to r. See also (Koenderink 1990, p. 197). Note that an
inflexion on the apparent contour (kP = 0) always gives a parabolic point on
the surface (K =0).

In addition, the sectional curvature k® of M in the direction of the contour
generator is given by k° = kP sin® @/, where 6 is the angle between the visual
ray p and the contour generator.

The same remarks as before apply to the sign of K in Property 3.6.3.
Again the important thing is that concave contours give K < 0 and convex
ones give K > 0. See Figure 3.9.

Example 3.6.4 M = Sphere and cylinder

Here, the contour generator is a circle, where the circular cone of rays
through c touches M. The tangent to this contour generator is perpen-
dicular to the visual ray, and, as remarked above in Example 2.8.16, per-
pendicularity is the same as conjugacy on the sphere. The apparent contour
in the image sphere is also a circle, and the normal to this circle in the tan-
gent plane to the image sphere is clearly parallel to the normal to M. Note
that for perspective projection, two contour generators need not meet, as
is made clear by this example of the sphere: moving c directly towards the
centre of the sphere will result in non-intersecting contour generators—they
are parallels of latitude when c is directly above the north pole.



3.6 Properties: perspective projection 71

Fig. 3.10. Cusp on an apparent contour when the visual ray is along an asymptotic
direction: perspective projection case. The lower section of the apparent contour
is the part not present when the surface is opaque.

For a circular cylinder, the contour generator is again two straight gen-
erator lines (with the cylinder as 2 + 2?2 = 1 and ¢ = (a,0,0) the contour
generators are given by & = %, z= i@ for a > 1). The apparent contour
is two half great circles on the image sphere, where the half-planes spanned
by ¢ and the contour generator lines meet the image sphere.

Example 3.6.5 (i) Cusped apparent contour, (ii) Singular contour
generator

We take the same surfaces as in Example 3.5.5, and ¢ = (%, 0,0).
(i) The contour generator has equation (r — c¢) - i = 0, that is (compare

(2.2))
(x —k,y,2) - (—y — 322, —x — 2y, 1) =0, where z = zy + y? + S,
which comes to

ky + 3kz® — zy — y? — 22° = 0.
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As a power series in x, this has a unique solution
1

=322 — —23 ...,
i k

Instead of projecting to the sphere, we can examine the apparent contour
by projecting I from the same point (k, 0, 0) to the plane z = k— 1, which is
tangent to the sphere at (k —1,0,0). See Figure 3.10. So consider a general
point

)‘(x> Y, Z) + (1 - )‘)(k) 0) 0)

on the line from the surface point (z,y,z) to the camera centre (k,0,0),
and impose the condition that the first coordinate is £k — 1. This gives
A =1/(k — x). Thus we are using the map

Yy z
(2,y,2) = (k—x’k—x)

to project I' to the image plane. Expanding

1 1 r a2
= — 1+_+_+"' 9

k—z k ko k2
and substituting for y and z, the result is the curve
1

which has an ordinary cusp at = 0, because of the powers 2,3.
(ii) Here, T" is those surface points (z,y, z) satisfying
3ka? + 2kxy — y? — 223 — 222y = 0.

The lowest terms here are 3kx? + 2kzy — y? which gives an isolated point
at © = y = 0 if there are no real linear factors, that is if k2 + 3k < 0, which
is equivalent to —3 < k < 0. If £ > 0 or £ < —3 then there are two real
linear factors, which means that I' has two branches crossing at the origin.
Figure 3.8 illustrates the latter case. See also Figures 4.11 and 4.12.

Example 3.6.6 Quadric surfaces

In Example 2.4.1 we showed that the contour generator of a quadric surface
M defined by X 'QX = 0, with camera centre c, represented by the 4-vector
C, is the intersection of M with the plane X QC = 0. In fact it is easy to
describe the cone of rays through c tangent to M by essentially the same
argument as was used in Example 2.4.1. Thus take any point x represented
by the 4-vector X; the line joining it to ¢ has points represented by 4-vectors
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AC + (1 — A)X. This line meets M for values of A given by the quadratic
equation
ACT +(1-=X)XNHQAC + (1 —N)X) =0.
The line is tangent to M provided the quadratic has equal roots, and the
condition for this, writing the quadratic as say aA? 4+ 2bA+c¢ = 0, is b*> = ac.

Using Q = Q" and X"QC = C"QX (this is a 1 x 1 matrix, hence equal
to its transpose!), some manipulation gives

(XTQC)? - (€TQC)(X'QX) = 0.

Since CTQC is also a scalar, we can write this equation as X'SX = 0
where

S=QcC(QCc)’ - (c'Qe)Q.

Thus S is the (singular) matrix of the quadric cone with vertex ¢ and con-
sisting of lines through ¢ tangent to M.

As an example, take c at the origin, so that C = (0,0,0,1)". Then a
short calculation shows that, in the notation of Example 2.4.1,

g — aq' —QuQs 0
0 0

The tangent cone then has equation

0=qq’ —x' (QuQs)x=(q-x)* — Qux'Qs.

If the image plane is say z = f then the apparent contour in this plane
is the intersection of the cone of tangent rays with the plane, namely the
points x = (z,y, f) | where

x'(qq" — Qu4Q3)x = 0.

Continuing the sphere example in Example 2.4.1, writing x = (z,y, 2
the tangent cone has equation

)T

1 0 0 T
b?2% — (b —a®)(2,y,2) | 0 1 0 y | =0.
0 01 z
If the image plane is at z = 1, then the apparent contour is the conic

(obviously a circle in this example) 2% + y? = a?/(b? — a?). O

Example 3.6.7 Projections of curves
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Suppose that I is a smooth curve in 3-space with non-vanishing curvature
K, projected to a sphere of radius 1 centred at c, the ‘image sphere’. Let
s be a regular parameter on I' and let r(s) be a parametrization, with the
projection described by (compare (3.3))

r(s) =c+ A(s)p(s). (3.5)

The curve I' plays the role of the ‘contour generator’ and the image curve v,
whose world coordinates are the points ¢ + p, plays the role of the ‘apparent
contour’ in this situation, although of course we have the great simplification
here that I' is the entire world object being studied. Differentiating (3.5)
with respect to s we obtain

rs = AP + Aps, (3'6)

where it will be assumed that the depth A is always > 0. Note that ry is
tangent to I' and ps is tangent to . In particular, p, = 0 if and only if
rs —Asp =0, i.e., ry is in the direction of the visual ray p. This simply says
that v is smooth unless we are projecting along a tangent line to I'. See
Figure 2.12, where the projection ‘to the left’ is along a tangent line. Let us
assume that ps is not zero. Then p; is in the direction of the tangent to v,
so that defining

n? is a unit vector tangent to the image sphere and in the direction normal
to . From (3.6), the tangent r, to I' is perpendicular to n?, so that n? is a
unit normal vector to the curve I'. Of course, if I' lies on some surface M,
there is no guarantee that n? will be the normal to M.

It is natural to ask for the connexion between the curvature P of the
image curve and the geometry of I' in relation to the visual ray from c to
r. Since the image curve lies in a sphere we use geodesic curvature—see
Definition 2.8.15. Thus
_ DPss n?

1Pl

Let us write T, N, B, s for the unit tangent, principal normal, binormal
and curvature of I' (§2.6). Thus

kP

(3.7)

rs = ||rs||T, and, differentiating, rys = rﬁ;ﬁsT + ||rs||2kN. (3.8)
S

Here we use the fact that for any vector v(t) we have v -v = ||v|%, so
that ||v]|' = v - v'/||v]|, and the formula T' = kN]||r,||; compare §2.6. In
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particular
ry - nP = ||r,||°kN - n?. (3.9)
Differentiating (3.6) and taking the scalar product with n? we get
Iss -0’ = Apgs - 1,
and combining the last two equations we can substitute for pss - n? in (3.7):

kN - n? ||1‘5||2
A psl?

We can also obtain an equation for the second fraction in this equation, as
follows. Since p and p;s are perpendicular (p being a unit vector), (3.6) gives
rs-p = As; and

p—

(3.10)

2
1P = (B + XllpelPy 501 = (oo T2+ PAE ()
8

since T = ry/||rs||. Using this in (3.10) we get

A&N - nP

T (3.12)

kP

We can eliminate n? from this equation by introducing the binormal B.
In fact, using the definition of n?,

N’np = N7p7 p5:|
[ |||

] from (3.6)

_ r,
= N7p7 N— 11
P X

from(3.11)

T
- v
p-B
Akp - B
(1—(p-TPp2

from (3.12). Note that if p- T = 1 then the curve tangent T is along the
visual ray p and we get a cusp, which comes out of the last equation as
kP = 0o. On the other hand, if p- T # 1 and p- B = 0 then «? = 0. That
is, projecting along any direction in the osculating plane except the tangent

Hence kP =

direction gives an inflexion on the apparent contour (Cipolla and Zisserman
1992).
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3.7 Methods of proof: Monge—Taylor proofs

There are several techniques for proving or discovering results about ap-
parent contours, contour generators etc., just as, in Chapter 2, there were
several ways of studying surfaces. We give three approaches, proving some
results in several different ways to illustrate the usefulness of each approach.

‘Monge-Taylor’ is the name we give to proofs which involve taking our
surface M in the special Monge form—see §2.10:

1
2= f(z,y) = 3 (ax2 + 2bxy + cy2) + h.o.t. (3.13)

Here, the tangent plane to M at the origin O is the z, y-plane. Since appar-
ent contours have a great deal to do with tangent planes, it is convenient to
have one of these in a standard position.

3.8 Monge—Taylor proofs: orthogonal projection

Let us project M, given by (3.13), to the y, z-plane, that is taking k =
(1,0,0). The condition for the normal at r = (z,y, f(x,y)) to be perpendic-
ular to k is (—fz, —fy,1).(1,0,0) =0, i.e., f; = 0. Thus the equations of I"
have the form

ar + by + h.o.t. =0, z = f(z,y). (3.14)

Proofs of Properties 3.5.1(ii) and 3.5.2 From the above, I" will cer-
tainly be smooth, provided a or b is nonzero. Since a = b = 0 is precisely the
condition for the origin to be a parabolic point with k = (1,0, 0) asymptotic
there (see §2.10), this proves Property 3.5.1(ii). In fact, I’ will be (locally)
parametrized by « if b # 0 and by y if a # 0.

Let us suppose a # 0, so that (3.14) becomes x = —(b/a)y + -- -, where
- -+ here represents higher powers of y. The projection v to the y, z-plane is
then

ac — b?

z=f(—(b/a)y+---,y) = 50 y? + h.o.t., (3.15)

which is a smooth curve. Since z starts with degree 2 terms, this curve is

tangent to the y-axis in the y, z-plane, so that its normal is in the direction
(0,0,1) in space. Thus the apparent contour normal is parallel to the surface
normal at the corresponding point. Also k = (1,0,0) and the tangent to
the apparent contour is parallel to (0,1,0) so the wedge product of these is
along (0,0, 1) which is indeed the surface normal at the origin. The tangent
plane to M at (0,0,0) meets the image plane x = 0 in the tangent to the
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apparent contour, namely the y-axis. (That was a lot a work for a simple
result, but now the next part comes almost for free.)

On the other hand, if a = 0 but b # 0, then the first equation of (3.14)
takes the form y = Az? + - - -, writing y as a function of x this time. Thus
the set v is given by

{(y,2) = (¥, f(z,9)) 1y = Ax® + -} = {(A2® + -, Abz® + - )}

where A is nonzero provided there is a nonzero coefficient of 2 in f. (This
says that the z-axis, which is in an asymptotic direction at O (see Prop-
erty 3.5.2), should have 3-point and not higher contact with M at O. See
§2.13 and §4.7.) Thus v is definitely a singular curve, indeed an ordinary
cusp when A # 0 (assuming as above that b # 0). Notice that the cuspidal
tangent is (1,0) in the y, z-plane, so the ‘cuspidal normal’ is in the direction
(0,0,1) in space. The cuspidal normal is parallel to the surface normal.

Property 3.5.2 now follows because a = 0 is precisely the condition for
k = (1,0,0) to be asymptotic at O. O

Note that at a parabolic point there is precisely one asymptotic direction
(see §2.9) unless the point is a flat parabolic point, a = b = ¢ = 0, in
which case all directions are asymptotic. (This is in a sense a particularly
degenerate case since the apparent contour from all directions in the tangent
plane is singular, and we shall not cover it here.) Figure 3.8 shows one of
the local pictures—actually for perspective projection—of I' at O when k is
asymptotic and O is parabolic but not flat: two transverse smooth curves.
The other possibility is that O is an isolated point (this is easily derived by
use of the Morse Lemma; see for example (Bruce and Giblin 1992, §4.35)).
Both are illustrated in Figures 4.11 and 4.12. See also Example 3.5.5(ii).

Proof of Property 3.5.1(i) Using the setup above, with M in Monge
form (3.13), choose the z-axis so that k = (1,0,0). Let us work in the
tangent plane z = 0 at the origin, using the natural basis (1,0,0), (0,1, 0).
Relative to this basis, k has coordinates (1,0). We need the coordinates
of the tangent to I' at the origin. Suppose a # 0; then I is, as above,
given by x = —(b/a)y +---, z = f(z,y) so that the tangent at the origin
is parallel to (—b/a,1,0), or equally well to (—b,a,0). A similar argument
applies if b # 0. In either case, expressed as a linear combination of the
basis (1,0,0), (0,1,0) in the tangent plane, the tangent to I has coordinates
(—b,a). Clearly, the vectors (1,0) (from k) and (—b,a) (from the tangent
to I') satisfy (1,0)II(—b,a)’ = 0, using the matrix for IT given in (2.30), so
that conjugacy follows from Definition 2.8.2. O
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Proof of Property 3.5.3 Taking the same setup as before, and using
(3.15), the curvature &P of the apparent contour is (ac — b?)/a. The plane
curve of intersection of M and the plane y = 0 is the curve z = %axz +h.o.t.
with curvature k' = a, while the Gauss curvature K of M at the origin is
ac — b? (§2.10). The result follows. (The sign is checked as follows: ! > 0
amounts to a > 0, which says that in order to have the fold on the left of
the apparent contour it must be oriented with increasing y. This makes kP
have the value above, which has the same sign as K.)

For the last part, we can use the formula (2.22) to find the sectional
curvature x° of M in the direction (—b,a) of the contour generator. Thus,
in (2.22) we have { = -bn=a,L =a,M =bN =¢,E=1,F =0,G =1
and we find x° = a(ac — b?)/(a® + b%). Since sin?8 = a?/(a® + %) and
kP = (ac — b%)/a as above, the result now follows. OI.

3.9 Monge—Taylor proofs: perspective projection

With M as in (3.13) we can without loss of generality take ¢ = (), 0,0) for
some A > 0, since we want ¢ to be in the tangent plane at the origin and
can rotate axes so that it lies on the z-axis. Then I' has equation

('x_)‘ayaf)'(_f%_fyﬁl) = 0,
(x—=Nfe+yfy—f = 0. (3.16)

Most perspective projection proofs are straightforward analogues of the
correponding orthogonal projection proofs. We give the arguments for Prop-
erties 3.6.2 and 3.6.3 below.

Proof of Property 3.6.2 We ask when I" and v are smooth. The equation
of the contour generator is, from (3.16),

Aaz + by) + h.o.t. =0,

and we require a or b to be nonzero for this to be smooth. When a = b = 0,
the origin is parabolic and (1,0,0) asymptotic there (§2.10).

Assuming now that I" is smooth, the tangent to I' is along (—b,a,0) and
this is in the direction (1,0,0) towards c if and only if a = 0. Thus 7 is
smooth is and only if a # 0, which is the same as saying that (1,0,0) is not
asymptotic. O
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Proof of Property 3.6.3 K and ! have the same values as in the proof
of Property 3.5.3. The calculation of xP is complicated by the fact that the
apparent contour lies in a sphere; however we can use the general fact that
the geodesic curvature of a curve on a surface at p equals the (ordinary)
curvature of the orthogonal projection of that curve to the tangent plane at
p (Property 2.10.2). This allows us to project the apparent contour from the
sphere to the plane © = A—1 tangent to the image sphere at p. Nevertheless
the calculation is messy; we find that the projected apparent contour takes
the form

Yy + hot yz( b%) + h.o.t
- —(ac — .
x Y " 2a

Thus a local parametrization of the apparent contour is

(v Aac — b?)

2
h.o.t
% V7 + 0),

so that k” = A(ac — b?)/a, which gives the required result.

For the last part, the proof is very similar to the orthogonal projection
case. The formulae for £° and sin 6 in terms of a, b, c are the same as before,
and xP has, as above, acquired a factor of A. This gives the result. O.

3.10 Vector proofs: orthogonal projection

Proof of Property 3.5.1 Assume the contour generator and apparent
contour are smooth, with regular parameter s, say, on the latter, so that
(3.1) reads r(s) = p(s) + A(s)k. Differentiating with respect to s gives

rs =ps+ Ak, so 0=r;-n=ps-n,

using n for the unit surface normal, which is perpendicular to k for all s by
definition of contour generator. Hence the (never zero) tangent ps to the
apparent contour is perpendicular to the surface normal n. The normal to
the apparent contour is then parallel to k A p,, that is parallel to n.

Also, from (3.1), (r — p) - n = 0 and differentiating with respect to s now
gives (r — p) - ny = 0. But this says precisely that the ‘visual ray’ r — p
is along the conjugate to the tangent to the s-parameter curve, i.e. to the
contour generator (see Property 2.8.3).

The property for an apparent contour with a cusp follows by taking limits
at nonsingular points of the apparent contour. O
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Proof of Property 3.5.3 We note a useful formula, which follows from
(3.2). Let s be a parameter on the apparent contour, assumed smooth.
Then, differentiating (3.2) with respect to s:

ps =rs — As -k =r; — (ry - k)k, (3.17)

the second equality coming by dotting the first one with k to find A,.

We assume that I' and v are smooth. We can then take M locally
parametrized as r(u, s), in such a way that I' is the curve r(uyp, s) for con-
stant ug, with tangent rs. Since k will not be tangent to I' (v is smooth)
we can take r, parallel to k along I'. Because r,, and rg are then conjugate
(Property 3.5.1) we have, in the notation of §2.8, M = 0. (This is one of the
rare occasions where M as in the second fundamental form clashes with M
as a surface!) Sometimes in Chapter 4, where we consider moving apparent
contours, the parameter u here appears as time t.

The curvatures occurring in the statement of the Property are (see §2.8
for the notation)

t Ny - Ty n-Tyy L p_ Pss 1

W _ _ 2 p—Pus D 3.18
Tl ~ Il B TR (3.18)

Differentiating (3.1) twice with respect to s gives pss-n = rgs - n = N.
Finally from (3.17)

Ty >2_ F2
|||

T
Putting these together and using the formula (2.24) for K in §2.8 gives the
result.

Il = e = (107 = e = (s

For the last part,

(rs - k)2 _ )\3
les|[2 [Ipsl]® + A2

since 6 is the angle between r; and k. Hence

cos?f =

kS — I'ss -1 _ Hp||ps||2 _ /-cpsin29
Iesl? - [Ipsl? + A3

3.11 Vector proofs: perspective projection

Proof of Property 3.6.1 Assume that I' and - are smooth, and use a reg-
ular parameter s on y to make (3.3) into r(s) = ¢+ A(s)p(s). Differentiating
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with respect to s gives
rs = A\sp + Aps, so that rs;-n = Aps-n,

where n is the (unit) surface normal which for all s is perpendicular to p

by definition of apparent contour. Thus the (never zero) tangent ps to the

apparent contour is perpendicular to the surface normal n. Since p is a unit

vector, ps is also perpendicular to p, so the surface normal n is parallel to

P /\ ps, that is n is parallel to the normal to the apparent contour.
Further, from (3.3),

(r—c)-n=0, so ry-n+(r—c) n;=0.

But the first term is zero since r; is tangent to M. The equation then says
precisely that r — ¢ is conjugate to the tangent to I' (Property 2.8.3). O

Proof of Property 3.6.3 The analogue of (3.17) is
Aps =rs—As-p=rs—(rs-p)p. (3.19)

We can set up a local parametrization of M as in the proof of Property 3.5.3.
The analogues of (3.18) are identical here except that now pss-n = rgs-n/\.
Also, from (3.19) we find A\?||ps||> = G — (F?/E) by the same reasoning as
before. Putting these formulae together gives the required result.

The proof of the formula for x° is very similar to the orthogonal case.
Now,
(rs : p)2 )‘3

2
cos“ 0 = =
sl A2+ 22||ps]?’

so that

o )\f<ep||ps||2 B kP sin® @

SR

3.12 Methods of proof: pure geometric proofs

These are not so useful for proving quantitative results such as Proper-
ties 3.5.3 and 3.6.3 but there are parts of Properties 3.5.1, 3.5.2 and their
counterparts Properties 3.6.1, 3.6.2 which become more intuitive with pure
geometrical reasoning. We proceed to give some examples.

Proof of Properties 3.5.1, 3.6.1 This uses the idea of ‘hinges’ of an
envelope of planes, as in (Koenderink 1990). Given a smooth curve A on a
surface M, we can consider the envelope of tangent planes to M at points of
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A. This is a ruled surface and the ‘hinge’ (that is, ruling) is, at each point
of A, conjugate to the tangent to A. See (Koenderink 1990, p. 205).

Applying this to ', assuming it is smooth, the ruled surface is, for orthog-
onal projection, just a cylinder with generators (rulings) along k, tangent
to M along I'. For perspective projection it is a cone with rulings along the
visual rays r — ¢ tangent to M along I' (Figure 3.4). In each case (i) of the
Property is then immediate.

For (ii) we can see that the tangent plane 7 to M at r € I intersects the
image plane (orthogonal projection) orthogonally in a line and intersects the
image sphere (perspective projection) orthogonally in a great circle. This
line or circle is tangent to v at p. Furthermore the normal to m at p will
lie in the image plane or the tangent plane to the image sphere because of
orthogonality. Hence it will be parallel to the normal to v at p. O.

Proof of Properties 3.5.2(i) and 3.6.2(i) We consider I as a space curve
(assumed smooth) on M. A singular apparent contour 7 occurs just when
T is being projected along a tangent line, which occurs (by Property 3.5.1(i)
or 3.6.1(i)) when k or r — ¢ is conjugate to itself, i.e. when it is asymptotic.
O
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Dynamic analysis of apparent contours

In this chapter we shall show how information from the apparent contours
of a surface M for more than one camera centre can be combined. One
crucial problem besets this kind of analysis: as the camera centre moves, so
the contour generator ‘slips over the surface’, so that the apparent contours
are not projections of a single space curve into the image but each one is a
projection of a different space curve. See Figure 4.1.

In view of the fact that the contour generator slips over the surface it is
perhaps surprising that anything can be deduced from apparent contours of
surfaces. But the following geometrical argument suggests otherwise. We
suppose perspective projection and a continuous motion of the camera centre
c. Each camera centre gives rise to a cone of rays tangent to M; see §3.1,
§3.2 and Figure 3.4. Thus, as the camera centre moves, we have a moving
cone which is tangent to M. In fact M can be viewed as the envelope of these
cones, that is, as a surface which is uniquely determined by being tangent
to all of them. So knowledge of the path of ¢ and of the apparent contour
for each time should in fact lead to exact knowledge of M, or at least of the
region of M where the various cones are tangent. It was this basic intuition
which led to the reconstruction of surfaces from apparent contours, for the
case of orthogonal projection and a special motion, in (Giblin and Weiss
1987). Later, a more direct approach was found in (Cipolla and Blake 1990
and 1992) and it is this approach which we follow below. We nevertheless
describe the envelope construction in some more detail in §4.2.1.

When contour generators intersect on M, so that one or more points
of M do contribute to two different apparent contours, there is sometimes
additional information to be obtained. This observation appears in a special
case in (Rieger 1986) and was later extended to more general situations by
several authors; see §4.8 and Chapter 6 for details.

For the present we shall assume that the apparent contours over time ¢

83
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Fig. 4.1. The contour generator slips over the surface as the camera centre moves.
Two camera centres c;,ce and their corresponding contour generators are shown
along with an ‘epipolar plane’ spanned by two visual rays and the baseline. See
§4.4 below.

are parametrized by p(s,t), and that the resulting parametrization r(s,t) of

our surface is regular, that is, the vectors r; = % and r; = % are always

independent. We consider the exceptions to this in §4.6.

4.1 Orthogonal projection

We cover this case fairly briefly since the main interest lies with the more
realistic case of perspective projection. As in §3.10 we use the equation
r = p + Ak (which appeared as (3.1)). We now assume that p is a function
of two variables s (a regular parameter along each apparent contour) and ¢,
which we think of as time. Thus p;, is tangent to the apparent contour for
a given t. We have, writing in the variables,

r(s,t) = p(s,t) + A(s, t)k(t).
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Differentiating with respect to ¢ and using the surface normal n (which is
parallel to k A ps; see Property 3.5.1(ii)) gives

rr=p:t+AMk+Xksy, so 0=r; - n=p;-n+ Ak -n.

From this we deduce the distance formula or depth formula

pt-n

A=—
kt'l’l,

(4.1)

which tells us the depth A(s,t) from the image point p(s,t) to the surface
point r(s,t), in the direction k(¢):

Pt n
kt n

r=p-— (4.2)
Notes on these formulae

1. We have not specified the nature of the parameter s on apparent contours:
the formulae above are independent of this choice, for the following reason.
If s = S(u,t) say, for a new parameter u, and if P(u,t) = p(S(u,t),t), then
by the chain rule, P; = p,S; + p¢, and the first term on the right-hand side,
which is along the tangent to the apparent contour, disappears when we take
the scalar product with the normal n. Thus P; - n = p; - n. Of course, the
view direction k is a function of time ¢ only, so that is completely unaffected
by reparametrization of the apparent contours.

There is a particular parametrization which is related to the motion itself,
called the epipolar parametrization. This was first introduced in (Blake and
Cipolla 1990). We shall make particular use of this in the perspective case,
but we say something about the orthogonal projection case in §4.2 below.

2. Assume that A is never zero or infinite—that is, assume the image plane
never meets the surface and the surface is bounded. Then we have

p: -n =0 if and only if k; -n = 0.

When these happen, the depth formula becomes indeterminate. We follow
this up in some detail in the case of perspective projection in §4.8.

3. Note that in order to recover M using the depth formula we need to know
the world coordinates of the apparent contour points p, that is we need to
know not only the position of the apparent contour in the image plane
coordinate system, but also the relationship of this to world coordinates.

4. If the image plane is moved parallel to itself through a distance a then
the apparent contour is, as a curve in the image plane, unchanged under
orthogonal projection. The effect of this is to replace p by p + ak and hence
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pt by pt + ak; + atk. As k- n = 0 the depth formula (4.1) now has —a on
the right side, so that A is decreased by a, as we would expect.

It is clear that the parametrization (4.2) can be used to determine the
surface M, in particular the Gauss curvature of M, using the formula (2.24).
In (Giblin and Weiss 1987), a special coordinate system was set up in the
image plane which was rotating about a fixed axis.

Example 4.1.1 Circular motion: orthographic projection

We briefly describe an example which is simple enough for most of the
calculations to be carried out explicitly. Consider a sphere of radius p and
a parallel of latitude with angle 6 to the horizontal (Figure 4.2). Take a
viewplane tangent to the sphere at the point with longitude ¢, that is, at
the point

o(t) = (pcosfcos ¢, pcosBsing, psinh).

We take 8 = constant, ¢ = wt, that is the viewplane rotates round the
vertical axis with constant angular speed w. The viewplane does not pass
through the origin, but this does not affect calculations materially. (To make
it pass through the origin, replace p by p + pk.) All the view directions

k(t) = (—cosfcos ¢, —cosfsing, —sinf), ¢ = wt

‘fixate’ on the origin of world coordinates, and the ‘origin’ o(t) of the view-
plane at time ¢ is —pk(¢). This is exactly equivalent to an object moving on
a rotating turntable with a camera fixating on a point of the axis of rotation.

We take axes in the viewplane, one of which is along the unit tangent
vector u to the parallel of latitude, and the other of which is along the unit
vector v =u A k:

u = (—sing,cos ¢,0), v = (—sinfcos @, —sinfsin @, cosb).
Thus
u; = wsinfv + wcos Ak, vi = —wsinfu, k; = —w cos fu.
The apparent contours will be expressed as curves
p(s,t) = —pk(t) + a(s, t)u(t) + b(s, t)v(t),

for functions a(s,t),b(s,t) which give the coordinates of apparent contour
points in the viewplane. For simplicity in what follows let us take b(s,t) = s
for all s,¢: this means that the apparent contours are expressed as graphs
b = b(a,t) where the ‘b-axis’ is along v and the ‘a-axis’ is along u. The case
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Fig. 4.2. Circular motion and orthogonal projection: the image plane is carried
round the axis of rotation, remaining tangent to the sphere of radius p at a point
with latitude 6.

where this is not possible is when the apparent contour is parallel to the
vector u, which happens when k; - n = 0, the so-called ‘frontier points’. We
discuss these in detail in the perspective projection case in §4.8 below.

The (non-unit) normal vector i then works out as i = u — asv, and the
depth X as

_ wsin®
)\:p—i—at w sin (s—l—aas)‘

wcos 6

The reconstructed surface point is

a; —wsin (s + aay)

k.

r(s,t) =p+ Ak =au+sv+
w cos 6

Expressing everything in terms of the moving triad u,v,k, it is possible
to write down rg, r¢, r'ss, I'st, £y explicitly and so calculate the second fun-
damental form of the surface M relative to the basis rs,r; of the tangent
plane.

Naturally these formulae are rather complicated; for a simplification let
us put @ = 0: this is the ‘planar motion’ originally considered in (Giblin and
Weiss 1987). Then, in the notation of (2.5) and (2.14), the variables now
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being s and ¢,

w? +w?a? + a2, ast(aw? + ag) wia? + 2w?aay + a2,
b= 2 , = 2 , G= 2 )
w w w

a attaw2
L=—2_  M=0 N=-

V1+a?’ V1+a2
From these it follows that the Gauss curvature K is given by

B wlasg
(WPt ag) (1 +a2)?’
a formula equivalent to that in (Giblin and Weiss 1987). O

4.2 Epipolar parametrization: orthogonal case

We shall make particular use of the epipolar parametrization in the case of
perspective projection—see §4.4. It is the analogue for continuous motion
of the epipolar constraint in stereo vision (described briefly in Chapter 5).

The epipolar parametrization assumes that the vector ry (tangent to the curve
s = constant on M) is always in the view direction k.

The vectors r; (tangent to the contour generator) and r; are then always
conjugate, by Property 3.5.1(i). Successive apparent contours are ‘matched’
by associating points p(s,t) and p(s,t + dt), and these are such that the
resulting vector r; is along the view direction k.

The geometrical significance of this is that the point r(s, ¢+ dt) lies (in the
limit as 0t — 0) both on the visual ray through p(s,t) in direction k(¢) and
on the visual ray through p(s, ¢+ dt) in direction k(¢ + §t). Thus the points
p(s,t),p(s,t + 0t),r(s,t),r(s,t + dt) are all in a plane: the epipolar plane.
See Figure 4.3. We give a fuller discussion of the epipolar parametrization
in the perspective case, §4.4.

Using

r:p—i-)\k, Ozrt/\k:pt/\k—i-)\kt/\k,
we obtain

(pe AK) Ak = Akq.

Now taking all the image planes through the origin, so that p -k = 0, we
have p; - k = —p - k; and the last equation then gives

pt = —k(p - ki) — Akq.
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r(s,t+dot)
r(s,t)
k(t+8t)
k(t) A
p(s,t+dt)
p(s,t)

Fig. 4.3. Epipolar matching in the orthogonal projection case. Two surface points
r(s,t),r(s,t + dt), are shown and, for small 6¢, the visual ray through the first also
passes through the second. The plane of the diagram is the epipolar plane.

This is the ‘epipolar matching’ of apparent contours, in the case where all
image planes pass through the origin.

Remark 4.2.1 Connexion with the envelope construction

The reconstruction of surfaces from apparent contours described above is really a
reconstruction of tangent planes of surfaces rather than points. For the tangent
plane to M is recovered directly from the apparent contour as the plane spanned
by the tangent line p; to the apparent contour and the visual ray in direction k
starting at p. Thus the recovery of points is best seen as a consequence of the
recovery of tangent planes (a recovery of the ‘dual’ of M).

We can regard this recovery of M by its tangent planes as a two-stage process.
First we fix ¢ and consider a single apparent contour . For each tangent line to
at p we obtain a tangent plane to M as the span of this tangent line and the line
through p in direction k (which is now fixed). These planes are all tangent to a
cylinder whose base is y and whose straight line generators are all in the direction
k. The second stage is to allow ¢ to vary, so that these cylinders move in space to
envelop the surface M.

A parametrization of the cylinder is (for fixed t)

R(s,u,t) = p(s, ¢) + uk(t).

The rule for forming envelopes of a family of surfaces which are parametrized is this:
The envelope points corresponding to a particular ¢ (the ‘characteristic points’) are
given by the condition that

R; = p; + uk; is a linear combination of R; = p; and R, =k.

Thus defining i = ps A k we find that (p: + uk:) - b = 0, giving for u the same
value as A in (4.1): the envelope point along the ray from p(s,t) parallel to k is the
point previously constructed as belonging to M.
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Thus the ‘envelope of cylinders’ construction gives the same points as the depth
formula (4.1).

4.3 Perspective projection

We now derive the formulae for the case of perspective projection with a
calibrated camera and rotated coordinates. (In Chapters 5 and 6 we also
consider the uncalibrated case.) We start with (3.3), which related the points
of a single apparent contour with the points of the corresponding contour
generator. This equation now holds for each value of ¢, so that it becomes

r(s,t) = c(t) + A(s, t)p(s, t). (4.3)
Dropping the variables s,¢ from the notation,
rs = AsP + APs, Tt = Ct+ AP+ Ap¢. (4'4)

Recall from Property 3.6.1 that the unit normal n to M is parallel to the
vector p A ps, this vector being nonzero provided the apparent contours are
nonsingular, so that p; is nonzero.

We therefore have

O=r; - n=(ct+Mp+APt) D =c¢ N+ Ap; - 1.

This implies that (assuming A is never zero or infinite) ¢;-n = 0 if and only

if p¢ - n = 0, and when neither is zero the depth A is given by
Ct- 1N C: 1

A=— , SO r=c¢—
pt-n p:-n

(4.5)

Thus the surface points r(s,t) are determined by the apparent contours
p(s,t) and the camera centres c¢(t), at any rate away from ‘frontier’ points
where ¢; - n = 0 and assuming that the apparent contours are nonsingular.
(We discuss these exceptional cases in §4.6 and §4.8.)

Note that the apparent contours lie in the various image spheres, centred
at c(t), and to use (4.5) we need the coordinates of the vectors p(s, t) joining
c(t) to the apparent contour points in some fixed world coordinate system.
In practice the camera, which we think of as a unit sphere centred at c(t),
will have its own coordinate system which is rotated with respect to the
world coordinates. We express this by saying

p(s, t) = R(t)q(sa t)a (46)

where R is a rotation. When we use ‘q coordinates’ we are assuming that
the camera model is a calibrated camera, that is the relationship between
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internal q coordinates and world p coordinates is known. In Chapter 6
we discuss, in a special case, the recovery of camera motion from apparent
contours.

If R is actually constant then we say that the camera is undergoing pure
translation. If in addition the path of the camera is a straight line then we
describe this as linear motion of the camera. Both these situations will arise
in Chapters 5 and 6.

We pause here to consider the exact meaning of (4.6). Let e, ez, es be
the world coordinates basis in 3-space, which we take to be an orthonormal
triad, that is all e; are unit vectors and mutually orthogonal. Let p =
pi1e1+paes +pses be a point in 3-space. We want to write down the point p
but relative to a rotated coordinate frame, namely the vectors Req, Rea, Res
where R is a rotation of 3-space. See Figure 4.4. Let the coordinates of p
relative to this rotated coordinate system be g1, g2, ¢3. Thus

P = q1Re; + g2Res + g3 Re3 = R(q1e1 + q2€2 + gses).
Thus, defining
q = q1€e1 + g2€2 + g3es,
we have p = Rq. Hence:

the coordinates qi,qo,q3 are those of the world point p relative to the ro-
tated coordinate system Rei, Res, Res, and they are related to the coordi-
nates p1,p2,p3 of p relative to the world coordinate system eq,es,es by

p1 Matrix of rotation Q
p2 | = R relative to g |- (4.7)
P3 world coordinates qs3

Example 4.3.1 Circular motion: perspective projection

As a simple example of the foregoing, consider the case of a camera cen-
tre c(t) rotating at constant angular speed w around the z-axis in world
coordinates, at a ‘latitude’ 6 (Figure 4.5), so that

c(t) = p(cos B cos wt, cos A sinwt, sin 6).

(Compare Example 4.1.1.) We take the camera coordinate axes to be, at
t = 0, Roei, Roez, Roes where e; = (1,0,0) etc. and Ry is some initial
rotation, for example a rotation about the e, axis through 6 to make the
rotated e; axis pass through the origin. Thereafter the camera axes rotate
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Fig. 4.4. World coordinates and a coordinate system obtained from them by a
rotation R.

rigidly with the camera, that is
R(t) = 5(t)Ro,

where S(t) is rotation about the z-axis through wt.

This situation is essentially the same as keeping the camera fixed and
rotating the surface about an axis. In fact when we implement circular
motion in Chapter 6 we do use a fixed camera.

Let A be the matrix of Ry relative to world coordinates. Then the matrix
of R™! relative to world coordinates is

coswt sinwt 0

AlSt)y =41 —sinwt coswt 0 |,
0 0 1

and from (4.7) we obtain the ‘qg-coordinates’ of a vector by multiplying the
‘p-coordinates’ by this matrix. For example, if Ry = identity and p is the
tangent vector to the circle of latitude along which ¢ moves, namely

p = (—sinwt, cos wt, 0),

then this point has ‘g-coordinates’ (0,1,0), which (an obvious fact) is con-
stant in the moving coordinate frame. O

We return now to the general case. Differentiating (4.6) with respect to ¢
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Axis of rotation

Image sphere,
radius 1

Sphere,
radius P

Fig. 4.5. Circular motion, the perspective case. Here the camera centre moves on
a circle of latitude of a sphere radius p, carrying with it an image sphere with a q
coordinate system which rotates around the (vertical) axis.

gives (omitting the variables now)t
p: = Rq: + Q A Rq, (4.8)

where () is a vector whose direction is that of the instantaneous axis of
rotation for R at time ¢ and whose magnitude is the angular speed of R.
Sometimes we assume that, for ¢ = 0, we have R(0) = identity; then at t =0
the above equation reads p; = q; + 2 A q.

Example 4.3.2 Case of constant rotation about z-axis

As a simple example, let R(t) be rotation about the z-axis through an angle
wt where w is a constant. The matrix for this rotation, relative to standard

1 This is a standard result of kinematics, and is proved in books on mechanics, e.g. under the
heading ‘infinitesimal rotations’. The calculation in Example 4.3.2 essentially covers the general
case.
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coordinates in R3, is

coswt —sinwt 0
sinwt coswt O
0 0 1

Thus writing q = (¢1, g2, q3),

q1 cos wt — qa sin wt
Rq = | qisinwt + g coswt
a3

By direct differentiation,

d —q1 sinwt — gg cos wt

aRq = Raq—l—w qlcoswtaqzsinwt

d
= R_a+ (0,0,w)" A Rq,

so that here Q = (0,0,w)". O

4.4 Epipolar parametrization: perspective case

The epipolar parametrization is a special parametrization of contour gen-
erators and apparent contours which leads to simplified formulae for recon-
struction. The idea comes from stereo vision. If we look at the same point r
from two viewpoints c(t) and c(¢+6t) then the plane containing c(t), c(t+4t)
and r is an epipolar plane. If we know only c¢(t), c(t+ dt) and the image p(t)
of r in the first view, then we still know the epipolar plane, since ¢(t),r and
c(t) + p(t) are in a straight line, and we also know that the image of r in
the second view must be on the great circle where the epipolar plane meets
the image sphere centred at c(t + dt). See Figure 4.6.

There is no exact analogy of this in the context of contour generators
and apparent contours, since we do not any longer see the same point of
a contour generator in two successive views—unless the contour generators
meet on the surface, a case we look at in §4.8. But there is a very suggestive
analogy, as follows.

In Figure 4.7, top, we show a sequence of visual rays from camera centres

c(t — dt), c(t),c(t + dt),
each of which is nearly tangent to the surface, i.e., meets the surface in two
nearby points. Each visual ray determines the next: join the next camera
centre to the second point of intersection of the current ray with the surface.
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Fig. 4.6. Viewing a single point r from two positions c(t) and c(t + 6¢), the epipolar
plane spans the base line between camera centres and the visual ray through c(t)
and r. This plane meets the second image sphere in a great circle and the point
c(t + 6t) + p(t + 6t) must lie on this circle.

Any two consecutive visual rays, for example those through c(¢) and c(t+4t),
are then coplanar (since they intersect). The plane containing these two rays
is analogous to the epipolar plane in the point case above.

As the visual rays become more nearly tangent to the surface, they become
tangent to a curve on the surface which is called an epipolar curve. The
tangents to the epipolar curve are thus always along visual rays. This is
illustrated in Figure 4.7, bottom. Epipolar curves are studied in detail in
(Giblin and Weiss 1995). The epipolar planes in this ‘continuous’ situation
are spanned by a visual ray and the base line joining two ‘infinitely close’
camera centres, that is by a visual ray and the tangent line c:(¢) to the path
of centres. Thus

The normal to the epipolar plane is c; N p.

If c; is parallel to p, that is, if the camera motion is instantaneously towards
the surface point r, then the epipolar plane is indeterminate.

When we parametrize contour generators, or the corresponding apparent
contours, by a parameter s which is constant along the epipolar curves in the
surface (or their corresponding images in the image sphere or image plane)
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we say that we are using the epipolar parametrization. Thus the surface
is parametrized r(s,t) where ¢t = constant gives the contour generators,
and s = constant gives the epipolar curves. The apparent contours are
parametrized p(s,t), where each apparent contour is given by ¢ = constant.
We then have

For the epipolar parametrization r(s,t) is parallel to p(s,t) (4.9)

for all values of s, t.

Figure 4.8 is another illustration of this situation. The baseline here is
drawn as finite, but we are to imagine that the two image spheres are very
close together, the two visual rays being tangent to an epipolar curve and
spanning an epipolar plane. This plane meets each sphere in an ‘epipolar
great circle’. The points p1, p2 where the visual rays meet this circle are
points of apparent contours in ‘epipolar correspondence’, and will have the
same s parameter value when the epipolar parametrization is used. The
same goes for the corresponding surface points ry, ro.

Remark 4.4.1 Geometry of the visual rays

1. Suppose we take two visual rays, from centres ¢; = c(t) and ¢z = c(t + 6t) to
two points r1,rs of the corresponding contour generators. These visual rays, being
straight lines in 3-space, will not in general intersect, but there will be points a;, as
say on the two rays where they come as close together as possible. See Figure 4.9.
(Thus aj,ay are the feet of the common perpendicular to the two rays.) When
0t — 0 the point a; on the first visual ray will approach some limiting position,
which may not be the surface point ri. But there are two cases where a; does
approach r;. One of these is when the vector joining r; and rs approaches the
direction of the visual ray from c(¢) to ry. This will happen automatically when
the rays come from an epipolar parametrization p(s,t),r(s,t) and have the same
value of s, for that says precisely that r; is parallel to the visual ray. (The other
case is that of a ‘normal parametrization’ where p; is parallel to n.) For details,
see (Giblin and Weiss 1995).

2. Taking the epipolar parametrization, the family of visual rays tangent to an
epipolar curve on M, that is the family of rays joining c(t) to r(s,t) for a fixed
s, forms a developable surface, in fact the envelope of the epipolar planes. For a
general parametrization r(s,¢), the rays joining c(¢) to r(s,t) for a fixed s form a
developable surface provided p, p; and c; are coplanar for all s,t, and the surface
is the envelope of these planes. So we are saying that a sufficient condition for this
to happen is that r; is always parallel to p.

Notice that, in order for (4.9) to be possible, it is crucial that p is not
along the direction ry, that is not along the tangent to the contour generator.
For otherwise we should have r,; and r; parallel, which is not allowed for a
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—e

c(t + ot)

c(t)

c(t — ot)

contour
generators

Epipolar curve
s = constant

Fig. 4.7. Top: several visual rays almost tangent to the surface, with each ray
determining the next. Bottom: what happens when the visual rays become tangent
to the surface. They are tangent to a curve on the surface called the epipolar curve.
This crosses the contour generators on the surface. Epipolar curves and contour
generators generally provide a coordinate grid on the surface.

parametrization of a surface (compare §2.2). This and other degeneracies of
the epipolar parametrization are discussed below, starting in §4.6.

When the epipolar parametrization (4.9) is used, many of the formulae
for deriving surface geometry from apparent contours become much simpler.
Differentiating (4.3) with respect to ¢ and taking the wedge product with p
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Fig. 4.8. A surface, two image spheres (thought of as being very close together)
and the corresponding epipolar plane, intersecting each sphere in an ‘epipolar great
circle’. When image planes are used, the epipolar plane meets each of these in an
epipolar line.

we get

0 = ctApP+AP:tAD,
sop(ci-p)—ct=(ct AP)AP = —Ap:AP)AP=Ap:.

This tells us that c;, p and p; are coplanar—their plane is the epipolar
plane—and gives an explicit formula for p; in terms of p, the camera velocity
¢, and A, namely

(ct AP)AP

5 (4.10)

bt =
Note that the same calculation for the image motion of a point r which is
fized in world coordinates shows that the image velocity is given by the same
formula. Thus image velocity does not depend on surface characteristics.
In ‘rotated’ coordinates p = Rq, using (4.8), (4.10) and the fact that
R(aAb) = R(a) A R(b) for vectors a, b and rotation R, we get

(R'ctA@)Aa = MNat+R'QAQq),
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¢, = c(t)

Fig. 4.9. Two visual rays have their closest points at a;, as, which may not be near
the corresponding surface points. However, for the epipolar parametrization the
closest points do approach the surface point r; as 6t — 0.

Rletng) A
so that q; = ( ct)\ ard —RQAq.
When we take R = identity at ¢ = 0 then the occurrences of R~ can be

suppressed in this formula at ¢ = 0. As above, this q; is also the image

velocity of a point which is fixed in world coordinates.

4.5 Surface curvatures using the epipolar parametrization
We show briefly how formulae for surface characteristics become simpler
when the epipolar parametrization is used. See also (Cipolla 1991 and 1995,
Cipolla and Blake 1992).
Since r; is parallel to p, and p is a unit vector, we have

r; = (r;-p)p = (¢t - P+ A\t)p,

using (4.4). Differentiating again, we can find ry; in particular since p-n =0
we have

ry-n= (¢ p+ A)(pt-n).

We can apply the standard formula (2.21) (replacing u there by t) to derive
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t

the transverse curvature x°, that is the sectional curvature of M in the

direction of the visual ray p:
t Iy -1 Pt-1n C:- 1l

K = = :——,
ryry  C-p+ A Ales-p+ M)

the last equality following from the depth formula (4.5).

The curvature x° of M in the direction of the contour generator I' does
not depend on dynamic considerations, and the formula was proved in Chap-
ter 3 (Properties 3.5.3 for orthogonal projection and 3.6.3 for perspective
projection). In the latter case we have

. kPsin?@
K= )

A

where 6 is the angle between the visual ray and the contour generator. The
formula for cos? § in the proof (§3.11) of Property 3.6.3 implies that

Allps||

As

We can obtain the Gauss curvature of M as follows. The directions rg, ry
are conjugate for the epipolar parametrization (Property 3.6.1 and (4.9)), so
that the matrix of the second fundamental form relative to these vectors is
diagonal (Property 2.8.4). Indeed if we take unit vectors in the two directions
as our basis then the matrices of I and II become

1 cos 0 k5 0
I'lCOSO 1 ] II'[O nt]

Thus the Gauss curvature K is given by (2.24)
t

tanf = +

kK
K = eyl (4.11)

Note that in order to calculate K we shall need to calculate second partial

derivatives of p with respect to space s and time ¢.

4.6 Degeneracies of the epipolar parametrization

It was noted in §4.4 that it is not always possible to set up the epipolar
parametrization r(s,t) of M. There are various ways in which failure can
occur:

(i) The vectorrs can be parallel to p, in which case we cannot require that
ry is also parallel to p since for a valid parametrization r(s, t) we must
have rg, r; independent. This is the case of a cusp on the apparent
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contour, or, more degenerately, a ‘swallowtail’. Cusps on apparent
contours—or contour endings, as they are for opaque surfaces—are
stable phenomena: they persist under observer movement. We have
already met them in Examples 3.5.5(i), 3.6.5(i); see Figures 3.7 and
3.10. See also Properties 3.5.2(i) and 3.6.2(i). We analyse the move-
ment of cusps in §4.9. The swallowtail phenomenon is described in
§4.7.

(ii) The contour generators can be smooth curves but fail to form part
of a coordinate grid at all on M. This is what happens along the
frontier; see §4.8.

(iii) The contour generators can be singular curves on M. This happens
at a ‘lips’ or ‘beaks’ point; see §4.7 and recall Properties 3.5.2(ii),
3.6.2, and Examples 3.5.5(ii), 3.6.5(ii).

(iv) We note that another degeneracy of a slightly different kind occurs
if we are in fact viewing a space curve rather than a surface. In that
case we have rg parallel to r; for all s and ¢.

4.7 Visual events: swallowtail, lips and beaks

The condition for a cusp on an apparent contour at p is that the visual ray
should be asymptotic at the corresponding surface point r (Property 3.5.2(i)
for orthogonal projection and Property 3.6.2(i) for perspective projection).
This means that the visual ray has 3-point contact with the surface at r;
compare §2.13. It can happen as the camera centre moves in space that the
contact of the visual ray at a point of the contour generator can increase
from 3 to 4. This happens when the ray is in an asymptotic direction at
a flecnodal point of M (Property 2.13.1). The flecnodal rays form a ruled
surface, the flecnodal scroll (again, see §2.13), and when the camera centre
crosses this ruled surface there will be a visual ray with 4-point contact
with M. What happens on the apparent contour during the transit through
the flecnodal scroll is called a swallowtail transition and is illustrated in
Figure 4.10.

The other visual events which occur as the camera centre moves along a
trajectory in space are the ‘lips’ and ‘beaks’ events already mentioned in
Properties 3.5.2(ii) and 3.6.2(ii). When one of these happens, the contour
generator itself becomes singular—a pair of crossing curves for a beaks and
an isolated point for a lips. The asymptotic lines at all the parabolic points
of M form a surface in space (sometimes called the cylinder azis developable),
and as the camera centre crosses this surface there is a lips or beaks transition
on the apparent contours.
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Fig. 4.10. A swallowtail transition on apparent contours, which occurs when the
camera centre crosses the flecnodal scroll, i.e. where there is a visual ray with 4-
point contact with M. The moment of crossing is shown in the left-hand figure and
a nearby position of the camera centre, where the swallowtail has ‘opened out’ into
two cusps and a crossing, in the right-hand figure.

These are illustrated in Figures 4.11 and 4.12.

4.8 Frontiers (epipolar tangencies)

It can happen that the contour generators do not form part of a coordinate
grid on M no matter how they are parametrized. In that case we cannot
‘use t and another parameter’ to parametrize the surface M. To see how
this occurs, it is best to ‘step back’ and to suppose that we have a surface
M which is parametrized, at any rate locally, by two parameters u,v: the
surface is given by r(u,v). We are also given the curve of camera centres
c(t) which produces contour generators I'(t), corresponding to the various
time instants. Using the normal n(u,v) the condition for r(u,v) to be on
['(t) is

(r(u,v) —c(t)) - n(u,v) = 0. (4.12)

This is one equation in three unknowns u, v,t. We want to know the follow-
ing.

Question. When is it possible to use ¢t and say u as local coordinates on
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Fig. 4.11. A lips transition on apparent contours, when the camera centre crosses
the cylinder axis developable. Two contour generators are shown, from different
camera centres, and the corresponding apparent contours are drawn in image planes.
Dashed parts are invisible for an opaque surface. The dot on the surface is a third,
singular contour generator. The corresponding apparent contour (not shown) is
also a dot, and further movement of the camera centre causes the apparent contour
to vanish.

M? That is, when can we effect an allowable change of coordinates in the
parameter plane of M from (u,v) to (u,t)?

This is of course a purely mathematical question, and the purely mathemat-
ical answer, using the implicit function theorem, is:

Answer. Provided the partial derivatives of the left-hand side of (4.12) with
respect to v and t are both nonzero.

We follow up this answer before giving a more geometrical way of thinking of
the question. See (Giblin and Weiss 1995, p. 43) for a proof of the correctness
of the answer.

The partial derivatives in question (or rather in answer) are

o Iy'n+(r—c) n, =(r—c) n,; %:

ov

—C¢ - .
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Fig. 4.12. A beaks transition on apparent contours, when the camera centre crosses
the cylinder axis developable. Three contour generators are shown, one of them sin-
gular (a crossing), and the corresponding apparent contours in three image planes.
Dashed parts are invisible for an opaque surface.

We use here the fact that r, is tangent to M and hence perpendicular to
n. Now n, is the derivative of the unit surface normal along the direction
of r,, that is in the direction of the curve u = constant on the surface M.
We know that n, is perpendicular to the conjugate to the tangent vector
r, (Property 2.8.3(i)). So (r —c¢)-n, = 0 if and only if r — ¢ and r, are
conjugate directions. But the visual ray r — ¢ is conjugate to the tangent to
the contour generator (Property 3.6.1) so the partial derivative above with
respect to v is nonzero if and only if r, (in the direction u = constant) is
not tangent to the contour generator (in the direction ¢ = constant). It is
hardly surprising that this is required for u,t to be local coordinates on M
since coordinate curves cannot be tangent to one another. Notice that we
have assumed that the contour generator is smooth (and so has a tangent).
Thus we must avoid the lips/beaks situation described in §4.7.
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Baseline great circle plane

L

Fig. 4.13. An epipolar tangency with camera centres separated by a finite distance.
The epipolar tangency of the text is the limiting case, which corresponds with c;
and co tending to coincidence. The intersection of I’y and I's then becomes an
envelope point of the contour generators.

We concentrate on the other condition, c;-n # 0. It says that the direction
of travel of the camera centre is not in the tangent plane to M at the
corresponding surface point r. In terms of the definition of epipolar plane in
§4.4 (plane spanned by c; and the visual ray r — c¢) the condition is simply
that the epipolar plane at time ¢ corresponding to the surface point r is
not the tangent plane to M at r. (This assumes that the epipolar plane is
defined, i.e. that c; is not parallel to r — c¢.) Thus:

to use t as one local parameter on M we must avoid the epipolar tangencies
given by c¢; - n = 0.

Figure 4.13 shows an epipolar tangency where the camera centres are sepa-
rated by a finite distance. The epipolar tangency signalled by ¢; - n = 0 is
the limiting case of this as the centres ¢y, cs tend to coincidence.

There are several other ways of looking at the condition ¢; - n = 0. One
is to treat (4.12) as the equation of a surface in u,v,t-space. As such, it
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it

Fig. 4.14. The plane at the bottom is the u,v-parameter plane for a surface M.
On this are drawn some contour generators as they appear in the parameter plane.

Above is the spatio-temporal surface M, formed by raising the contour generator
for time ¢ to a height .

is called the spatio-temporal surface M: geometrically M is obtained by
taking the contour generators as curves in the (u,v) parameter space of M
and ‘spreading them out’ in the ¢-direction. See Figures 4.14 and 4.16. The
condition c; -n = 0 then becomes simply the condition for the tangent plane
to M to be ‘vertical’, that is in the ¢-direction.f

Yet another way of interpreting the condition c; - n = 0 is to consider the
family of curves on M given by the contour generators I'(¢). Working in the
(u, v) parameter space, the equation (4.12) gives us this family, one curve for
each t. To obtain the picture in M itself we then need to carry each curve in
parameter space to M by means of the parametrization r. We can form the
envelope of the family in u,v-space by solving (4.12) simultaneously with
the derivative with respect to t:

OZQ(r—c)-n:—ct‘n.

ot

(This is the general procedure for forming envelopes; see for example (Bruce
and Giblin 1992, Ch. 4).) Taking the curves onto M by means of r means

1t Thus the ¢t - n = 0 curve, which arises in the study of apparent contours, is also closely

connected with the apparent contour of the surface M under orthogonal projection to the
u, v-plane.
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Fig. 4.15. Envelope of contour generators (left) in the parameter plane of M and
(right) on M itself. The frontier points on M are envelope points where two ‘very
nearby’ contour generators meet.

that the ¢;-n = 0 points are just those on the envelope of contour generators.
See Figures 4.15 and 4.16. It is clear that when contour generators form an
envelope in this way they cannot be used as one system of coordinate curves
on M, for they cannot form part of a ‘grid’ on M.

Following this general discussion, we proceed to summarize the various
interpretations of frontier points. The proof that they are all equivalent is
given at the end of this section.

Suppose that we use the coordinate system which is unrotated with re-
spect to world coordinates. Suppose that a smooth surface M with local
parametrization r(u,v), and a camera motion ¢(t), give a family of smooth
contour generators on M and a family of smooth apparent contours in the
image sphere.

Let p(s,t) be a parametrization of the apparent contours, that is s is a
regular parameter on each apparent contour ¢ = constant. The correspond-
ing surface point r to p(s,t) will have parameters u = U(s,t), v = V(s,t)
say. It is important to note that (s,t) — (u,v) may not be a valid change
of parameters on M: as above, at frontier points, ¢ is not a valid parameter
on M. To emphasize this, we write R(s,t) = r(U(s,t),V (s,t)), recognizing
that R will not be a local parametrization near the frontier. For a suitable
depth function A\, we have

R(s,t) :=r(U(s,t),V(s,t)) =c(t) + A(s,t)p(s,t). (4.13)
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Camera trajectory

Parameter plane
of M

Fig. 4.16. Left: a camera trajectory and contour generators forming an envelope

on the surface M. Right: the spatio-temporal surface M with the horizontal curves
corresponding to the same contour generators, and their projection to the parameter
plane of M, forming an envelope there. The envelope points in the parameter plane

are under the ‘fold curve’ of M , which consists of points of M where the tangent
plane is vertical.

As usual, we use n for the unit surface normal (strictly, n(s,t) = n(U(s,t),V (s,t)))
parallel to p A ps.

Property 4.8.1 The following are equivalent, and when any of them occur
we say that the point r(s,t) of M is a frontier point.
(i) r(s,t) is an envelope point of the contour generators on M: Ry is
parallel to Ry there;
(ii) ¢t -n =0 at (s,t);
(iii) ps-n =0 at (s,t);
(iv) p(s,t) is an envelope point of the apparent contours: ps is parallel to
p:. Note that this assumes unrotated coordinates.
(v) Provided c; is not parallel to p, the epipolar plane spanned by c; and
the visual ray is tangent to the surface atr. (The excluded case occurs
when camera motion is directly towards the surface point.)
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(vi) The projection from the spatio-temporal surface M down to M is
‘folded’, that is the tangent plane to M contains the t direction.

Notes on the above Property

1. At frontier points, the depth formula (4.5) becomes indeterminate, since
the numerator and denominator are both zero. It is still possible (in princi-
ple!) to determine the depth by taking limits or, what amounts to the same
thing, by using higher derivatives. Thus the equation ¢;-n+ Ap;-n =0 can
be differentiated with respect to s or ¢ and the resulting equation solved for
A. For example, differentiating with respect to s, and using p; - n = 0, we
obtain

¢t ns + A(pst - 0+ pg - ng) =0,
which can be solved for A provided the coefficient of A is nonzero.

2. The above Property says that the only visible feature of frontier points
is that, in unrotated coordinates, the apparent contours form an envelope.
In rotated coordinates q, the apparent contours form an envelope at image
points corresponding to the frontier if the rotation R is constant, but not in
general otherwise. This is exactly what makes frontier points hard to detect.
In Chapter 6 we give an iterative approach which appears to work well for
detecting frontier points in the image, when the camera motion is circular.

There is discussion in (Fletcher 1996) of what happens if we are simply
given a family of curves p(s,t) in the image sphere forming an envelope, and
a camera motion c¢(t), and use the depth formula to construct a surface. It
turns out that the surface may actually be singular, and the curves p(s,t)
may fail to be the complete apparent contours of this surface. We have
excluded all such cases by our assumptions prior to stating the above result.

If we use rotated coordinates as in §4.3 then from (4.8) the condition
p: - n = 0 becomes
R(q¢) -n+ [, Rq,n] = 0.
If we use the convention that at ¢ = 0 we have R = identity then the R can
be omitted from this equation at ¢ = 0. Alternatively, if we measure n in

the rotated coordinate frame too, calling the result N = R~ !n, then, for a
vector ¥ = R71(Q), we have

qt N = _[\IJ) q, N] (414)

for any time ¢.

Proof of Property 4.8.1 Differentiating (4.13) with respect to ¢ gives
r Ui +1,Vi = Rt = ¢t + \ep + Aps.



110 Dynamic analysis of apparent contours

Now taking the scalar product with n, which is perpendicular to the tangent vector
R;, gives

0=c; -n+Ap:-n,
exactly as in the usual depth formula (4.5). It follows that
c;-n=0<%& p;-n=0< p; is parallel to ps,

the last equivalence being because p; is perpendicular to p, and hence perpendicular
to n = p A pg if and only if it is parallel to ps;. Note that we are excluding ps; =0
since the apparent contours are assumed to be smooth.

Next, the above formula for R; can be rewritten

II(R - ¢, R¢) = I(Ap,R¢) = =Ap-n; = Ap; -n = —c; - n,

using (2.18) and p - n = 0. Hence R — c is conjugate to R; if and only if ¢; - n=0
(Definition 2.8.2). Note that R — c is always conjugate to R, (differentiate (4.13)
with respect to s, or recall Property 3.6.1).

It is clear, then, that if R; is parallel to Rs; then ¢; - n = 0. Conversely, if
c;-n = 0, then R, and R; are both conjugate to the visual ray R —c. This can only
happen if the vectors R; and R; are parallel, or if the surface point is parabolic,
with R — c along the asymptotic direction there—in which case all tangent vectors
are conjugate to this one (Property 2.8.14). But we have excluded this by assuming
that apparent contours and contour generators are smooth.

This establishes the equivalence of the first four conditions of the Property above;
the other two follow from the previous discussion. O

4.9 Following cusps

In this section we give a brief account of how formulae for Gauss and mean
curvature of a surface, measured from apparent contours, are simplified if
we can follow cusps in the apparent contours. For full details, see (Cipolla et
al. 1997, Fletcher 1996). In principle cusps are visible features of apparent
contours, although they appear only as contour endings in the more real-
istic case of opaque surfaces (see Figure 3.7), and are difficult to localize.
The cusps trace out a curve in the image, and on the surface M there will
be a cusp generator curve C'. For each point r of C there will be a cam-
era position where the visual ray from the camera centre to r is along an
asymptotic direction at r, thereby causing a cusp to appear at the image of
r (Property 3.6.2).

We assume here that cameras are calibrated and the motion known, so
that we may work with the ‘p coordinates’ of §4.3, and we can convert to
‘q coordinates’ using (4.6).
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4.10 Formulae for K and H by following cusps

When a family of apparent contours is parametrized as p(s, t) the cusp points
will be given by the condition that the velocity ps becomes zero. We shall
take for granted here that in general the cusp generator curve C' on M is
smooth and parametrized by ¢, and the same applies to the cusp locus—the
image of C' in the image sphere. Detailed conditions for these assumptions
to hold are in (Cipolla et al. 1997), where our coordinate s appears as u.

Thus there is a function s = S(t) say such that C is the curve of points
r(S(t),t) and the cusps themselves in the image sphere lie along the cusp
locus p(S(t),t):

ps(S(t),t) =0 for all ¢. (4.15)

Indeed we can customize our coordinate system so that the cusp locus is
s = 0, but none of the main results below depends on this assumption and
we shall not use it.

For a nonsingular apparent contour the tangent is along the vector pg, but
when there is a cusp this is zero so we need a new vector for the tangent.
We have (Cipolla et al. 1997):

Property 4.10.1 At an ordinary cusp point the vector pss s nonzero and
along the cuspidal tangent.

From Property 4.10.1 we have

p-n=0 p;=0, ps-p=0, pPs-n=0 (4.16)
at cusp points. Differentiating (4.15) with respect to ¢ and using (4.16) we
get (using ' for 4)

PssS +Pst =0, so pgt-n =0 at cusp points.

The velocity of the cusp along its trajectory in the image sphere is

d
@p(S(t),t) = psS’ + p: = p: at cusp points, (4.17)
while the acceleration in the normal direction is

d

(%(pssl + pt)> ‘n = (pssS,2 + pstSI + psS” + ptt) N =Py N (4'18)

at cusp points.
In order to calculate the Gauss curvature and mean curvature of M using
the formulae (2.24) and (2.25) we need to calculate derivatives of r, where
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this is connected to p by the usual equation r = ¢ + Ap of perspective
projection (4.3). Thus, using the notation of (2.5) and (2.14) we have

E = rs-ry = )\3,
F = ry-ry = X(p-ee+ Ae),
G = riry = (c+Mp+Ap)>

Hence the expression occurring in the denominators of K, H is
EG—F?>=X2((c; + Apt)> — (p - cr)?). (4.19)
Also

L=rg,-n = Apg-n=0,
M=rg-n = A\p¢-n,
N=ry-n = (cu+2\pt+Apu)-n
It is noteworthy that when using the formulae (2.24) and (2.25) for K and

H, the occurrences of \; and Ay all disappear. After using (4.5) to substitute
for A in (4.19), we want to simplify the new denominator

((pt - m)ey — (e - n)py)® — (P~ ¢t Pt - m)°. (4.20)
This equals
[pa C¢, pt]z' (421)

Now we can write down the formulae for K, H which result from the
formulae (2.24) and (2.25), using the above values of E, F,G,L, M, N and
(4.21). We shall assume p;-n and c¢; - n are nonzero, which says that we are
not working at a ‘frontier’ point as well as a cusp point. See §4.6. A short
calculation shows the following.

— . 4
K = (Pt n)z' (4.22)
[pa Ct, Pt]
g - Pt n(cg np;-n—c - n pttén_ 2p - c4(pt n)2). (4.23)
2[pa Ct, Pt]

Notes on the formulae

1. Recall that the standard formula for K (see (Cipolla and Blake 1992,
§4.3) and §4.5 above) depends on second temporal derivatives of camera
position and image, and also on the curvature of the image. It is therefore a
striking feature of the above formula for K that it lacks second derivatives.
Using the special geometry of cusp points, we have obtained a formula for
Gauss curvature which depends on the first derivatives of the motion only.
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2. The denominator of the expressions for K and H cannot be zero so long
as the cusp is not moving instantaneously in the epipolar plane.

3. The normal n in the above formulae is assumed to be in the direction
of ry, Arg. It is not immediately clear that this direction can be found from
the image. However, it is shown in (Cipolla et al. 1997, §11) that we find
the direction, at any rate for an opaque surface, as follows.

Orient the visible part of the apparent contour towards the cusp point;
this makes r,, a positive multiple of p. Choose a normal n at the cusp point
and consider the sign of [p, ¢t, pt]/p¢ - n. The chosen normal is along r, Ar;
(i.e. a positive multiple of this) if and only if this sign is positive. Thus the
sign of H is unambiguous in the above formula.

4. Once we have the Gauss and mean curvatures at a point where the
apparent contour gives a cusp we have essentially determined the second
fundamental form of the surface at that point (see below). Thus by following
cusps we can recover a surface strip along the cusp generator curve, together
with the second fundamental form of the surface along that strip.

Think of a surface in ‘special Monge form’, z = f(z,y) with f, fz, fy all
vanishing at * = y = 0, so that the tangent plane to the surface at the origin
is the plane z = 0. Let one asymptotic direction be along the z-axis. Then
the surface has the form

1
z = §(2}‘},3111734 + fuy?) +ho.t.,

the derivatives being evaluated at « = y = 0. Knowing K = — fgy and H =
fyy/2 we know the second order terms, and hence the second fundamental
form, apart from an ambiguity of sign in fg,.

In fact, in our situation of working at the cusp points, we can eliminate
this ambiguity: f., has the sign of p;-n, where n is determined as in Note 3
above. See (Cipolla et al. 1997, §12).

5. Note the interpretations of p; - n and p¢ - n as the normal components of
velocity and acceleration along the cusp trajectory, as in (4.17) and (4.18)
above.

6. A special case of the formulae above for K and H was obtained in (Giblin
and Soares 1988). It can be shown fairly readily that these special results
follow from ours.

7. In fact the formulae of the above Proposition do not depend on following
cusps, merely on starting at a cusp point. The instantaneous velocities can
be measured for any surface curve parametrized by time ¢t and starting at
this point and the formulae then hold at this point.
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4.11 Image velocity of a cusp point

Recall from (4.17) that we can measure p; by measuring the velocity of the
cusp along its trajectory in the image. Now write t for the tangent to the
cusp, which we can define as n A p. We have

(p: - m)(c; - t) — (¢ -m)(p: - t) = (¢ An) Acy) - pr = [P, ¢, Pi]-
Using the depth formula (4.5) and the formulae (4.22), (4.23) we find:

Property 4.11.1 The components of image velocity of the cusp are given

by
C: 1

where the sign, +, is that of [p, ct, Pt)-

Note that the formula for p; - n is the same as we would get by following
the end-point of a surface marking, rigidly attached to the surface, while
the first term of p; - t is the one we should expect from a surface marking.
The second term represents the contribution of the surface, when we are
following a cusp, which is not rigidly attached to the surface. If K is large,
then this term is insignificant; the limiting case of ‘K = oo’ corresponds to
that of a space curve or surface marking.

4.12 Envelopes of surfaces and apparent contours

Given a family of surfaces My, these surfaces sweep out an envelope surface
M which is tangent to all the M;. This can also be thought of as follows.
Two surfaces M; and My s which are very close together in the family will
intersect in a curve, called the ‘characteristic curve’ on My. As t varies, this
curve sweeps out a surface which is the envelope.

For a simple example take My, for all ¢, to be a sphere of fixed radius 7,
with the centre of this sphere describing a circle of radius R in space (where
R > r). Then the envelope is a torus surface (Figure 4.17): each sphere fits
snugly inside the torus with its centre lying on the ‘core circle’ of the torus.
More generally, if the centre describes any space curve, then the envelope is
a canal surface or tubular surface.

Similarly a family of spheres of varying radius centred on a straight line {
sweeps out a surface of revolution (Figure 4.18) with [ as its axis. Taking [ to
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Fig. 4.17. A torus (above) is formed as the envelope of a sphere sweeping through
space with its centre moving on a circle. The apparent contours of these spheres
have envelope which is the apparent contour (below) of the torus.

be the z-axis, let the radius of the sphere M; centred at (0,0,t) be p(t) > 0.
Then the equation of this sphere is

2® +y? + (2 = )% = (p())*. (4.24)

To find the envelope, we differentiate with respect to t; compare (Bruce
and Giblin 1992, Ch. 5), giving z = t — p(t)p'(t). For a given t, this is
the equation of a plane parallel to the z,y-plane, which intersects M; in
a circle. This circle is the characteristic curve on M; and as t varies this
circle sweeps out the surface of revolution. Substituting for z in (4.24) gives
22 + y? = p?(1 — p'?) so the radius of the characteristic circle is py/1 — p'2,
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Fig. 4.18. A surface of revolution as the envelope of a family of spheres of varying
radius centred on a straight line.

provided p'? < 1. Note that if p' > 1 or < —1 then the radius of the sphere
is ‘changing too rapidly’ and the envelope ceases to exist.

For example, if p(t) = t/2 then the radius of the characteristic circle is
V/3t/4, and since this circle is at height z = 3t/4 the envelope surface is a
circular cone with half-angle at the vertex equal to tan~!(1/v/3) = /6.

A general result which is very useful in this situation is the following,
which applies to orthogonal or perspective projection. A version of this
result for orthogonal projection appeared in (Rycroft 1992).

Property 4.12.1 Suppose that the apparent contour ¢ of each M is a
smooth curve (free from cusps) and that the envelope surface M is a smooth
surface (free from singularities such as cusp edges, swallowtail points and
Whitney umbrellas). Then the apparent contour 7y of the envelope M coin-
cides with the envelope E of the apparent contours .

This property is particularly attractive when considering envelopes of
spheres. The reason for this is that the contour generator of a sphere S
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is always a circle (Figure 4.17). In the case of orthogonal projection the ra-
dius of the circle is the same as the radius of the sphere and furthermore the
apparent contour is also a circle whose centre is the projection of the centre
of the sphere S. For perspective projection the apparent contour of S in
the image sphere will also be a circle, whose radius depends on the distance
of the camera centre from S, but if the image is captured on a plane then
the apparent contour of S may be a conic (ellipse, hyperbola or parabola)
rather than a circle.

Thus, for orthogonal projection or for perspective projection using an
image sphere, the apparent contour of a surface which can be described
as an envelope of spheres is always an envelope of circles. For example
with a canal surface the radii of the spheres are constant so for orthogonal
projection the radii of the circles are constant too. In the simple example
where a sphere of constant radius p moves along a circle C' in space, giving
a torus, for orthogonal projection the apparent contour is an envelope of
circles of radius p centred on an ellipse, the latter being the projection of C
to the image plane. See Figure 4.17.

Further notes on Property 4.12.1

The smoothness restrictions in this theorem are to ensure that M has a well-defined
apparent contour and that the II; have a well-defined envelope. There is no require-
ment that II(M) or E(II;) should be smooth. For example if a sphere of constant
radius moves with its centre traversing a circle then M is a torus (a smooth sur-
face), but its apparent contour will generally have cusps. Likewise the IT; will be
circles (smooth curves) but their envelope will have the same cusps.

Property 4.12.1 is really a theorem about ranks of composites of smooth maps, and
belongs to singularity theory. A direct proof for perspective projection is messy,
and we give here a Monge—Taylor type proof for orthogonal projection. Thus let
z = F(z,y,t) be the equation of a family of surfaces, where M; is given by fixing ,
and let us consider projection in the direction of the z-axis, (1,0,0). We can think
of ¢ as being close to 0 and (z,y) close to the origin: we are considering surfaces
close to Mp in the family and points on them close to (0,0,0).
The contour generator of the surface M; is given by the equation

oF

We can solve the second of these for z = g(y, t), say, provided that F,, # 0 (using
the implicit function theorem; see for example (Bruce and Giblin 1992, p. 68)).
This condition says that we want the z-axis to be tangent to M, (F; = 0) but we
do not want (1,0, 0) to be an asymptotic direction to My at the origin (Fy, # 0).
This is satisfied provided My has a smooth apparent contour, which is one of our
assumptions in the statement of the theorem.

The contour generator on M; then consists of points

(9(y,t),y, f(g(y,1),u,1)),
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and the apparent contour of M; has equation
z=F(g(y,1),y,1).
The envelope is obtained by differentiating with respect to ¢:
0= F,g; + F;, i.e. F; =0 since F, = 0.

So the ‘envelope of apparent contours’ condition is F,, = F; = 0.

Turning to the envelope M of the surfaces, this is given by z = F, F; = 0. We
solve the second of these for ¢t = h(z,y) say, provided Fi; # 0. This is precisely the
condition for the envelope M to be smooth, another assumption of the theorem.
Compare (Bruce and Giblin 1992, p. 115). The envelope M then has equation

z = F(z,y,h(z,y)),
and its apparent contour is given by differentiating with respect to z:
0 =F, + F;h,, i.e. F, =0 since F; = 0.

Thus the ‘apparent contour of the envelope’ condition is F; = F, = 0, and the two
conditions coincide.
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Reconstruction of surfaces from profiles

In this chapter we describe the implementation of the theory of Chapter 4
and show how to recover the geometry of a surface from an image sequence
of apparent contours (profiles) from different viewpoints.

The algorithms are described in sufficient practical detail to allow the
reader to implement the theory. Details are given on the localization and
tracking of apparent contours; the recovery of the viewpoint geometry and
camera calibration; the epipolar parametrization of the spatio-temporal fam-
ily of apparent contours; and the reconstruction of surfaces. These algo-
rithms have been used in a real-time system to recover the geometry of
visible surfaces from apparent contours under known viewer motion. Exam-
ples are given.

5.1 Localization and tracking of apparent contours

A monochrome video image can be digitized into a pixel array of quantized
(discrete) intensity values which can be represented by a matrix I(u,v) where
u, v here refer to the column and row position of the pixel respectively. A
typical image is shown in Figure 5.1(a). Its size is 512 x 512 and the intensity
value of each pixel is sampled to an accuracy of 8 bits giving 256 brightness
values varying from 0 (black) to 255 (white).

The projections of surface markings, surface edges and contour genera-
tors appear as fragments of image curves across which there is an abrupt
change in intensity. These image curves or contours can be extracted by
first detecting the position of intensity discontinuities (edge detection) and
then representing aggregates of edges analytically with B-splines.

119
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Fig. 5.1. Edge detection.

Edge detection

Edges can be detected by localizing the maxima of intensity gradients after
convolution with a smoothing filter. The smoothing filter helps reduce the
effect of image noise on the derivative operation used to find the intensity

gradient. A typical edge detection algorithm (Canny 1986) involves the

following the steps to smooth the image and to localize the maxima.

Algorithm 5.1.1 Edge detection.

(i)

(iii)

The image is smoothed by convolution with a smoothing filter G, (i, 7):

S(u,v) = Z Z Go(i, ) (u—i,v—7)

i=—nj=—n

where the filter kernel is of size (2n + 1) and is a discrete approxima-
tion for the Gaussian function:
(45
202

The gradient, VS, of the smoothed image S(u,v) is then computed
at every pixel. Differentiation is performed using a finite-difference

Go(i,)) =

2mwo? exp

approximation.

VS(u,v) = l S(u+1,v) — S(u,v) ]

S(u,v + 1) — S(u,v)

Figure 5.1(b) shows |V S| for the image of Figure 5.1(a).
Edge elements, or edgels, are placed at locations where |V S| is a local
maxima in the directions V.S and is above a threshold.
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Fig. 5.2. The cubic B-spline.

The representation of the image contours as a linked chain of edge el-
ements or edgels is not very compact and does not lend itself readily to
the sub-pixel localization of the image curve and the computation of image
curvature. An alternative is to automatically fit an algebraic, parametrized
curve to the chain of edgels of interest. The representation is now extremely
compact (only the coefficients of the curve’s equation need be stored) and
the smoothness and continuity of the curve are implicit.

B-spline curve representation

A natural choice for the curve parametrization is the B-spline, which is
widely used in computer graphics (Bartels et al. 1987). A cubic B-spline is
specified by m + 1 control points Qq, Q1, ..., Qn and comprises m — 2 cubic
polynomial curve segments us, Uy, . .., U,,. The joining points between each
curve segment are known as knots. The equation of each curve segment is

1 3 -3 17 Qis
_lrs oo 3 -6 30 Qi
u;(s) = 6 [s s 31] 3 0 30 Qi (5.1)
1 4 10]]|q
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(b)

Fig. 5.3. Initialization of the B-spline snake.

for 0 < s < 1and 3 < ¢ < m. See Figure 5.2. B-splines are ideal for
representing curves and fitting to image edges. They may be open or closed
as required, and are defined with continuity properties at each point and
knot. The flexibility of the curve increases as more control points are added:
each additional control point allows one more inflexion. It is also possible to
use multiple knots to reduce the continuity at knots. They also exhibit local
control: modifying the position of one control point causes only a small part
of the curve to change.

A number of methods exist to fit B-splines to image edges. An automatic
scheme that selects the number of control points and their image positions is
described in (Cham and Cipolla 1999). In the following we describe a simpler
algorithm to localize and track image contours using a variant of snakes or
active contours (Kass et al. 1988) which use B-splines (Cipolla and Blake
1990, Blake and Isard 1998). The snake is a computational construct, a
dynamic curve, which is able to track moving and deforming image contours.

Tracking tmage curves with B-spline snakes

B-splines can be fitted to image edges by the following iterative algorithm:

Algorithm 5.1.2 B-spline snake.

(i) Initialize a B-spline by placing control points Qg, Qq, ..., Qm, near
the image edge. An example is given in Figure 5.3.

(ii) Select a number of evenly spaced sample points, N, along each seg-
ment of the B-spline, u;(s). The sample points are given by u;(s;)
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Fig. 5.4. The B-spline snake. B-spline snakes can be used to localize image con-
tours. The control points, Qg, Q1,..., Q,,, are positioned iteratively to minimize
the normal displacements (shown as arrowed vectors) between the spline segments
and nearby edge features.

where ¢ = 3,...,m and j = 0,...,N. Typically N > 10 for each
segment, As < 0.1 between samples.

(iii) From each sample point search along the normal to the spline for
edges in the image and calculate the distance to the nearest edge.
See example in Figure 5.4.

(iv) Move the control points to minimize the sum of squares of the dis-
tances between the discrete data points of the image feature and the
B-spline approximation. This is a standard least squares problem and
we can compute the new control point positions (Cipolla and Blake
1992).

(v) Repeat steps (iii) and (iv) until the algorithm has converged to pro-
duce a spline which localizes the image contour.

As the B-spline snake approaches the image contour the scale at which
the edge search takes place can be reduced to enable accurate contour lo-
calization. After localization the same algorithm is used to track the image
contour over the image sequence, provided the inter-frame image motion is
less than the search (capture) window of the snake.

Since accurate measurements are required to compute surface geometry,
care has been taken over sub-pixel resolution. At earlier stages of tracking,
when coarse blurring (large scale) is used, the capture range of the snake
is large but localization is poor — the snake may lag behind the contour.
Once the snake has converged on to the contour, standard edge-detection
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Fig. 5.5. A B-spline snake can localize and track the image contours over an image
sequence.

techniques such as smoothing for sub-pixel resolution (Canny 1986) can be
used to obtain accurate localization.

Figure 5.5 shows a sequence of images and a B-spline snake which has been
used to localize and track the apparent contour of a surface. The output
of the tracking algorithm is a family of image contours, u(s,t), which are
parametrized by the spline parameter s and indexed by the time, ¢, when
the image was taken. In the next section we show how to normalize and
parametrize this family of image contours to recover the spatio-temporal
family of apparent contours in the reference coordinate system, p(s,t). The
latter will be used to recover the geometry of the surface.

5.2 Camera model for perspective projection onto image plane

To reconstruct the surface we require the mapping from image plane pixel
coordinates, u, to visual rays in the fixed world coordinate system, p. This
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is determined by transformations describing the position and orientation of
the coordinate system attached to the camera relative to the world coordi-
nate system; perspective (central) projection onto the image plane and the
geometry of the CCD array. These three transformations are derived below
and can be conveniently written as a 3 X 4 projection matrix (Roberts 1965).

Property 5.2.1 The projection matrix. Under perspective projection
the map between the three-dimensional world coordinates of a point (X,Y, Z)
and its two-dimensional image plane pizel coordinates (u,v) can be written
as a linear mapping in homogeneous coordinates and represented by a 3 x 4
projection matrix:

X
Cu b11 P12 P13 DPi4 y
v | =| par p22 P2 p2a 7 (5.2)
¢ P31 P32 D33 D34 1

Rigid-body transformation

Consider a coordinate system X = (X, Y, Z) attached to the world reference
frame, and another coordinate system X. = (X, Y., Z.) attached to the
camera at position c¢(¢), where the optical axis is aligned with Z.. See
Figure 5.6. In terms of the notation of Chapter 4 and §4.3, the camera
centre c is the origin of the X, coordinate system and we write R for the
geometrical rotation which has 3 x 3 matrix R. The measurements in the
different coordinate systems are given by:

r=X=c+2Ap, Xc=Aq, p=Rq.

For apparent contours, r, X, X, A\,p and q are functions of two variables
s and ¢, while R and c are functions of time ¢ alone. Recall that A is the
depth measured along the ray from ¢ and the unit vector p is the direction
(in world coordinates) of a surface point r from ¢ while the unit vector q is
the direction in camera coordinates of the same point.

The camera and reference coordinate systems are related by a rigid body
transformation:

X = RX.+c (5.3)
X, = R'"(X—-c¢)

which are conveniently represented with a rotation matrix and a translation
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vector, t, by:
X i1 T2 T13 X tx
Ye = T2l T2 T23 Y | +| ty (5.5)
Ze r31 T32 T33 Z ty

where the translation vector is related to the position of the camera centre
by

t=-R'c.

Perspective projection onto the CCD image plane

Perspective projection onto the imaging plane followed by the conversion of
image plane coordinates into CCD pixel coordinates, (u, v), can be modelled
by

[

u = up+ auz (5.6)
Y,
v = v+ avi (5.7)

where the CCD array axes are assumed aligned with the X, and Y, axes;
(ug,vg) is the principal point (the point of intersection of the optical axis
and the image plane); o, and o, are image scaling factors. These four
parameters are known as the internal camera parameters. The ratio o, /ay,
is known as the aspect ratio.

Projection matriz

The relationship between image pixel coordinates and rays in Euclidean
3-space can now be expressed succinctly by introducing homogeneous coor-
dinates to represent image points with 3-vectors and points in 3-space by
4-vectors, defined up to arbitrary scales (e.g. (). Homogeneous (projective)
coordinates are often used in projective geometry and allow us to represent
projective transformations as a matrix multiplications. By concatenating
the matrices for the transformations described above the relationship be-
comes:

X
Cu ay 0 ug rir iz T3 tx v
Cv = 0 o o ro1 To2 T3ty 7
¢ 0 0 1 T3y T32 T33 tz 1
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optical axis X

image plane
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Fig. 5.6. Camera model and camera and reference coordinate systems. X = c+ Ap
and X = c + RX,.
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Fig. 5.7. Camera calibration. A camera is calibrated by processing an image of
a calibration grid (a). The image positions of known 3D points on the grid are
extracted automatically. Edge detection is followed by fitting lines to the image
segments. Intersections of lines are used to localize the image features to sub-pixel
accuracy (b).
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or more simply as the 3 x 4 projection matriz representing the perspective
projection of a point in space onto a digitized image given in Property 5.2.1
where equality is defined up to an arbitrary scale.

u=PX (5.8)

The projection matrix, P, is not a general 3 x 4 matrix. It has 11 parameters
(since the overall scale does not matter) and it can be decomposed into a 3x 3
upper triangular matrix of camera internal parameters called the camera
calibration matriz, K, and a matrix representing the rigid-body motion.

The mapping from an image point to a visual ray in 3-space is expressed
in homogeneous coordinates and up to an arbitrary scale by:

= Kq (5.9)
= KR'p (5.10)

5.3 Camera model for weak perspective and orthographic
projection
A useful approximation to perspective projection occurs when the field of
view is narrow or the depth variation along the line of sight is small compared
with the distance from the camera to the scene. The camera model can then
be simplified to weak perspective and (5.6) and (5.7) can be re-written as:

Y.
= —. 5.12
v v+ oy (5.12)

The difference with perspective projection is that all image points are scaled
uniformly by Z,, the mean distance of the features of the scene to the camera
centre. Weak perspective can in fact be considered as the orthographic
(parallel) projection of all points onto the plane Z, = Z; followed by a
perspective projection to give a uniform inverse-depth scaling. It can be
represented by the transformation:

X

Uq ay 0 ug ri1 T2 T13 tx v
Vg = 0 ay o re1 To2 T23 ly 7
1 0O 0 1 0 0 0 2Z 1

If the principal point of a camera is (ug, vg), the variation of depth in the



5.4 Camera calibration 129

scene is AZ along the optical axis and the mean distance of the features of
the scene to the camera is Zy, the difference of the image of a point taken
from a perspective camera (u,v) and its image with the weak perspective
camera, (ug,v,) is given by

u—u, = (u—w)AZ/Z, (5.13)
v—v, = (v—v9)AZ/Z,. (5.14)

When the field of view is narrow, the terms u — ug and v — vy will be small.
In this case, or when the depth variation of the scene is much smaller than
its mean depth, e. g. AZ/Zy < 0.1, the error due to the weak perspective
appproximation is negligible.

Orthographic projection can be modelled in exactly the same way but
with no scaling due to depth by setting Z, = f.

5.4 Camera calibration

For reconstruction we require the camera centres, c(t), and the rays p(s,t).
These can be obtained from the projection matrix for each viewpoint. Cam-
era calibration is the name given to the process of recovering the projection
matrix from an image of a controlled scene. For example, we might set up
the camera to view the calibrated grid shown in Figure 5.7(a) and automat-
ically extract the image positions of known 3D points (Figure 5.7(b)). Each
image point, (u;,v;), of a known calibration point, X;, Y;, and Z;, generates
two equation which the elements of the projection matrix must satisfy:

Cui _ puXi +p12Yi + p13Zi + pua
¢ p3X;+p32Y; +p33Z; + paa

Cui _ pnXi+ p22Yi+pr3Zi + pa
¢ pa1Xi+p3Yi+pssZi +psa

These equations can be rearranged to give two linear equations in the 12
unknown elements of the projection matrix. For n calibration points and
their corresponding image projections we have 2n equations:
[ P11 W
P12

p13
X1 Y1 A 1 0 0 0 0 —u1 X1 —u1Y1 —u1Z1 —u1 P14
0 0 0 0 X1 Yl Zl 1 71)1X1 71)1Y1 7v1Z1 —vU1 P21
A b2z |,
. . . . . . . . . . . . P23
X, Y. Z, 1 0 0 0 0 —unXn —unYn —uUnZ, —Un P24
0 0 0 0 X, Y. Z, 1 —-v.Xn —vn,Yn —vnZ, —Un P31
P32

P33 J
| P34

u; =

vy =
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Since there are 11 unknowns (scale is arbitrary), we need to observe at least
6 reference points to recover the projection matrix and calibrate the camera.

Numerical considerations

The equations can be solved using orthogonal least squares. First, we write
the equations in matrix form:

Ax=0 (5.15)

where x is the 12 x 1 vector of unknowns (the 12 elements of the projection
matrix, p;;), A is the 2n x 12 matrix of measurements and n is the num-
ber of observed calibration points. A linear solution (least squares) which
minimizes ||Ax|| subject to ||x|| = 1 is obtained as the unit eigenvector
corresponding to the smallest eigenvalue of AT A. Numerically this com-
putation is performed via the singular value decomposition of the matrix
(Strang 1988)

A =UAV'

where A = diag(oy,09,...,012) is the diagonal matrix of singular values
and the matrices U and V are orthonormal. The columns of V are the
eigenvectors of AT A and the least squares solution is given by the last
column of V which is the singular vector with the smallest singular value
o12. The least squares solution is, however, only approximate and should
be used as the starting point for non-linear optimization: i.e. finding the
parameters of the projection matrix, P, that minimize the errors between
measured image points, (u;,v;) and the projections onto the image plane of
the reference points:

min Y [|(us, v5) — P (X3, ¥i, Z3, 1)
i

Once the projection matrix has been estimated the first 3 x 3 submatrix,
KR', can be easily decomposed by standard matrix algorithms into an
upper triangular matrix, K, and a rotation (orthonormal) matrix (known
as QR decompositon) or used directly to determine the ray in space p and
the position of the camera centre:

= RK'u (5.16)
¢ = —RK Ypis,poa,p34)’ . (5.17)
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5.5 Epipolar geometry

Epipolar geometry plays a key part in the algorithms to recover the ge-
ometry of surfaces from apparent contours. The epipolar parametrization
of the spatio-temporal family of apparent contours, p(s,t), introduced in
Chapter 4, requires the epipolar geometry between successive snapshots of
an apparent contour.

We briefly review the geometry of two views and describe how to compute
the epipolar geometry when the cameras are calibrated. The use of uncal-
ibrated cameras and the recovery of the epipolar geometry from apparent
contours is described in Chapter 6.

The epipolar constraint

In stereo vision the projection of a world point in two calibrated viewpoints
can be used to recover the three-dimensional position by triangulation. The
geometry of the two views, as shown in Figure 5.8, plays a key part in help-
ing to find correspondences by constraining the search for correspondence
from a region to a line. This matching constraint is known as the epipolar
constraint.

The epipolar constraint arises from the fact that the two rays, p and p’,
to a common scene point, X, and the optical centres of the two camera
(the stereo baseline, t = Ac) lie in a plane called the epipolar plane. The
intersection of the epipolar plane with each image plane defines a line called
an epipolar line. The correspondence of an image point in the first view,
u, must line on the epipolar line, I, in the other view shown in Figure 5.8.
Using homogeneous coordinates to represent the coefficients of a line in the
image as a 3-vector, the epipolar constraints in each view can be written as:

u-l =0 (5.18)
u-1 = o (5.19)

Each world point, X, has its own epipolar plane. The family of epipolar
planes define a pencil of epipolar lines which pass through a common point
called the epipole, illustrated in Figure 5.9. The epipoles and pencil of
epipolar lines in each view are known as the epipolar geometry. The epipolar
geometry is completely determined by the relative position, t, and relative
orientation, R, of the two views and the camera parameters of each camera,
K and K’ respectively. It does not depend on the 3D structure of the scene
being viewed.
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baseline

left epipole right epipole

Fig. 5.8. The geometry of two views. In stereo vision an epipolar plane is the plane
defined by a 3D point X and the optical centres of the two cameras. The baseline
is the line joining the optical centres. An epipole is the point of intersection of the
baseline with the image plane. An epipolar line, 1 and 1', is a line of intersection of
the epipolar plane with an image plane. It is the image in one camera of the ray
from the other camera’s optical centre to the point X.

X,

Fig. 5.9. Epipolar geometry. Each world point X has its own epipolar plane which
rotates about the baseline. All epipolar lines intersect at the epipole.

The essential matriz

The epipolar constraint is a co-planarity constraint and can be expressed
algebraically as a scalar triple product:

p - (tAp)=0. (5.20)
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With out loss of generality, we can align the reference coordinate system
with the second camera so that the epipolar constraint can be rewritten in
terms of image positions (3-vectors in homogeneous coordinates), u and u’,
using (5.16):

u'K "EK 'u=0 (5.21)
where E is a 3 x 3 matrix known as the essential matriz (Longuet-Higgins
1981) and is the product of a skew-symmetric or antisymmetric matrix (rep-

resenting the vector product with the translation vector) and an orthonormal
matrix representing the rotation between the two views:

E=tAR=[t]xR

where
0 —t3 to
[t]x = | t3 0 -t
—to 1 0

and R now specifies the relative orientation between the views.

The essential matrix is of maximum rank 2. Its factorization into the
product of a non-zero skew-symmetric matrix and a rotation matrix is only
possible if it has two equal non-zero singular values. The other is of course
equal to zero (Tsai and Huang 1984, Faugeras and Maybank 1990).

The fundamental matriz

From (5.21) we see that the epipolar geometry can be conveniently specified
by introducing a matrix, F (Faugeras 1992)

F=K "EK L (5.22)

Property 5.5.1 The epipolar constraint and the fundamental ma-
trix. The image coordinates (projective representation using homogeneous
coordinates) of all pairs of corresponding points, u; = (u;,v;, 1) and u'; =

(ub,vi, 1), must satisfy the epipolar constraint:

v, Fu; =0 (5.23)
or

fir fi2 fi3 u;
ui v 1] far fa2 fos v; | =0 (5.24)
31 f3z2 f33 1
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where F is a 3 X 3 real matriz of rank 2 which is defined up to an arbitrary
scale and is known as the fundamental matriz.

Epipolar lines and epipoles

The epipolar geometry (see Figure 5.9) is completely determined by the
fundamental matrix.

Property 5.5.2 Epipolar geometry from fundamental matrix.

(i) Epipolar lines.
The epipolar line (represented by a homogeneous 3-vector), l', corre-
sponding to a point u in the other view is given by

' = Fu (5.25)
and u' must lie on this line to satisfy the epipolar constraint:
u-1=0.

The epipolar line corresponding to u' is given by 1 =Fu’.

(ii) Epipoles.
The epipole is defined as the point in each image which is common
to all the epipolar lines. The left and right epipoles (e and €' in
homogeneous coordinates) are therefore given by the null spaces of F
and F' respectively

Fe = 0 (5.26)
F'e = o. (5.27)

5.6 Epipolar geometry from projection matrices

For calibrated cameras with known projection matrices it is trivial to com-
pute the fundamental matrix and hence obtain the epipolar geometry (epipoles
and epipolar lines for each image feature). We here outline a simple method
by exploiting the following result.

Property 5.6.1 Projective ambiguity. The pair of cameras and pro-
jection matrices P and P’ give rise to the same fundamental matriz as the
pair of cameras and projection matrices PH and P'H where H is a 4 x 4
non-singular matriz.
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A simple proof can be found in (Hartley 1992 and 1994) but follows trivially
from the fact that the simultaneous transformation of the projection ma-
trices, P by H and the 3D point coordinates, X, by H™! leaves the image
coordinates u = PX, unchanged.

Assume we are given the projection matrices for two viewpoints, P and
P'. The position of the optical centre of the first camera, ¢, can be com-
puted directly from the projection matrix P from (5.17). In homogeneous
coordinates we can represent it by a 4-vector C = (c¢'1) so that

PC=0
and its projection into the second image plane defines the epipole, €,
e =P'C. (5.28)
We can also compute the pseudo-inverse, P, of the projection matrix P,
Pr=PT(PP") ], (5.29)

such that multiplication with the first projection matrix gives the identity
matrix, I, and multiplication with the second projection matrix gives a 3 x 3
matrix (a two-dimensional projective transformation), M:

I = PP" (5.30)

M = PP* (5.31)

The two projection matrices have in this way been normalized to have the
special forms:

PH = [I]0] (5.32)

PH = [M]|é€] (5.33)

These normalized projection matrices are known as canonical cameras. From

Property 5.6.1 both the original projection matrices and these normalized
forms have the same fundamental matrix F given by (see Property 6.3.1):

F = [¢/]«M. (5.34)

An example of the epipolar geometry of two discrete views computed from
calibrated projection matrices using (5.28) - (5.31) and (5.34) is shown in
Figure 5.10.

For uncalibrated cameras we do not have the projection matrices and
hence E, K and K’ are unknown a priori. The fundamental matrix and
epipolar geometry, however, can still be estimated from point and curve
correspondences between the two views (see Chapter 6).
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Fig. 5.10. Epipolar geometry computed from known projection matrices. Selected
image points are shown in the left view with corresponding epipolar lines shown in
the right view. The corresponding image feature satisfies the epipolar constraint.

5.7 Reconstruction of surfaces
Implementation of the epipolar parametrization

In the epipolar parametrization of the spatio-temporal image and surface, a
point on an apparent contour in the first image is matched to a point in suc-
cessive images (in an infinitesimal sense) by searching along the correspond-
ing epipolar lines. This allows us to extract ¢-parameter curves (u(sp,t) or
P(s0,t)) from the spatio-temporal image. As shown in Chapter 4, depth and
surface curvature are then computed from first and second-order temporal
derivatives of this t-parameter spatio-temporal curve by equations (4.5) and
(4.11). This requires a dense (continuous) image sequence.

In practice the epipolar parametrization and the reconstruction can be
implemented in a variety of ways. In (Cipolla and Blake 1992) and (Cipolla
1995) two simple methods are described for special cases. For pure transla-
tion perpendicular to the optical axis and with a dense (continuous) image
sequence it is possible to recover the depth and surface curvature from the
first and second-order derivatives of the spatio-temporal image trajectories
directly (see Figure 5.11). For linear motion and a minimum of three dis-
crete views a simple numerical method was proposed to estimate the depth
of the contour generators and the osculating circle in each epipolar plane by
assuming that the curvature of the epipolar curve, r(sg,t), is locally con-
stant. See Figure 5.12. This approximation was also exploited by (Vallaint
and Faugeras 1992) and (Szeliski and Weiss 1998).

We choose to implement the theory presented in Chapter 4 directly by
estimating temporal derivatives from measurements in the discrete views of
the apparent contours, u(s,tg),u(s,t1),...,u(s,t,), which are indexed by
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(a) first image last image

(b)

Fig. 5.11. 3D spatio-temporal image. (a) The first and last image from an image
sequence taken from a camera mounted on a robot arm and moving horizontally
from left to right without rotation. (b) The 3D spatio-temporal image formed from
the image sequence piled up sequentially with time. The top of the first image and
the bottom of the last image are shown along with the spatio-temporal cross-section
corresponding to the same epipolar plane. For simple viewer motions consisting
of camera translations perpendicular to the optical axis the spatio-temporal cross-
section image is formed by storing the scan-lines (epipolar lines) for a given epipolar
plane sequentially in order of time. The ¢-parameter curves p(so,t) are easily
extracted from this spatio-temporal image and its first and second derivatives can
be used to recover depth and surface curvature respectively (Cipolla and Blake
1992).
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Fig. 5.12. The epipolar plane. Each view defines a tangent to the epipolar curve
r(so,t). For linear camera motion and epipolar parametrization the rays and r(so, t)
lie in a plane. If r(sg, ) can be approximated locally by its osculating circle, it can
be uniquely determined from measurements in three views, p(so,to), P(so0,t1) and
p(so,t2). For curvilinear motion the epipolar geometry is continuously changing
and the epipolar curve is no longer planar (Cipolla and Blake 1992).

time, ¢; and the corresponding camera position, c¢(¢;). Figure 5.5 shows 4
of 36 images taken by rotating an object in front of a fixed camera. This
is equivalent to considering the image sequence to have been obtained by
the camera rotating about the same axis of rotation, i.e. circular motion.
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Fig. 5.13. In the epipolar parametrisation of apparent contours, correspondence
between points on successive snapshots of an apparent contours is set by matching
along epipolar lines.

Fig. 5.14. The epipolar parametrisation is degenerate at frontier points where the
epipolar plane is tangent to the surface. Frontier points appear as epipolar tan-
gencies — the epipolar lines are tangent to the apparent contour. In the vicinity
of an epipolar tangency the parametrization is sensitive to errors in the epipolar
geometry and the localization of the image contour. Reconstruction is therefore
poor near a frontier point.

The apparent contours are extracted and tracked over the sequence using
B-splines snakes.

The family of image contours is then parametrized using the known epipo-
lar geometry obtained by first calibrating the sequence of discrete viewpoints
by viewing a calibration grid as described in the previous section and illus-
trated in Figure 5.10. The projection matrices for each view can be used
to obtain camera positions, ¢(¢;), and the epipolar geometry as described in
§5.6. The epipolar geometry is then used to parametrize the image contours
as follows.

Points are selected on the apparent contours in the first view, e.g. u(s;, to),
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shown in Figure 5.13(a), and the calibrated epipolar geometry is used to
induce a parametrization of the apparent contour in the other views, e.g.
u(s;,t1),...,u(s;,t,). Anexample is shown in Figure 5.13(b). This requires
finding the intersection of the cubic B-spline representing the apparent con-
tour and the epipolar line. This is done analytically and multiple solutions
are disambiguated by using ordering and disparity gradient constraints as in
stereo vision. Particular care must be taken at an epipolar tangency (fron-
tier point). See Figure 5.14. The known (calibrated) projection matrices for
each viewpoint can then be used to convert image plane pixel coordinates,
u(s;,t1),...,u(s;,t,), to rays in 3-space, p(s;,t1),...,p(s;, tn), as described
in §5.2.

Recovery of depth

The depth is then estimated by a finite-difference (discrete) approximation
to the infinitesimal analysis presented in (4.5). For each apparent contour
point (indexed by spline parameter, sp) in each view (indexed by time, ;)
an approximation to the depth to the contour generator can be computed
from:

_Ac-n
Ap-n

A(s0,t;) = (5.35)
where Ac = c(t;+1) — c(t;) and Ap = p(so,ti+1) — P(S0,t;). The surface
normal, n = n(s,;+1), is estimated directly from the apparent contour in a
single view as described by Property 3.6.1.

The use of finite-differences introduces an error. Equation (5.35) is in fact
equivalent to estimating the distance to the surface point by triangulation
as the intersection of two rays. This is, of course, exact in the stereo recon-
struction of a fixed point from its correspondences in two discrete views but
is an approximation when the views are of contour generators except in the
infinitesimal limit as Ac — 0. See Figure 4.9.

The error introduced by using a finite-difference approximation can be
easily quantified in the case of circular motion. See Figure 5.15. By assuming
that the radius of curvature R along the epipolar curve is locally constant,
the error in the recovered distance, A\, is given by:

AN = Rtan(g). (5.36)

The error ¢, which is the distance between the reconstructed point and the
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Fig. 5.15. The error ¢ between the reconstructed point and the surface is related
to the radius of curvature R and the angle ¢ between the viewing rays.

surface, is however given by

2
¢ <sec(f) - 1) R~ %R (5.37)
2 8
where ¢ is the angle between the viewing directions (see Figure 5.15). If the
camera is far from a rotating object, ¢ can be approximated by the angle of
rotation w. For w equals 10°, the error will be 0.38% of the radius R, which
will be negligible for small values of R.

Except for the degenerate cases listed in §4.6, we can use the epipolar
parametrization of the family of apparent contours to recover the two fami-
lies of parametric curves. The s-parameter curves are the contour generators
from the different viewpoints and the ¢-parameter curves are the epipolar
curves formed by the intersection of a pencil of epipolar planes defined by
the camera centres in adjacent views. These surface curves form a conjugate
grid, shown in Figure 5.16 and Figure 5.17.

The reconstructed surface from the image sequence of Figure 5.5 is shown
in Figure 5.17 as a grid of 36 contour generators and 100 epipolar curves.
The reconstruction is surprisingly accurate given that the views are discrete
and not continuous. Figure 5.18 shows another example of a reconstruction
using the epipolar parametrisation but in which greater care is taken in
computing the spatio-temporal derivatives (Boyer and Berger 1997).
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Fig. 5.16. Recovery of surface strip in vicinity of apparent contour. The surface is
recovered as a family of s-parameter curves, r(s, ;) — the contour generators — and
t-parameter curves, r(sp,t) — portions of the osculating circles measured in each
epipolar plane. The strip is shown projected into the image of the scene from a
different viewpoint and after extrapolation (Cipolla and Blake 1992).
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Fig. 5.17. The reconstruction of the head from 36 views of the apparent contour
under circular motion. Three discrete views of the 36 reconstructed contour gen-
erators and epipolar curves are shown. The reconstructed surface is also shown

shaded.
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(Boyer and Berger 1997).

Fig. 5.18. Reconstruction of a vase using the epipolar parametrization and the

method of triangulation described in
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Recovery of viewer motion from profiles

In the previous chapter we described the algorithms and their practical im-
plementation to recover the geometry of visible surfaces from the deforma-
tion of apparent contours (profiles) under known viewer motion. The epipo-
lar geometry between the distinct viewpoints played an important part in
the parametrization and recovery of the surface. In this chapter we describe
how the epipolar geometry (and hence the camera motion) can be recovered
from the deformation of apparent contours when the viewer motion is not
known a priori.

The recovery of the structure and motion from point correspondences
has attracted considerable attention and many practical algorithms exist to
recover both the spatial configuration of the points and the viewer motion
compatible with the views. These are briefly reviewed in §6.1 to §6.3 before
showing how the deformation of apparent contours, and in particular frontier
points, can be used to recover viewer motion. A set of working algorithms are
then presented which are able to recover viewer motion and which exploit
this to reconstruct surfaces. The special case of circular motion, which
is often used in 3D model acquisition and hence has important practical
applications, is described in greater detail.

6.1 The fundamental matrix from point correspondences

For uncalibrated cameras we do not have the projection matrices and hence
the essential matrix parameters, t and R, and the camera calibration param-
eters, K and K', are unknown a priori. The fundamental matrix, however,
can be estimated from point correspondences between the two views. We
briefly describe the algorithms used for computing the epipolar geometry
from point correspondences (also reviewed in Zhang 1998) before describing
the extension to curves and apparent contours.

145
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From the epipolar constraint (5.24) we see that each point correspon-
dence, u; = (u;,v;,1)T and u'; = (ul,v!,1)", generates one constraint on
the epipolar geometry which can be expressed in terms of the elements of

the fundamental matrix F:

fuu fiz fi3 u;
[ up v 1 ] far fa2 fo3 v; | =0.
fs1 fa2 fs3 1

For n pairs of correspondences, the constraints can be rearranged as linear
equations in the 9 unknown elements of the fundamental matrix:

fu
fi2
! ! ! ! ! ! f13
wiul  uv1 u; viup vivy v; up v 1 fo1
. . : : fz | =0
UpUp UnUp Uy VLU, VLU, UL u, v, 1 f23

f31
f32
[s3

or in matrix form:

Af =0

where A is an n X 9 measurement matrix, and f represents the elements of
the fundamental matrix as a 9-vector. Given 8 or more correspondences a
solutionf can be found by least squares as the unit eigenvector (f is defined
up to an arbitrary scale) corresponding to the minimum eigenvalue of AT A.
A unique solution is obtained unless the points and the camera centres lie
on a ruled quadric or all the points lie on a plane (Faugeras and Maybank
1990).

The computation can be poorly conditioned and it is important to pre-
condition the image points by normalizing them to improve the condition
number of AT A before estimating the elements of the fundamental matrix
by singular value decomposition (Hartley 1998).

1 Note that the fundamental matrix has only 7 degrees of freedom since its determinant must
be zero. A non-unique solution can be obtained from only 7 point correspondences and is
described in (Huang and Netravali 1994).
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Parametrization of the fundamental matriz

Two steps can be taken to improve the solution. The most important re-
quires enforcing the rank 2 property of the fundamental matrix. This can
be achieved by a suitable parametrization of F.

The epipolar geometry between two uncalibrated views is completely de-
termined by 7 independent parameters: the position of the epipoles in the
two views, € = (ue,ve, 1) and e’ = (u),v.,1)", and the 3 parameters of the
one-dimensional projective transformationf relating the pencil of epipolar

lines in view 1 to those in view 2 (Luong and Faugeras 1996),

ham + h
= 2n T (6.1)
h47’i + h3
where 7; and 7] represent the directions (as the gradient of a line) of a pair
of corresponding epipolar lines, 1; and 1}, in the first and second images
respectively. Namely:

. 1T Y 6.2
Ti Wi — g (6.2)
! !
, v — v
Ti = “Z — uf,z . (6.3)

The transformation of epipolar lines between views is sometimes known as
the epipolar transformation and is fixed by 3 pairs of epipolar line correspon-
dences. The correspondence of any additional epipolar line is completely de-
termined since it must preserve the cross-ratio of the 4 epipolar planes and
corresponding epipolar lines. See (Luong and Faugeras 1996) and Figure 6.1.

Substituting (6.2) and (6.3) into (6.1) for the image coordinates of a pair
of corresponding points results in the epipolar constraint and leads to the
following minimal parametrization of the fundamental matrix:

hy ha —uchy — veho
F = h3 h4 —Uehg - Ueh4
—ulhy —vlhg —uLho —vlhy weulhy + veulhs + uevihs + vevlhy

(6.4)
This parametrization will be exploited later when apparent contours are
used instead of point correspondences to estimate the epipolar geometry.

1 This one-dimensional projective transformation (also known as a collineation or homography)
can be represented by a 2 X 2 matrix in homogeneous coordinates.



148 Recovery of viewer motion from profiles

Optimization
Another improvement requires finding the 7 independent parameters of the
fundamental matrix which minimize the distances between the image points
and their epipolar lines.

Property 6.1.1 Geometric error using epipolar distances. The geo-
metric distance between an image point u' and the epipolar line, ' = Fu is
given by:
-
(u'; Fu;)?
(Fu;)? + (Fu;)3

A suitable cost function, C, consisting of the sum of the squared geometric

(6.5)

distances (defined above) between image points and their epipolar lines in
both images (Luong and Faugeras 1996),
1 1
c-x( .
zi: (Fu)i + (Fu)s  (FTu/y)f + (FTuy)3

) (w7 Fuiy

can be minimized by non-linear optimization techniques (Press et al. 1988).

6.2 Recovery of the projection matrices and viewer motion

As shown above it is possible to recover the epipolar geometry (via the fun-
damental matrix) from point correspondences in the case of uncalibrated
cameras. Nevertheless we must recover the projection matrices correspond-
ing to each viewpoint if we are to attempt reconstruction.

Factorization of the essential matrix
If the camera internal parameters, K and K’, are known the viewer motion
and the projection matrices are determined by the epipolar geometry. We
can transform the recovered fundamental matrix into an essential matrix
(5.22):
E =K' FK (6.6)

and decompose this matrix into a skew-symmetric matrix corresponding
to translation and an orthonormal matrix corresponding to the rotation
between the views:

E = [t]«R. (6.7)

The latter is in fact only possible if the the essential matrix has rank 2 and
two equal singular values (Tsai and Huang 1984). This property turns out
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Fig. 6.1. The epipolar geometry of an uncalibrated stereo pair of images is com-
pletely specified by the image positions of the epipoles and 3 pairs of corresponding
epipolar lines. The projective parameters 7 and 7’ represent the intersection of the
epipolar line and the line at infinity. The directions in the 2 views are related by a
one-dimensional projective transformation (homography).

to be very important in recovering constraints on the internal parameters of
the cameras when they are uncalibrated. The difference in the two singular
values can be used to refine the camera parameters. In fact, each funda-
mental matrix places two quadratic constraints on the internal calibration
parameters (the Kruppa equations) which can be used to estimate, for ex-
ample, the scale factors of the two cameras. This is known as self-calibration
(Maybank and Faugeras 1992 and Hartley 1992).

The translation vector, t, which can only be recovered up to an unknown
magnitude, can be found as the unit eigenvector corresponding to the small-
est eigenvalue of EE' since it must satisfy

E't=0.

The rotation can then be obtained as the orthonormal matrix which mini-
mizes the matrix Frobenius norm

IE — [tx]R||?

which can be solved linearly if we represent the rotation with a quaternion
(Horn 1987).
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Numerical considerations

An alternative numerical approach is to perform the singular value decom-
position (Strang 1988) of the essential matrix (Hartley 1992):

E=UAV' (6.8)

where A = diag(o1,02,03) and the matrices U and V are orthogonal. The
decomposition into a translation vector and the rotation between the two
views requires that o1 = 02 # 0 and o3 = 0. The nearest (in the sense of
minimizing the Frobenius norm between the two matrices) essential matrix
with the correct properties can be obtained by setting the two largest singu-
lar values to be equal to their average and the smallest one to zero (Hartley
1992). The translation and axis and angle of rotation can then be obtained
directly up to arbitrary signs and unknown scale for the translation:

0 10
[ty =U| -1 0 0 |UT (6.9)
0 00
0 -1 0
R=U|1 0 0|V (6.10)
0 0 1

The projection matrices follow directly from the recovered translation and
rotation by aligning the reference coordinate system with the first camera
to give:

P = K[I|0]
P = KR |t

Four solutions are possible due to the arbitrary choice of signs for translation,
+t, and rotation, R or R'. The correct solution is easily disambiguated by
ensuring that reconstructed points lie in front of the cameras.

6.3 Recovery of the projection matrices for uncalibrated cameras

If the camera calibration matrices are unknown the projection matrices can
not be uniquely recovered from the epipolar geometry of two views alone.
In fact we will see that they can only be recovered up to an arbitrary 3D
projective transformation, known as a projective ambiguity.

From (5.22) it follows that the fundamental matrix can, like the essential
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matrix, be factorized into a skew-symmetric matrix corresponding to trans-
lation and a 3 X 3 non-singular matrix (ignoring arbitrary scalings of the
elements of F):

F = K '[tjyRK’
= [K't]xK'RK!
= [e]xMg (6.11)

where
M, = K'RK™! (6.12)

is a 2D projective transformation (homography) which maps points on the
plane at infinity in one image to the other (Luong and Vieville 1996).

The factorization of the fundamental matrix as the product of a skew-
symmetric matrix and a non-singular matrix M is not unique since there
is a 3 parameter family of matrices M (which represents the 2D projective
transformation between views induced by different planes) such that:

M=M,+ev'

where v can be arbitrarily chosen to give a different projective transforma-
tion but the same fundamental matrix (Hartley 1994 and Luong and Vieville
1996)7.

Property 6.3.1 Factorization of the fundamental matrix. The fun-
damental matriz can be factorized into a skew-symmetric matriz and a 3 X 3
non-singular matriz, M:

/
where €' is equivalent to the epipole in the second view:
F'e' =0
and M can be chosen from the 3-parameter family (defined by the arbitrarily
choice of v) of homographies given by:
M= [e],F+ev'.
t Note the relationship with the minimal parametrization introduced in (6.4). A 3-parameter
family of two-dimensional projective transformations, M, representing the transformation be-
tween views induced by points on a plane, can be recovered from the pair of epipoles and 3

pairs of corresponding epipolar lines. The epipoles must satisfy ¢ = Me while the epipolar
lines must pass through the epipoles and satisfy l’i =M"Tl,.
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Singular value decomposition of the fundamental matriz

As with the essential matrix, we can factorize the fundamental matrix into
a skew-symmetric component and a non-singular matrix by analysing its
singular value decomposition:

F =UAV'
where A = diag(r, s,0). The skew-symmetric component can be recovered
from:
0 10
elx=U| -1 0 0 |U" (6.13)
0 0O

in exactly the same way as with calibrated cameras. The non-singular matrix
M is no longer an orthogonal transformation and is not uniquely defined.
As shown by Property 6.3.1, the homography (two-dimensional projective
transformation) is defined up to an arbitrary choice of parameters, here
described by {«, 8,7}:

-1
M=U

O = O

0
0
1

Q © 3

0
0 0|V". (6.14)
0 v

0
S
B

Canonical cameras and projective ambiguity

The factorization of the fundamental matrix can be used to compute the
canonical cameras — the normalized projection matrices — given by (5.32)
and (5.33)

PH = [I|0]
PH = [M|é]

The real projection matrices, P and P’, have only been recovered up to an
arbitrary 3D projective transformation represented algebraically by a 4 x 4
matrix H, and known as a projective ambiguity.

Property 6.3.2 Projective ambiguity. A general 8D projective transfor-
mation can be represented by a non-singular 4 X 4 matriz, H, of the form

s ~1
w B ][5 0[]
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The projective ambiguity is composed of the following effects. A metric
transformation resulting from the rigid body motion between the coordi-
nate system of the first camera and the reference frame and an arbitrary
scaling. This can be ignored if we align the reference coordinate system
with the first camera and accept that shape can only be recovered up to
an arbitrary scale, s, if the distance between the two camera centres is un-
known. The second component of the ambiguity results from an 3D affine
transformation due to the unknown parameters of the first camera. Finally
we are left with a projective transformation which transforms points on the
plane (v 1)X = 0 to points on the plane at infinity and results from the
ambiguity of Property 6.3.2.

The ambiguity in the projection matrices is of the form above and will
result in a projective ambiguity in the recovered geometry, i.e. the 3D co-
ordinates of visible points, X, can only be recovered up to a 3D projective
transformation, H™'X. This ambiguity can only be removed with additional
information derived from scene constraints or knowledge of the camera pa-
rameters, K and K'. In particular the ambiguity is completely removed by
using the 3D position of 5 known scene points to determine the transfor-
mation H or H™!. Alternatively we require the internal camera parameters
of the first camera and must then find the equation of the plane at infinity
represented by v where

M=KRK!+ev'.

The ambiguity is removed by using knowledge of the camera parameters to
fix v to make the homography, M, be that induced by the plane at infinity
(Hartley 1994). The rotation matrix follows.

6.4 Frontier points and epipolar tangencies

As described in Chapter 4 an important degeneracy of the epipolar paramet-
rization occurs when an epipolar plane (spanned by the direction of trans-
lation and the visual ray) coincides with the tangent plane to the surface.
This will occur at a finite set of points on the surface where the surface
normal n is perpendicular to the direction of translation:

¢i-n=0. (6.16)
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frontier point  contour generator

epipolar plane

apparent contour

pipolar tangency

epipole

Fig. 6.2. The frontier point and epipolar tangencies in two distinct views.

The contour generator is locally stationary. In fact (See Figure 4.13) con-
secutive contour generators will intersect at a point on the surface called a
frontier point (Rieger 1986 and Giblin et al. 1994)t.

For larger discrete motions (see Figure 6.2) the contour generators defined
by the discrete viewpoints also intersect at points on the surface where the
epipolar plane is tangent to the surface. This is easily seen if we consider
the motion to be linear. c; is then a constant vector, and the frontier point
on the surface at time ¢ satisfies the frontier condition at subsequent times.
The frontier degenerates to a point on the surface. In the discrete case the
frontier points are defined by the condition

Ac-n=0 (6.17)

1 In the image sphere model of Figure 4.13 the epipole e is the intersection of the epipolar great
circle with the baseline ¢; — ¢z, or with the velocity vector c¢; in the limit as the two camera
centres tend to coincidence. Thus the epipolar great circle passes through the epipole in exactly
the same way as, in the image plane model adopted here, the epipolar line passes through the
epipole.
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where Ac = c(t2) — c(t1) and n is the surface normal at the point of inter-
section of the two contour generators.

Property 6.4.1 Epipolar tangency. The frontier point projects to a point
on the apparent contour which is an epipolar tangency, i.e. the epipolar line
1s tangent to the apparent contour.

The property follows directly from the fact that the epipolar plane is also
the tangent plane at a frontier point. Its projection in the two views, u(s)
and u'(s), must be such that its tangent (us(s) and u’s(s)) passes through
the respective epipole (e and €'):

det[e u(s;) us(s;)] =0 (6.18)

where u,(s;) represents the image contour tangent.

The surface curvature can not be recovered at these points since the epipo-
lar parametrization fails (§4.8). However frontier points correspond to real,
fixed feature points on the surface which are visible in both views. Once
detected they can be used to provide a constraint on the epipolar geometry
(Figure 6.3) and hence the viewer motion. In fact they can be used in the
same way as points in the recovery of the epipolar geometry via the epipolar
constraint:

u'(s;) " Fu(s;) = 0. (6.19)

The epipoles and epipolar tangencies in each view completely determine
the epipolar geometry ((Cipolla et al. 1995) and (Astrom et al. 1996)).

Property 6.4.2 Epipolar tangency constraint. Given two images, and
the epipoles e and €', the set of lines through e which are tangent to the ap-
parent contour, and the corresponding set of epipolar tangency lines through
the epipole in the other image, are related by a one-dimensional projective
transformation (since they arise from the same pencil of planes through the
two camera centres).

6.5 Recovery of motion under pure translation

Under pure translation (i.e. the rotation R of §4.3 is constant, or that Q in
§4.3 is zero) the epipolar geometry is completely determined by the position
of the epipole in a single view. The fundamental matrix has the simple
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Fig. 6.3. Epipolar geometry and epipolar tangencies under arbitrary motion. The
epipolar geometry is completely determined by the epipoles and 3 epipolar tangen-
cies in each view.

skew-symmetric form:
F = [e]«. (6.20)

If the camera parameters do not change the position of the epipole is the
same in both views. The epipolar lines have the same directions with cor-
responding image points lying on the same epipolar line (i.e. are auto-
epipolar):

e =¢€
=

The key fact here is that, when there is no rotation, the projection of the
frontier is simply the envelope of apparent contours in rotated coordinates;
generally it is only the envelope when the coordinates are unrotated. See
Property 4.8.1, and (4.8) which, when R(t) is constant, states the (obvious)
fact that p; = Rq;. Note that ps = Rqs always, since this refers to a
particular time for which R will have some particular value.

For a discrete motion we superimpose the two views and find common
tangents to the two consecutive apparent contours instead of the envelope.
See Figure 6.4. We refer to these informally as bitangents (though they
are only tangent to each apparent contour once). The bitangents are in
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Fig. 6.4. Under pure translation the epipolar tangency point moves along the epipo-
lar line since the position of the epipole and the direction of the epipolar lines do
not change. From a minimum of two bitangents of the apparent contour in two
views it is possible to recover the epipole, e.

fact epipolar tangencies and hence the projection of frontier points. The
intersection of at least two distinct tangencies (epipolar lines) is therefore
sufficient to determine the position of the epipole and hence the epipolar
geometry. A simple procedure to find the epipole, and hence the direction
of translation, is described in (Sato and Cipolla 1998).

6.6 General motion

The solution is no longer trivial in the case of arbitrary motion with rotation.
There is in fact no closed form solution since the epipoles are needed to define
the epipolar tangency points and these are needed to determine the epipolar
geometry.

The solution proceeds as a search and optimization problem to find the
position of the epipoles in both views such that the epipolar tangencies in
the first view are related to the set of epipolar tangencies in the second
view by a one-dimensional projective transformation or homography (see
Property 6.4.2 and (6.1)).

A suitable cost function is needed. Geometric distances are used in the
estimation of the fundamental matrix from point correspondences and can
also be used in the case of curves. The geometric distance is computed as
the sum over all tangency points of the square of the distance between the
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Fig. 6.5. Illustration of the cost function to be minimized in the motion estimation
algorithm. From the initial guess of the epipoles the 1D projective transformation
which maps epipolar lines can be determined from a minimum of 3 tangencies.
Epipolar tangencies are then transfered from one image to the other. The length d
is the distance from a tangency point in the first image and an epipolar line obtained
by the transfer of an epipolar tangency from the second image. The distance d' is
found in the same way, interchanging the roles of the images. The cost function is
then the sum Y°(d? +d;?) for each matching pair ¢ of putative epipolar tangencies.

image point and the corresponding epipolar line from the tangency point in
the other view, as shown in Figure 6.5.

The key to a successful implementation is to ensure that the search space
is reduced and that the optimization begins from a good starting point using
approximate knowledge of the camera motion or point correspondences. A
minimum of 7 epipolar tangencies of features which are visible in each image
are required. The solution proceeds as follows.

Algorithm 6.6.1 Motion recovery under general motion and per-
spective projection.

(i) Start with an initial guess or estimate of the epipoles in both views,
e and €.

(ii) Compute the epipolar tangencies, u;(e) and u’;(€'), in both views
respectively. These are points on the apparent contours with tangents
passing through the epipole as defined by (6.18).

(iii) Estimate the elements of the homography (one dimensional projective
transformation) between the pencil of tangencies in both views (6.1).
This can be done linearly by minimizing

Z(h47‘i7'z-’ + h37‘z-’ + hot; + h1)2 (6.21)

7
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Fig. 6.6. Starting point for optimization (above). An initial guess of the position
of the epipoles is used to determine epipolar tangencies in both views and the
homography relating the epipolar lines. For each tangency point the corresponding
epipolar line is drawn in the other view. The distances between epipolar lines
and tangency points are used to search for the correct positions of the epipoles.
Convergence to local minimum after 5 iterations (below). The epipolar lines are
tangent to apparent contours in both views.

&
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by least squares over all pairs (n > 3) of correspondences, 7; and 7;.

(iv) The fundamental matrix is now given by the parametrization of §6.1
and the cost function, i.e. sum of squared geometric distances between
tangency point and corresponding epipolar line, can be computed as
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Fig. 6.7. Local minimum obtained by iterative scheme to estimate the epipolar
geometry from 8 epipolar tangencies in a stereo pair of a Henry Moore sculpture.

below:

1 1
C=2 <<Fuz~>% T | (®Tw0)] + (FT0)]

) (u'zTFui)z.

(6.22)
(v) Minimize the cost function by using the Levenberg-Marquardt algo-
rithm or the conjugate gradient method (Press et al. 1992). The
search space is restricted to the four coordinates of the epipoles only.
This requires the first-order partial derivatives of the cost function
(6.22) with respect to the coordinates of the epipoles which can be
computed analytically but are more conveniently estimated by nu-
merical techniques.

At each iteration of the algorithm, steps (ii) to (v) are repeated, and the
positions of the epipoles are iteratively refined. The search is stopped when
the root-mean-square distance converges to a minimum (usually less than
0.1 pixels). It is of course not guaranteed to find a unique solution and we do
not know whether there is a unique solution. The only case where we know

of a uniqueness theorem is that of circular motion and parallel projection
(Giblin et al. 1994).

Experimental results

A number of experiments were carried out with simulated data (with noise)
and known motion (Figure 6.6). The apparent contours were automatically
extracted from the sequence by fitting B-splines. 5-10 iterations each for
4 different initial guesses for the position of the epipole were sufficient to



6.7 Weak perspective 161

find the correct solution to within an root-mean-square error of 0.1 pixel
per tangency point.

Figure 6.7 shows an example with real data whose apparent contours
are detected and automatically tracked using B-splines snakes. A solution is
found very quickly which minimizes the geometric distances. The solution is
however incorrect and corresponds to a local minimum. As with all structure
from motion algorithms, a limited field of view and small variation in depths
result in a solution which is sensitive to image localisation errors. A more
stable solution can be obtained by considering a simpler projection model
(see below).

Other more practical alternatives include using a planar contour (if present
in the scene) to estimate the 2D projective transformation component, M,
directly. Recall that the fundamental matrix can be factored into:

F = [e/]. M.

We can apply this planar projective transformation, M, to an apparent
contour in the first view. The epipolar constraint can be rewritten as:

u'(s;) " [e']x (Mu(s;)) = 0

and the epipolar geometry between points in this rectified view, Mu(s), and
the second view, u’(s), has now been simplified. This has, in fact, reduced
the general problem to the case of pure translation and is known as projec-
tive reduction (Astrom et al. 1999). The pure translation algorithm can now
be applied to find common tangents to the pairs of apparent contours (anal-
ogous to bitangents) to determine the epipole and hence the full epipolar
geometry.

Finally, analysing extended image sequences, instead of only two views,
avoids convergence to a local minima and results in a more accurate and
better conditioned solution for the epipolar geometry and motion (Astréom
and Kahl 1999).

6.7 Weak perspective

When the field of view is narrow or the depth variation is small compared
with the distance from the camera to the scene, the epipoles will be far
from the image centre, and the epipolar lines will be approximately parallel.
This viewing geometry suggests the use of a weak perspective camera model.
The epipolar geometry under weak perspective is known as affine epipolar
geometry (Shapiro et al. 1995), and assumes that the epipoles will be at
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infinity. This reduces the degrees of freedom of the fundamental matrix
which will then take the form:

F = (6.23)

Q@ O O
St O O
QS T

There are two circumstances when the affine fundamental matriz may be
used. The first is when the weak perspective camera model can be used to
describe the cameras, as described in §5.3. Another favourable situation for
the use of the affine fundamental matrix is when the motion is restricted to
translation orthogonal to the optical axis and rotation about the optical axis.
In this case the affine fundamental matrix can be used even though the weak
perspective camera model is inappropriate. It is important to notice that a
rotation by a small angle around a distant axis is a good approximation for
such motion.

As scale factors are not important, the affine fundamental matrix has
only four degrees of freedom, and can be linearly computed from 4 point
correspondences. Each epipole, being at infinity, is described by a single
parameter, corresponding to its direction in the image plane. This obser-
vation suggests another parametrization for the fundamental matrix, where
the directions of the epipoles are made explicit. If ¢ and ¢’ are the directions
of the epipolar lines in the first and second images, the affine fundamental
matrix can be expressed as

0 0 o sin ¢’
F = 0 0 —a cos ¢ (6.24)
—asing acos¢ VV1—a?—a?

where the parameters a and o are related to the distances between epipolar
lines in each image. The geometric interpretation of the parameters a and
o' can be seen in Figure 6.8. It is easy to show that they are proportional
to the distance between epipolar lines, or, in the notation of Figure 6.8,

a 1 & — df
l ,]: [dl—j]' (6.25)
a V(dadi + dydb)? + (df — dy)? + (dy — dp)2 | %2~

In the affine case the epipolar tangencies will be parallel lines, with di-
rections given by the corresponding epipole, and, as in the perspective,
the epipolar tangencies will touch the apparent contours at corresponding
points. Since the number of degrees of freedom of the affine fundamental
matrix is 4, this will also be the minimum number of epipolar tangencies
necessary for its computation.



6.7 Weak perspective 163

Fig. 6.8. Geometric interpretation of the parametrization of the affine fundamental
matrix presented in (6.24). The orientation of the epipolar lines in each image is
given by the angles ¢ and ¢', and the parameters « and o' are proportional to the
differences of distances d, — d} and d» — di, respectively (see (6.25)).

The algorithm for computing the epipolar geometry from apparent con-
tours under weak perspective is described as follows:

Algorithm 6.7.1 Motion recovery under weak perspective.

(i) Start with initial estimates for the directions of both epipoles, ¢ and
¢

(ii) Determine tangency point correspondences u;(¢) and uj(¢') from
epipolar tangencies consistent with the directions of the epipoles.

(iii) Compute the affine fundamental matrix from the epipoles and the
correspondences. This must be done by using the parametrization
given in (6.24).

(iv) Minimize the sum of geometric distances from the tangency points
on the contours to their corresponding epipolar lines. The search is
restricted to the two directions of the epipoles, and the cost function
is the same as given by (6.22).

Ezxperimental Results

The algorithm was tested on the images shown in Figure 6.7, with the di-
rections of the epipoles initialized at 0°. The recovered epipolar lines are
shown in Figure 6.9. There is some discrepancy between the result obtained
with the general motion algorithm and that obtained by the algorithm for
the affine case. The epipolar geometry found by the algorithm assuming
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Fig. 6.9. Estimated affine epipolar geometry from the apparent contours of the
Moore sequence. The result differs with the one found by the general motion
algorithm shown in Figure 6.7.

weak perspective is consistent with planar motion along the ground plane
and includes an epipolar line parallel with the horizon. This is qualitatively
correct for the motion used in acquiring the images.

6.8 Circular motion

Circular motion is commonly used in model acquisition. An object is placed
on a turntable and a sequence of snapshots are taken from a fixed camera as
the object rotates about a fixed axis. This is equivalent to a stationary object
and a camera undergoing motion with its centre moving on a circle and its
image plane rotating rigidly with it (compare Example 4.1.1). Figure 6.10
shows a sequence obtained by a single camera under circular motion.

The estimation of epipolar geometry under circular motion is considerably
simpler than more general motions. It is possible to exploit features which
remain fixed in the image over the complete sequence. In fact the epipolar
geometry of two views is completely specified with 6 parameters (compared
with 7 in the general motion case). The epipolar geometry for a sequence of n
images can be parametrized with only 54n parameters: each additional view
adding only one additional degree of freedom and with 5 of the parameters
corresponding to features which remain fixed over the whole image sequence,
irrespective of the viewpoints (Fitzgibbon et al. 1998).

Consider circular motion with the camera internal parameters remaining
fixed during the object rotation. The following relationships between corre-
sponding features lead to a simple parametrization of the epipolar geometry
and fundamental matrices (Figures 6.10 and 6.11):
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Fig. 6.10. Five images from a single camera and circular motion after a rotation
of 10°,20°,40° and 80° are shown in (b), (e), (h) and (k). The epipolar geometry
between pairs of images is shown. Epipolar tangencies are found that intersect at
a common axis; lie on a common horizon (above and not shown) and which are
projectively symmetric about this axis shown superimposed onto a single image in

(¢), (F), (i) and (1).

(i) There is no relative motion between the axis of rotation and the
camera. The projection of the axis of rotation in the image, I, is
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(iii)

Recovery of viewer motion from profiles

therefore a fixed image line. Points on the projection of the axis,
l; - u = 0, have correspondences with the same image position:

u=u’

Points on the projection of the axis of rotation must therefore lie
on the corresponding epipolar line drawn in the same image (i.e. are
auto-epipolar). If we superimpose the two pencils of epipolar lines
onto a common image, corresponding epipolar lines must intersect on
the projection of the axis.

The image of the plane of motion containing the camera centres, 1,
remains fixed in the image sequence. We refer to it as the horizon.
All image points on the horizon, 1; - u = 0, have corresponding image
points which lie on the same epipolar line, i.e. are also auto-epipolar:

1=1.

The epipoles are constrained to lie on the horizon. In homogeneous
coordinates a line (the horizon) is defined by two points (the epipoles)

I, =ene.

The rays corresponding to pairs of epipoles superimposed onto a sin-
gle image are bisected by the plane containing the camera centre and
the axis of rotation (i.e. exhibit bilateral symmetry).

There is a fixed point on the horizon, u,, which is the same for all
views and depends on the orientation of the camera relative to the
axis of rotation. As a consequence, the positions of the epipoles on
the horizon are constrained. The cross-ratio of the two epipoles, the
intersection of the axis of rotation and the horizon and the fixed point
on the horizon, is fixed and must correspond to bilateral symmetry
in space (explained below).

All points u which lie on the projection of the axis or the horizon are
auto-epipolar and must therefore satisfy the quadratic form:

u' Fu=0 (6.26)

when l,fu =0or l:u = 0. The condition is satisfied by any skew-symmetric
matrix. The symmetric part of the fundamental matrix (up to an arbitrary

scale factor) is constrained to be of the form

F+F =11] +1,1].
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Property 6.8.1 Epipolar geometry under circular motion. Un-
der circular motion the fundamental matrices, F;j, relating correspondences
i two views in the sequence, i and j, have a special form which can be
parametrized into an anti-symmetric component which depends on a fized
vanishing point on the horizon, us, and a symmetric component which de-
pends only on the image of the axis of rotation, l;,and the horizon, 1j:

Fij =[] + kij [L1) + 141, ] (6.27)

The scaling factor, k;;, depends on the angle between the two views, ¢;;, and
uniquely determines the position of both epipoles once the other 5 parameters
are known.

A derivation of (6.27) follows directly by considering two projection ma-
trices parametrized for circular motion (see (6.34)). The scaling factor, k;;
can be shown to be equal to tan(¢;;/2). The anti-symmetric component re-
sults from symmetry properties of circular motion which will be considered
below. The latter can be used to derive a simpler parametrization of the
fundamental matrix.

Bilateral symmetry under perspective projection

Symmetry properties play a useful role in the recovery of epipolar geometry
under circular motion. These are briefly derived below. Consider the pro-
jection of pairs of points in space which are bilaterally symmetric about the
plane containing the camera centre and the axis of rotation. If the optical
axis intersects the axis of rotation, the projection of point correspondences
will also display bilateral symmetry about the projection of the axis of ro-
tation, l.

The symmetry transformation, T, between corresponding points in the
image, u and u’:

u' = Tu

has a very special structure since it must satisfy T2 = I and must map
points on the axis to themselves. In fact the transformation has eigenvalues
{-=1,1,1} with the eigenvectors with the same eigenvalue defining the image
of the axis of symmetry and the other corresponding to the vanishing point
of the lines of symmetry (i.e. in a direction perpendicular to the axis and
at infinity). See Figure 6.12(a).

The bilateral symmetry is projectively distorted if the optical axis is ro-
tated away from the axis of rotation. Note that the components of rotation
about the optical axis and perpendicular to the axis of rotation leave this
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Fig. 6.11. Epipolar geometry under circular motion. The epipolar geometry of two
views is completely determined by the projection of the axis of rotation, l;, and
the position of the two epipoles. Corresponding epipolar lines intersect on the axis.
Only two epipolar tangencies are required to fix the one-dimensional projective
transformation between pencils of epipolar lines. The epipoles are also bilaterally
symmetric about the axis when the optical axis intersects the axis of rotation (a).
Rotation of the optical axis away from the axis of rotation introduces a projective
distortion with lines of symmetry meeting at a vanishing point us, (b). This point
is a infinity in (a).

symmetry unchanged. Only the component of rotation about an axis parallel
to the rotation axis will result in projective distortion. See Figure 6.12.
Under rotation about the optical centre, image points are mapped by a 2D
projective transformation given by (6.12). The new transformation relating
points in the image which are bilaterally symmetric in space is given by:

T, = M, TMZ!
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where M, is the 2D projective transformation which maps image points
before and after the rotation. The eigenvalues are preserved under this
transformation, leading to the following property (Springer 1964).

Property 6.8.2 Planar projective symmetry transformation. Under
perspective projection, pairs of points in space which are bilaterally symmet-
ric about the plane containing the camera centre and the axis of rotation, are
related in the image by a projective symmetry transformation, T, which can
be represented by a 3 X 3 matrix with 4 degrees of freedom and eigenvalues
{=1,1,1} given by:

u,l]

T,=1-2 (6.28)

1) u,

The transformation is known as a planar harmonic homology and is fixed
by the image of the axis of rotation, l;, and the vanishing point, us. The
latter corresponds to the image of parallel lines of symmetry which map
corresponding points and is known as the centre of the homology. u; is at
infinity in the special case of bilateral symmetry in the image.

The transformation must satisfy T2 = I and maps the point u, and points
on the axis, 1] u = 0, to themselves:

T,u, = —ug (6.29)
T,u = u (6.30)

The transformation can therefore be parametrized by (6.28).

Fundamental matriz under circular motion

The camera centres, epipoles and pencils of epipolar lines are also symmetric
about the axis of rotation. See Figure 6.11. The epipoles are therefore
mapped by the projective symmetry transformation:

e =T,e (6.31)
while corresponding epipolar lines are related by
I'=T,"1=T/1 (6.32)

The projective transformation, T, is in fact a special case of the 2D
projective transformation (homography) between views induced by an arbi-
trary plane (i.e. M in Property 6.3.1) and can be used to define a minimal
parametrization of the fundamental matrix.
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Fig. 6.12. Under perspective projection objects with a plane of symmetry which
passes through the camera centre exhibit a projective symmetry. The axis and
lines of symmetry are shown for different orientations of the camera relative to the
object’s rotation axis. If the optical axis intersects the axis of rotation the sym-
metry is bilateral (a). The amount of projective distortion increases with camera
rotation about an axis parallel to the rotation axis of the object. The projective
transformation for rotations of 20°, 30° and 40° is shown in (b), (c) and (d) re-
spectively. The transformation is completely determined by the axis, 1; and the
vanishing point, us, shown in (e).

Property 6.8.3 Parametrization of fundamental matrix under cir-
cular motion. The fundamental matriz under circular motion can be
parametrized by a single epipole and the planar projective symmetry trans-

formation:
F = [e]« T (6.33)
where
u,l’
T,=1-2—".
¢ 1/ u,

The epipolar geometry of two views is completely determined by a single
epipole, the fixed point us and the projection of the axis of rotation, l;.
Alternatively the two epipoles, e and €', and the projection of the axis of
rotation, 1 can be used. It has only 6 degrees of freedom.
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Computation of epipolar geometry

Consider a pair of views obtained under circular motion. The key observa-
tion with apparent contours is that every epipolar tangency must be trans-
ferred to an epipolar line which remains tangent to the apparent contour in
the other image. The two epipolar lines must also be related by the projec-
tive symmetry transformation and hence intersect at the projection of the
axis of rotation. See Figures 6.10 and 6.11. This provides a very simple
constraint for finding the epipolar tangencies in both views.

If we assume that the positions of the epipoles are known, two epipolar
tangencies are sufficient to fix 1; and thus the epipolar geometry. The posi-
tion of the epipoles is controlled by four degrees of freedom (the coordinates
of the epipoles), and at least four more epipolar tangencies are required to
determine the epipolar geometry of the pair of cameras. The general mo-
tion algorithm can be applied to the two images, exploiting the simplified
parametrization for the fundamental matrix.

With more images better results can be obtained by exploiting the fact
that the horizon, 1;; the projection of the axis of rotation, l;; and the van-
ishing point, u,, remain fixed in all of the images. Each view, in fact, adds
only 1 additional unknown (parameter k;; in (6.27)) corresponding to the
position of one of the epipoles on the horizon. Two epipolar tangencies in at
least four images is sufficient to completely determine the epipolar geometry
and fix the angles of rotation between the views. Results on real images are
as shown in Figure 6.10.

6.9 Envelope of apparent contours under circular motion

Simpler methods exist when viewing an object that undergoes a full rotation
around a fixed axis. The object sweeps out a surface of revolution. In the
image the envelope of the apparent contours is in fact the image of the
envelope of surfaces (a surface of revolution in this case) as described in
§4.12) and (Giblin et al. 1994). If viewed by a camera pointing towards
the axis of rotation, the two contour generators are a bilaterally symmetric
pair with the plane of symmetry passing through the camera centre. In the
image the envelope will also be symmetric about the image of the axis of
rotation. See Figure 6.13.

The symmetry in the image is projectively distorted if the optical axis is
rotated away from the axis of rotation (see Figure 6.12) with the two sides of
the envelope being mapped by the projective symmetry transformation T.
The envelope can thus be used to recover the transformation T. Its eigen-
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Fig. 6.13. Envelope of apparent contours under circular motion. If the optical axis
intersects the axis of rotation the two sides of the envelope are bilaterally symmetric.
Rotation of the optical axis away from the axis of rotation introduces a projective
distortion.

vectors will determine the image of the axis of rotation, l;, and a vanishing
point on the horizon, u;.

Hence the epipolar geometry is determined by only 2 parameters once this
transformation is known, corresponding the position of one of the epipoles.
Alternatively if the horizon is also known, then only one parameter is re-
quired to fix the epipolar geometry. This parameter corresponds to the angle
between the two views or the position of one of the epipoles on the horizon.

Again the key observation with apparent contours is that every epipolar
tangency must be transferred to an epipolar line which remains tangent to
the apparent contour in the other image. See Figure 6.15. By exploiting
symmetry properties, this provides a very simple constraint for finding the
epipolar tangencies in both views. In fact only a one-parameter search is
required to fully compute the epipolar geometry once the transformation T
has been determined as described in the algorithm below.

Implementation

The implementation proceeds in two stages. First the projective symmetry
transformation, T';, is estimated from the envelope of the apparent contours.
Many methods exist to do this, for example, by using invariant descriptions
of planar curves (Sato and Cipolla 1998). Here we choose to find the trans-
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Fig. 6.14. (a) Image 1, 8, 15 and 22 in a sequence of 36 images of a rotating vase. (b)
Envelope of apparent contours produced by overlapping all images in the sequence.
(c) Initial guess (dashed line) and final estimation (solid line) of the image of the
rotation axis.

formation by search (Cham and Cipolla 1996). The second stage involves a
one-parameter search for the epipolar tangencies.

Algorithm 6.9.1 Motion recovery under circular motion.

Estimate the projective symmetry transformation, T from the envelope
of apparent contours:

(i) Extract the envelope of apparent contours, E. This can be obtained
from the family of B-spline snakes used to track the apparent contour.
See Figure 6.14.

(ii) Estimate the 4 parameters of the homography T;(ls, us) by sampling
the envelope at N image points, u, and finding the transformation
which minimizes the sum of the squared distances between the en-
velope and mapped points. Initialization is performed by assuming
bilateral symmetry (i.e. optical axis pointing at axis of rotation).

Search for epipolar tangencies between pairs of images with the following
algorithm:
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Fig. 6.15. Corresponding pair of epipolar tangents near the top and bottom of an
apparent contour in two images.

(i) For each epipolar tangency, assume the orientation of the epipolar
line in the first view is « such that the epipolar line is 1(«).
(ii) Transfer this tangency to the other apparent contour by computing

() =T]1(a)

and compute the geometric distance to the apparent contour.
(iii) Update « (one-parameter optimization problem) which minimizes the
geometric distance.

Figure 6.16 shows the cost function for the top and bottom epipolar tan-
gencies of the apparent contours of Figure 6.15. A minimum of two epipolar
tangencies uniquely define the epipoles and the epipolar geometry.

An alternative to performing the one-parameter search is to map the
apparent contour of one view into the other view by using the projective
symmetry transformation. The two epipoles have been mapped to a single
point and common tangents to the pair of apparent contours (referred to
as bitangents for convenience) define the epipoles uniquely. This is exactly
the same method exploited under pure translation and projective reduction.
Again the epipolar geometry between the apparent contour in the rectified
image, Tsu(s;), and the second image has been reduced to the case of pure
translation:

u'(s;) " [€']x(Tsu(s;)) = 0.

See Figure 6.17(a) and (b). Note that this computation is ill-conditioned
when the apparent contours display symmetry about the projection of the
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Fig. 6.16. Plot of the cost function for the pair of apparent contours shown in
Figure 6.15. The cost function related to the orientation (in radians) of the epipolar
lines for an epipolar tangency near the top of the apparent contour (a) and bottom

(b).

axis. This is well-known to pyschophysicists who have reported a similar
result in experiments on the human perception of shape from profiles (Pollick
1994).

Recovery of projection matrices

After computing the fundamental matrices, the projection matrices can
be recovered for each viewpoint. If the camera internal parameters are
known this is straightforward and follows the decomposition of §6.2. See
Figure 6.18.

In the following we provide an alternative. Without loss of generality, we
can fix the reference coordinate system to be centred at the axis of rotation,
with the Z axis aligned with the axis of rotation. The X axis can be aligned
with the ray defined by the intersection of the horizon and the projection of
the axis of rotation. The projection matrices are then given by (Fitzgibbon
et al. 1998)

cosgp; sing; 0 —p
P(¢;) =KRg | —sin¢g; cos¢; 0 0 (6.34)
0 0 1 0

and defined up to a 2D projective transformation KRg where Ryg is the ori-
entation of the camera relative to the reference coordinate system attached
to the turntable. This transformation is completely fixed by the 3 vanishing
points in the image plane corresponding to the directions of the reference
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Fig. 6.17. Exploiting symmetry. The one-dimensional parameter search to find the
tangencies can by avoided by exploiting the projective symmetry transformation.
The original contours with symmetry axis (a). Common tangents (bitangents) to
the apparent contour and transformed apparent contour from other view uniquely
determine the epipolar geometry (b). The epipolar geometry for the pair of images
is shown in (c) and (d).

coordinate system,

KRO = [uX uy uz] .

Two of the vanishing points have already been determined directly from im-
age measurements alone. The intersection of the horizon and the projection
of the axis of rotation rotation, ux = 1 Aly, is in fact the projection of the
X axis. The vanishing point corresponding to the Y axis is the fixed point,
uy = Ug, i.e. the vanishing point of the lines of symmetry in (6.28). Note
that both of these can be obtained without knowledge of internal camera
parameters.

The last component of orientation requires the position of the vanishing
point of lines parallel to the axis of rotation. This must lie on the projection
of the axis of rotation. The direction in space is of course perpendicular
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to the others and can be computed up to an arbitrary sign from the other
vanishing points if the camera calibration parameters are known. For an un-
calibrated camera with unknown internal parameters an ambiguity remains
in the orientation of the camera and leads to a 3D projective ambiguity in
the reconstructed surface (Fitzgibbon et al. 1998).

The angles of rotation, ¢;, can be recovered from the position of the
epipole in each image. Projecting the camera centre of the first viewpoint
(¢ =0), c = (p,0,0), into view i gives the epipole position:

cos¢; — 1
e; = KRy sin ¢;
0

or alternatively (up to an arbitrary scale):

e, =u; — tan(%)u){. (6.35)

As noted before the epipoles are constrained to lie on the horizon. The
arbitrary scale and angles can be recovered from a minimum of three views,
even when the cameras are uncalibrated.

The epipolar geometry and the recovered projection matrices under cir-
cular motion have proven to be extremely reliable. In combination with the
methods of reconstruction presented in Chapter 5, it is now possible to ac-
quire a three-dimensional model of an arbitrary object placed on a turntable
in front of a fixed camera. Both the estimation of camera motion and the re-
construction can be made to be fully automatic. Extensions to more general
motions are in progress.
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Fig. 6.18. (a-c) Final configuration of the estimated motion of the cameras. (d)
Estimated angles of rotation.



Afterword

We have tried to show in this book that the visual geometry of curves and
surfaces is a rich field for mathematical and experimental investigation. (It
has kept us busy for the last decade or so.) On the mathematical side, we
have developed enough of the geometry of surfaces to show how apparent
contours can, in principle, be used to reconstruct the surfaces of objects in
the environment, using a calibrated camera with known motion. We hope
that, in fact, the discussion of surface geometry will serve as an introduction
and reference for anyone wishing to apply this powerful theory to problems in
computer vision. On the experimental side, we have shown how the theory
can be put into practice, even in the very difficult case of uncalibrated
cameras with restricted but not fully known motion. It is, to our minds,
very surprising that any useful information can be obtained from apparent
contours in this situation. This brings us back to mathematical questions of
uniqueness of reconstruction: could the data be consistent with two different
restricted motions of a camera viewing different objects? The method we
presented is iterative, and it is possible that iteration does not lead to a
unique solution. Even harder is the question of whether motion and object
can be recovered from apparent contours when the camera motion is not
restricted, and, correspondingly, whether the answer is unique. These are
problems for future investigation by ourselves or others. We hope that we
have shown that there are highly practical problems to be solved here, and
also that there is elegant and powerful mathematics at hand with which to
attack them.
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of image data, 146

projection matrix, see canonical cameras
null space

essential matrix, 149

fundamental matrix, 134

projection matrix, 135

opaque surface, 63
optical axis, 126, 127
optical centre, 58
optimization
conjugate gradient, 160
orthogonal projection, 57, 64
orthographic projection, see orthogonal
projection
osculating circle, 22, 23, 136, 138
osculating plane, 22, 23, 75

parabolic curve, 47

on surface of revolution, 49
parabolic point, 26, 27, 37, 65, 70, 76

characterization, 38

condition for, 41

flat, 38, 77
paraboloid of revolution, 26
parameter plane, 7
pencil of lines, see epipolar lines, see epipolar

lines

perspective projection, 58, 69, 126
planar homology, 167
plane at infinity, 153

homography, 151
points on lines

projective representation, 131, 134
polar plane, 17, 18
Pollick, F., 3, 154, 160, 171, 175
Porteous, I.R., 47
principal curvature, 34

ellipsoid, 46

hyperboloid, 46

of special Monge form, 43
principal curve, 47

on surface of revolution, 49
principal direction, 14, 34, 35, 36, 40, 44, 47

of special Monge form, 43

on cylinder, 39

on saddle surface, 40

on sphere, 39
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principal point, 126 from planar motion, 88
projection invariance of, 31
orthogonal, see orthogonal projection matrix of, 29
orthographic, see orthogonal projection of Monge form, 41
parallel, see orthogonal projection reparametrization, 35
perspective, see perspective projection singular, 38
projection matrix, 125, 128 special Monge form, 43
calibration, 129 section curvature
circular motion, 175 formula for, 33
from essential matrix, 150 sectional curvature, 33
normalization, see canonical cameras along contour generator, 65, 70, 78, 100
null space, 135 along ray, 65, 70, 100
projective ambiguity, 134, 153 as curvature of section, 43
projective reconstruction, 134, 135, 150, 152 Euler formula, 44
projective reduction, 161, 174 formula for, 33, 43, 44
projective representation maxima and minima, 33
lines, 134 self-calibration, 149
points, 126 shape operator, 32
points on lines, 131 eigenvectors, 34
projective symmetry matrix of, 32
estimation, 173 of Monge form, 41
transformation, 167, 169 Shapiro, L., 161
projective transformation singular value decomposition, 130
estimation, 159 essential matrix, 149
one-dimensional, 147, 149, 155, 159 factorization of essential matrix, 150
three-dimensional, 152, 153 factorization of fundamental matrix, 152
two-dimensional, 151, 152 skew-symmetric matrix
pure translation, see camera motion vector product, 133
bitangents of apparent contours, 157 smoothing, 120
frontier points, 157 Soares, M.G., 66, 113
Sotomayor, 47
QR decomposition, 130 spatio-temporal image, 137
quadric surface, 16, 18, 46, 72 spatio-temporal surface, 106, 106, 108, 109
cone of rays, 72 sphere
quaternion, 149 apparent contour, 68, 70
cone of rays, 73
Rayleigh’s principle, 34 conjugate directions, 39
reconstruction, 136 contour generator, 68, 70
projective, 150 first fundamental form, 21
Rieger, J.H., 3, 83, 154 latitude and longitude, 10
Roberts, L.G., 125 Monge form, 15
rotated coordinates, 90, 91, 92, 109 Monge patch, 16
rotation parametrization, 8
constant, 93 principal direction, 39
estimation using quaternion, 149 Springer, C., 169
from essential matrix, 150 stereo
infinitesimal, 93 baseline, 131, 132
instantaneous axis, 93 geometry of, see epipolar geometry
matrix, 125 triangulation, 131, 140
rotation of object, 86, 92 stereographic projection, 9, 9
ruled quadric, 146 structure from motion, 145
Rycroft, J.E., 3, 116, 154, 160, 171 surface
graph, 21
saddle surface, 26, 39, 40, 46 immersed, 7
Sato, J., 157, 173 implicit form, 15, 46
scaled orthographic projection, see weak intersection with tangent plane, 15
perspective opaque, 62, 65, 70, 113
second fundamental form, 30 parametrized, 7
diagonal, 32 reconstruction of, 83
evaluation, 30 rotating, 86, 92

from following cusps, 113 semi-transparent, 62
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as envelope of spheres, 116
envelope under circular motion, 171
flecnodal curve, 53
normal, 50
principal curve, 48, 49, 49

swallowtail, 101, 101, 102

symmetry
bilateral, 167, 170, 171, 172
envelope of apparent contours, 171
epipoles under circular motion, 167
projective, 169, 170
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tangent
curve, 5
tangent cone of rays, 60
tangent developable, 20, 39, 40
cusp edge, 39
tangent plane, 8
bilinear form, 19
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intersection with surface, 26
meeting surface, 27, 29
reconstruction of, 89
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Terzopoulos, D., 122
torsion, 22
torus, 12, 13, 27, 49, 114, 115
transformation
rigid-body, 125, 127
translation
from essential matrix, 150
sign ambiguity, 150
transverse curvature, 65, 70, 100
triangulation, 131, 140
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tubular surface, 114

umbilic, 47
uncalibrated camera, 150
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vector proof, 79, 80

velocity, 5

Vieville, T., 151

view direction, 57
asymptotic, 65

visual events, 101

visual ray, 57, 58, 129
asymptotic, 70
closest approach, 96, 99
in asymptotic direction, 66, 71
mapping from pixel, 128

weak perspective, 57, 128
condition for, 129
Weingarten map, 33
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