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Preface

Computer Vision is the automatic analysis of sequences of images for the
purpose of recovering three-dimensional surface shape. In recent years, sev-
eral branches of mathematics, both ancient and modern, have been applied
to computer vision. Projective geometry, which in its mathematical form
dates back at least two centuries, is used to describe the relationship be-
tween points and lines in different images of the same object. Differential
geometry, which is even older, though it received its definitive modern look
in the first half of the nineteenth century, is used to describe the shape of
curves and surfaces. More recently developments in singularity theory have
enriched the field of geometry by making possible a wealth of detail only
dreamed of fifty years ago. Likewise, developments in the speed and power
of computers over the last decade have turned other dreams into reality, and
made possible real-world applications of mathematical theory.
The goal of this book is to reconstruct surfaces from their ‘apparent con-

tours’, that is the outlines which they present to us when we view them from
a distance. It is not obvious that these apparent contours contain enough
information to reconstruct an unmarked smooth surface at all. It is even
less obvious that without accurate knowledge of the observer’s motion they
contain this information; in fact, at the time of writing, we do not know in
generality whether this is true. We have, however, successfully implemented
the reconstruction when the observer’s motion is only partly known – that is,
when it is constrained to be of a special kind called circular motion. Other
work on more general motion is in progress.
Chapter 1 is introductory, and Chapters 2 to 4 introduce the mathematical

ideas and techniques necessary to the study of surfaces and their apparent
contours under viewer motion. In Chapters 5 and 6 we bring the mathe-
matics to life with the latest techniques in photogrammetry and computer
vision. We describe the real-time implementation of the theory with real
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viii Preface

image sequences. We show that in practice apparent contours can be used
effectively to reconstruct both motion and surface shape.
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Introduction

We have tried to make our book self-contained. The underlying differential
geometry and singularity theory is explained with minimal prerequisites in
Chapter 2. We hope that this chapter will prove of value to anyone who
wishes to apply differential geometry to vision problems. To follow the
main thrust of this chapter the reader only needs a working knowledge of
calculus and linear algebra. Most of the material is quite well known, but the
slant given here is towards applications, and we have tried to illustrate the
material with many examples and figures. In particular, we study curvature
of surfaces and special curves on surfaces such as parabolic and flecnodal
curves. We make much use of the idea of contact, between surfaces and
lines or planes. It is this idea which links classical differential geometry
with modern singularity theory, where geometrical properties are studied
by means of functions or mappings which in turn measure contact.
In Chapter 3 we introduce the main character in our story, the apparent

contour. Apparent contours are the outlines or profiles of curved surfaces.
An example is shown in Figure 1.1. We describe apparent contours under
orthographic projection and for perspective projection, and we describe in
detail the singularities which a single apparent contour can be expected
to have. We also obtain geometrical information about surfaces from a
single apparent contour, though this is necessarily limited. Initially results
are stated, but we give three different approaches to proofs, ‘Monge-Taylor
proofs’, which rely on special coordinate systems which are very powerful
for proving results about surfaces; ‘vector proofs’, which are coordinate-
free but require more experience to use effectively; and ‘pure geometric
proofs’, which are more like thought experiments but can sometimes yield
the greatest intuition.
An excellent modern reference for applications of projective geometry to

computer vision is O.D. Faugeras’ Three-Dimensional Computer Vision. On
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2 Introduction

the differential geometry side, another book from which we, and others, have
drawn inspiration is J.J. Koenderink’s now classic Solid Shape, published in
1990. Koenderink’s book is replete with geometric proofs and statements,
but sometimes lacks mathematical detail. We have tried to supply some of
this detail in Chapters 2 and 3 of our book.
In Chapter 4 we introduce dynamic contours. That is, we progress from

a single view of a surface to multiple views, from which we can expect to
derive much more information. In fact, in principle, a complete reconstruc-
tion of a surface is possible from a family of apparent contours obtained
by circumnavigating a surface. (Unfortunately in practice some parts of a
surface may be occluded by other parts, and in addition apparent contours
may be hard to track.) The ‘in principle’ reconstruction was first estab-
lished for orthographic projection in Giblin and Weiss (1987), and this was
generalized and placed in a better mathematical framework by Cipolla and
Blake (1990 and 1992).
We describe the dynamic analysis for orthographic and perspective pro-

jection, and introduce the important idea of an epipolar parametrization.
We also give a brief introduction to circular motion, which will play a major
role in the last chapters of the book. The epipolar parametrization breaks
down in certain circumstances, one of which is the ‘epipolar tangency’ situ-
ation. This is bad news for reconstruction but, surprisingly, very good news
for determining motion. In fact the so-called frontier points which arise from
epipolar tangency are instrumental in giving us information about the mo-
tion of the observer, something we exploit in Chapter 6. Other breakdowns
of the epipolar parametrization are caused by degeneracies of the apparent
contour – the ‘visual events’ which we observe when moving our viewpoint
– and we list the possible cases and explain their geometrical significance.
In Chapter 5 we bring the mathematical techniques to life and describe

the implementation of algorithms to reconstruct a surface from the image
sequence of outlines. Details of every stage in the reconstruction, from raw
pixel intensities to a stable description of the three-dimensional surface, are
given. These include the calibration of cameras, localization and tracking of
outlines, epipolar geometry and stereo reconstruction.
In Chapter 6 we address the more difficult problem of recovering the ob-

server’s motion from the apparent contours in different views. The recovery
of the three-dimensional configuration of points and the motion compati-
ble with their views (known as structure from motion) has been an active
area of research in computer vision over the last two decades and a large
number of algorithms and working systems already exist. We review the
key results in the literature, in many cases providing simple geometric and



Introduction 3

algebraic proofs. Finally we show how the motion of the viewer can be
computed from apparent contours instead of points, by using properties of
the frontier. The significance of frontier points seems to have been noticed
first by J. Rieger (1986), and they were then applied to circular motion and
orthographic projection in (Giblin et al. 1994), where it is proved that re-
covery of motion is essentially unique in this simple case. The extension to
general motion and perspective projection was presented by (Cipolla et al.
1995) and (Aström et al. 1996 and 1999), where an iterative algorithm gives
good results in many cases. We present the latest techniques for estimating
the camera motion. A particularly simple and reliable method is presented
for recovering the motion of objects on turntables, known as circular mo-
tion. This exploits symmetry of the envelope of apparent contours. This
has been used to acquire three-dimensional models of arbitrary objects from
an uncalibrated camera.
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Fig. 1.1. Two views of a semi-transparent surface (sculpture) by David Begbie.
For curved surfaces, the dominant image feature is the apparent contour or outline.
This is the projection of the locus of points on the surface which separate visible and
occluded parts. The apparent contours are rich sources of geometric information.
In particular, their deformation under viewer motion can be used to recover the
geometry of the visible surface. The geometry of the viewpoints can also be inferred.
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Reconstruction of surfaces from profiles

In this chapter we describe the implementation of the theory of Chapter 4
and show how to recover the geometry of a surface from an image sequence
of apparent contours (profiles) from different viewpoints.

The algorithms are described in sufficient practical detail to allow the
reader to implement the theory. Details are given on the localization and
tracking of apparent contours; the recovery of the viewpoint geometry and
camera calibration; the epipolar parametrization of the spatio-temporal fam-
ily of apparent contours; and the reconstruction of surfaces. These algo-
rithms have been used in a real-time system to recover the geometry of
visible surfaces from apparent contours under known viewer motion. Exam-
ples are given.

5.1 Localization and tracking of apparent contours

A monochrome video image can be digitized into a pixel array of quantized
(discrete) intensity values which can be represented by a matrix I(u, v) where
u, v here refer to the column and row position of the pixel respectively. A
typical image is shown in Figure 5.1(a). Its size is 512×512 and the intensity
value of each pixel is sampled to an accuracy of 8 bits giving 256 brightness
values varying from 0 (black) to 255 (white).

The projections of surface markings, surface edges and contour genera-
tors appear as fragments of image curves across which there is an abrupt
change in intensity. These image curves or contours can be extracted by
first detecting the position of intensity discontinuities (edge detection) and
then representing aggregates of edges analytically with B-splines.
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120 Reconstruction of surfaces from profiles

(a) (b)

Fig. 5.1. Edge detection.

Edge detection

Edges can be detected by localizing the maxima of intensity gradients after
convolution with a smoothing filter. The smoothing filter helps reduce the
effect of image noise on the derivative operation used to find the intensity
gradient. A typical edge detection algorithm (Canny 1986) involves the
following the steps to smooth the image and to localize the maxima.

Algorithm 5.1.1 Edge detection.

(i) The image is smoothed by convolution with a smoothing filter Gσ(i, j):

S(u, v) =
n∑

i=−n

n∑

j=−n

Gσ(i, j)I(u − i, v − j)

where the filter kernel is of size (2n+1) and is a discrete approxima-
tion for the Gaussian function:

Gσ(i, j) =
1

2πσ2
exp

[

−
(
i2 + j2

2σ2

)]

.

(ii) The gradient, ∇S, of the smoothed image S(u, v) is then computed
at every pixel. Differentiation is performed using a finite-difference
approximation.

∇S(u, v) =

[
S(u+ 1, v)− S(u, v)
S(u, v + 1)− S(u, v)

]

Figure 5.1(b) shows |∇S| for the image of Figure 5.1(a).
(iii) Edge elements, or edgels, are placed at locations where |∇S| is a local

maxima in the directions ±∇S and is above a threshold.
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Fig. 5.2. The cubic B-spline.

The representation of the image contours as a linked chain of edge el-
ements or edgels is not very compact and does not lend itself readily to
the sub-pixel localization of the image curve and the computation of image
curvature. An alternative is to automatically fit an algebraic, parametrized
curve to the chain of edgels of interest. The representation is now extremely
compact (only the coefficients of the curve’s equation need be stored) and
the smoothness and continuity of the curve are implicit.

B-spline curve representation

A natural choice for the curve parametrization is the B-spline, which is
widely used in computer graphics (Bartels et al. 1987). A cubic B-spline is
specified by m+1 control points Q0,Q1, . . . ,Qm and comprises m− 2 cubic
polynomial curve segments u3,u4, . . . ,um. The joining points between each
curve segment are known as knots. The equation of each curve segment is

ui(s) =
1

6

[
s3 s2 s 1

]

⎡

⎢⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

Qi−3

Qi−2

Qi−1

Qi

⎤

⎥⎥⎥⎦
(5.1)
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(a) (b)

Fig. 5.3. Initialization of the B-spline snake.

for 0 ≤ s < 1 and 3 ≤ i ≤ m. See Figure 5.2. B-splines are ideal for
representing curves and fitting to image edges. They may be open or closed
as required, and are defined with continuity properties at each point and
knot. The flexibility of the curve increases as more control points are added:
each additional control point allows one more inflexion. It is also possible to
use multiple knots to reduce the continuity at knots. They also exhibit local
control : modifying the position of one control point causes only a small part
of the curve to change.
A number of methods exist to fit B-splines to image edges. An automatic

scheme that selects the number of control points and their image positions is
described in (Cham and Cipolla 1999). In the following we describe a simpler
algorithm to localize and track image contours using a variant of snakes or
active contours (Kass et al. 1988) which use B-splines (Cipolla and Blake
1990, Blake and Isard 1998). The snake is a computational construct, a
dynamic curve, which is able to track moving and deforming image contours.

Tracking image curves with B-spline snakes

B-splines can be fitted to image edges by the following iterative algorithm:

Algorithm 5.1.2 B-spline snake.

(i) Initialize a B-spline by placing control points Q0,Q1, . . . ,Qm near
the image edge. An example is given in Figure 5.3.

(ii) Select a number of evenly spaced sample points, N , along each seg-
ment of the B-spline, ui(s). The sample points are given by ui(sj)
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Fig. 5.4. The B-spline snake. B-spline snakes can be used to localize image con-
tours. The control points, Q0,Q1, . . . ,Qm, are positioned iteratively to minimize
the normal displacements (shown as arrowed vectors) between the spline segments
and nearby edge features.

where i = 3, . . . ,m and j = 0, . . . , N . Typically N > 10 for each
segment, ∆s < 0.1 between samples.

(iii) From each sample point search along the normal to the spline for
edges in the image and calculate the distance to the nearest edge.
See example in Figure 5.4.

(iv) Move the control points to minimize the sum of squares of the dis-
tances between the discrete data points of the image feature and the
B-spline approximation. This is a standard least squares problem and
we can compute the new control point positions (Cipolla and Blake
1992).

(v) Repeat steps (iii) and (iv) until the algorithm has converged to pro-
duce a spline which localizes the image contour.

As the B-spline snake approaches the image contour the scale at which
the edge search takes place can be reduced to enable accurate contour lo-
calization. After localization the same algorithm is used to track the image
contour over the image sequence, provided the inter-frame image motion is
less than the search (capture) window of the snake.
Since accurate measurements are required to compute surface geometry,

care has been taken over sub-pixel resolution. At earlier stages of tracking,
when coarse blurring (large scale) is used, the capture range of the snake
is large but localization is poor – the snake may lag behind the contour.
Once the snake has converged on to the contour, standard edge-detection
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(a) (b)

(c) (d)

Fig. 5.5. A B-spline snake can localize and track the image contours over an image
sequence.

techniques such as smoothing for sub-pixel resolution (Canny 1986) can be
used to obtain accurate localization.
Figure 5.5 shows a sequence of images and a B-spline snake which has been

used to localize and track the apparent contour of a surface. The output
of the tracking algorithm is a family of image contours, u(s, t), which are
parametrized by the spline parameter s and indexed by the time, t, when
the image was taken. In the next section we show how to normalize and
parametrize this family of image contours to recover the spatio-temporal
family of apparent contours in the reference coordinate system, p(s, t). The
latter will be used to recover the geometry of the surface.

5.2 Camera model for perspective projection onto image plane

To reconstruct the surface we require the mapping from image plane pixel
coordinates, u, to visual rays in the fixed world coordinate system, p. This
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is determined by transformations describing the position and orientation of
the coordinate system attached to the camera relative to the world coordi-
nate system; perspective (central) projection onto the image plane and the
geometry of the CCD array. These three transformations are derived below
and can be conveniently written as a 3×4 projection matrix (Roberts 1965).

Property 5.2.1 The projection matrix. Under perspective projection
the map between the three-dimensional world coordinates of a point (X,Y,Z)
and its two-dimensional image plane pixel coordinates (u, v) can be written
as a linear mapping in homogeneous coordinates and represented by a 3× 4
projection matrix:

⎡

⎢⎣
ζu
ζv
ζ

⎤

⎥⎦ =

⎡

⎢⎣
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

⎤

⎥⎦

⎡

⎢⎢⎢⎣

X
Y
Z
1

⎤

⎥⎥⎥⎦ . (5.2)

Rigid-body transformation

Consider a coordinate system X = (X,Y,Z) attached to the world reference
frame, and another coordinate system Xc = (Xc, Yc, Zc) attached to the
camera at position c(t), where the optical axis is aligned with Zc. See
Figure 5.6. In terms of the notation of Chapter 4 and §4.3, the camera
centre c is the origin of the Xc coordinate system and we write R for the
geometrical rotation which has 3 × 3 matrix R. The measurements in the
different coordinate systems are given by:

r = X = c+ λp, Xc = λq, p = Rq.

For apparent contours, r,X,Xc,λ,p and q are functions of two variables
s and t, while R and c are functions of time t alone. Recall that λ is the
depth measured along the ray from c and the unit vector p is the direction
(in world coordinates) of a surface point r from c while the unit vector q is
the direction in camera coordinates of the same point.
The camera and reference coordinate systems are related by a rigid body

transformation:

X = RXc + c (5.3)

Xc = R⊤(X− c) (5.4)

which are conveniently represented with a rotation matrix and a translation
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vector, t, by:
⎡

⎢⎣
Xc

Yc

Zc

⎤

⎥⎦ =

⎡

⎢⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎥⎦

⎡

⎢⎣
X
Y
Z

⎤

⎥⎦+

⎡

⎢⎣
tX
tY
tZ

⎤

⎥⎦ (5.5)

where the translation vector is related to the position of the camera centre
by

t = −R⊤c.

Perspective projection onto the CCD image plane

Perspective projection onto the imaging plane followed by the conversion of
image plane coordinates into CCD pixel coordinates, (u, v), can be modelled
by

u = u0 + αu
Xc

Zc
(5.6)

v = v0 + αv
Yc

Zc
(5.7)

where the CCD array axes are assumed aligned with the Xc and Yc axes;
(u0, v0) is the principal point (the point of intersection of the optical axis
and the image plane); αu and αv are image scaling factors. These four
parameters are known as the internal camera parameters. The ratio αv/αu

is known as the aspect ratio.

Projection matrix

The relationship between image pixel coordinates and rays in Euclidean
3-space can now be expressed succinctly by introducing homogeneous coor-
dinates to represent image points with 3-vectors and points in 3-space by
4-vectors, defined up to arbitrary scales (e.g. ζ). Homogeneous (projective)
coordinates are often used in projective geometry and allow us to represent
projective transformations as a matrix multiplications. By concatenating
the matrices for the transformations described above the relationship be-
comes:

⎡

⎢⎣
ζu
ζv
ζ

⎤

⎥⎦ =

⎡

⎢⎣
αu 0 u0
0 αv v0
0 0 1

⎤

⎥⎦

⎡

⎢⎣
r11 r12 r13 tX
r21 r22 r23 tY
r31 r32 r33 tZ

⎤

⎥⎦

⎡

⎢⎢⎢⎣

X
Y
Z
1

⎤

⎥⎥⎥⎦
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Fig. 5.6. Camera model and camera and reference coordinate systems. X = c+λp
and X = c+RXc.

(a) (b)

Fig. 5.7. Camera calibration. A camera is calibrated by processing an image of
a calibration grid (a). The image positions of known 3D points on the grid are
extracted automatically. Edge detection is followed by fitting lines to the image
segments. Intersections of lines are used to localize the image features to sub-pixel
accuracy (b).
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or more simply as the 3 × 4 projection matrix representing the perspective
projection of a point in space onto a digitized image given in Property 5.2.1
where equality is defined up to an arbitrary scale.

u = PX (5.8)

The projection matrix, P, is not a general 3×4 matrix. It has 11 parameters
(since the overall scale does not matter) and it can be decomposed into a 3×3
upper triangular matrix of camera internal parameters called the camera
calibration matrix, K, and a matrix representing the rigid-body motion.
The mapping from an image point to a visual ray in 3-space is expressed

in homogeneous coordinates and up to an arbitrary scale by:

u = Kq (5.9)

u = KR⊤p (5.10)

5.3 Camera model for weak perspective and orthographic
projection

A useful approximation to perspective projection occurs when the field of
view is narrow or the depth variation along the line of sight is small compared
with the distance from the camera to the scene. The camera model can then
be simplified to weak perspective and (5.6) and (5.7) can be re-written as:

u = u0 + αu
Xc

Zo
(5.11)

v = v0 + αv
Yc

Zo
. (5.12)

The difference with perspective projection is that all image points are scaled
uniformly by Zo, the mean distance of the features of the scene to the camera
centre. Weak perspective can in fact be considered as the orthographic
(parallel) projection of all points onto the plane Zc = Z0 followed by a
perspective projection to give a uniform inverse-depth scaling. It can be
represented by the transformation:

⎡

⎢⎣
ua
va
1

⎤

⎥⎦ =

⎡

⎢⎣
αu 0 u0
0 αv v0
0 0 1

⎤

⎥⎦

⎡

⎢⎣
r11 r12 r13 tX
r21 r22 r23 tY
0 0 0 Zo

⎤

⎥⎦

⎡

⎢⎢⎢⎣

X
Y
Z
1

⎤

⎥⎥⎥⎦

If the principal point of a camera is (u0, v0), the variation of depth in the
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scene is ∆Z along the optical axis and the mean distance of the features of
the scene to the camera is Z0, the difference of the image of a point taken
from a perspective camera (u, v) and its image with the weak perspective
camera, (ua, va) is given by

u− ua = (u− u0)∆Z/Zo (5.13)

v − va = (v − v0)∆Z/Zo. (5.14)

When the field of view is narrow, the terms u− u0 and v− v0 will be small.
In this case, or when the depth variation of the scene is much smaller than
its mean depth, e. g. ∆Z/Z0 < 0.1, the error due to the weak perspective
appproximation is negligible.
Orthographic projection can be modelled in exactly the same way but

with no scaling due to depth by setting Zc = f .

5.4 Camera calibration

For reconstruction we require the camera centres, c(t), and the rays p(s, t).
These can be obtained from the projection matrix for each viewpoint. Cam-
era calibration is the name given to the process of recovering the projection
matrix from an image of a controlled scene. For example, we might set up
the camera to view the calibrated grid shown in Figure 5.7(a) and automat-
ically extract the image positions of known 3D points (Figure 5.7(b)). Each
image point, (ui, vi), of a known calibration point, Xi, Yi, and Zi, generates
two equation which the elements of the projection matrix must satisfy:

ui =
ζui
ζ

=
p11Xi + p12Yi + p13Zi + p14
p31Xi + p32Yi + p33Zi + p34

vi =
ζvi
ζ

=
p21Xi + p22Yi + p23Zi + p24
p31Xi + p32Yi + p33Zi + p34

.

These equations can be rearranged to give two linear equations in the 12
unknown elements of the projection matrix. For n calibration points and
their corresponding image projections we have 2n equations:

⎡

⎢⎢⎢⎣

X1 Y1 Z1 1 0 0 0 0 −u1X1 −u1Y1 −u1Z1 −u1

0 0 0 0 X1 Y1 Z1 1 −v1X1 −v1Y1 −v1Z1 −v1
...

...
...

...
...

...
...

...
...

...
...

...
Xn Yn Zn 1 0 0 0 0 −unXn −unYn −unZn −un

0 0 0 0 Xn Yn Zn 1 −vnXn −vnYn −vnZn −vn

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11
p12
p13
p14
p21
p22
p23
p24
p31
p32
p33
p34

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.
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Since there are 11 unknowns (scale is arbitrary), we need to observe at least
6 reference points to recover the projection matrix and calibrate the camera.

Numerical considerations

The equations can be solved using orthogonal least squares. First, we write
the equations in matrix form:

Ax = 0 (5.15)

where x is the 12× 1 vector of unknowns (the 12 elements of the projection
matrix, pij), A is the 2n × 12 matrix of measurements and n is the num-
ber of observed calibration points. A linear solution (least squares) which
minimizes ||Ax|| subject to ||x|| = 1 is obtained as the unit eigenvector
corresponding to the smallest eigenvalue of A⊤A. Numerically this com-
putation is performed via the singular value decomposition of the matrix
(Strang 1988)

A = UΛV⊤

where Λ = diag(σ1,σ2, . . . ,σ12) is the diagonal matrix of singular values
and the matrices U and V are orthonormal. The columns of V are the
eigenvectors of A⊤A and the least squares solution is given by the last
column of V which is the singular vector with the smallest singular value
σ12. The least squares solution is, however, only approximate and should
be used as the starting point for non-linear optimization: i.e. finding the
parameters of the projection matrix, P, that minimize the errors between
measured image points, (ui, vi) and the projections onto the image plane of
the reference points:

min
P

∑

i

||(ui, vi)−P(Xi, Yi, Zi, 1)||2

Once the projection matrix has been estimated the first 3× 3 submatrix,
KR⊤, can be easily decomposed by standard matrix algorithms into an
upper triangular matrix, K, and a rotation (orthonormal) matrix (known
as QR decompositon) or used directly to determine the ray in space p and
the position of the camera centre:

p = RK−1u (5.16)

c = −RK−1(p14, p24, p34)
⊤. (5.17)
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5.5 Epipolar geometry

Epipolar geometry plays a key part in the algorithms to recover the ge-
ometry of surfaces from apparent contours. The epipolar parametrization
of the spatio-temporal family of apparent contours, p(s, t), introduced in
Chapter 4, requires the epipolar geometry between successive snapshots of
an apparent contour.
We briefly review the geometry of two views and describe how to compute

the epipolar geometry when the cameras are calibrated. The use of uncal-
ibrated cameras and the recovery of the epipolar geometry from apparent
contours is described in Chapter 6.

The epipolar constraint

In stereo vision the projection of a world point in two calibrated viewpoints
can be used to recover the three-dimensional position by triangulation. The
geometry of the two views, as shown in Figure 5.8, plays a key part in help-
ing to find correspondences by constraining the search for correspondence
from a region to a line. This matching constraint is known as the epipolar
constraint.
The epipolar constraint arises from the fact that the two rays, p and p′,

to a common scene point, X, and the optical centres of the two camera
(the stereo baseline, t = ∆c) lie in a plane called the epipolar plane. The
intersection of the epipolar plane with each image plane defines a line called
an epipolar line. The correspondence of an image point in the first view,
u, must line on the epipolar line, l′, in the other view shown in Figure 5.8.
Using homogeneous coordinates to represent the coefficients of a line in the
image as a 3-vector, the epipolar constraints in each view can be written as:

u · l = 0 (5.18)

u′ · l′ = 0. (5.19)

Each world point, X, has its own epipolar plane. The family of epipolar
planes define a pencil of epipolar lines which pass through a common point
called the epipole, illustrated in Figure 5.9. The epipoles and pencil of
epipolar lines in each view are known as the epipolar geometry. The epipolar
geometry is completely determined by the relative position, t, and relative
orientation, R, of the two views and the camera parameters of each camera,
K and K′ respectively. It does not depend on the 3D structure of the scene
being viewed.
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Fig. 5.8. The geometry of two views. In stereo vision an epipolar plane is the plane
defined by a 3D point X and the optical centres of the two cameras. The baseline
is the line joining the optical centres. An epipole is the point of intersection of the
baseline with the image plane. An epipolar line, l and l′, is a line of intersection of
the epipolar plane with an image plane. It is the image in one camera of the ray
from the other camera’s optical centre to the point X.
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Fig. 5.9. Epipolar geometry. Each world point X has its own epipolar plane which
rotates about the baseline. All epipolar lines intersect at the epipole.

The essential matrix

The epipolar constraint is a co-planarity constraint and can be expressed
algebraically as a scalar triple product:

p′ · (t ∧ p) = 0. (5.20)
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With out loss of generality, we can align the reference coordinate system
with the second camera so that the epipolar constraint can be rewritten in
terms of image positions (3-vectors in homogeneous coordinates), u and u′,
using (5.16):

u′⊤K′−⊤EK−1u = 0 (5.21)

where E is a 3 × 3 matrix known as the essential matrix (Longuet-Higgins
1981) and is the product of a skew-symmetric or antisymmetric matrix (rep-
resenting the vector product with the translation vector) and an orthonormal
matrix representing the rotation between the two views:

E = t ∧R = [t]×R

where

[t]× =

⎡

⎢⎣
0 −t3 t2
t3 0 −t1
−t2 t1 0

⎤

⎥⎦

and R now specifies the relative orientation between the views.
The essential matrix is of maximum rank 2. Its factorization into the

product of a non-zero skew-symmetric matrix and a rotation matrix is only
possible if it has two equal non-zero singular values. The other is of course
equal to zero (Tsai and Huang 1984, Faugeras and Maybank 1990).

The fundamental matrix

From (5.21) we see that the epipolar geometry can be conveniently specified
by introducing a matrix, F (Faugeras 1992)

F = K′−⊤EK−1. (5.22)

Property 5.5.1 The epipolar constraint and the fundamental ma-
trix. The image coordinates (projective representation using homogeneous
coordinates) of all pairs of corresponding points, ui = (ui, vi, 1)⊤ and u′

i =
(u′i, v

′
i, 1)

⊤, must satisfy the epipolar constraint:

u′⊤
i Fui = 0 (5.23)

or

[
u′i v′i 1

]
⎡

⎢⎣
f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤

⎥⎦

⎡

⎢⎣
ui
vi
1

⎤

⎥⎦ = 0 (5.24)
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where F is a 3× 3 real matrix of rank 2 which is defined up to an arbitrary
scale and is known as the fundamental matrix.

Epipolar lines and epipoles

The epipolar geometry (see Figure 5.9) is completely determined by the
fundamental matrix.

Property 5.5.2 Epipolar geometry from fundamental matrix.

(i) Epipolar lines.

The epipolar line (represented by a homogeneous 3-vector), l′, corre-
sponding to a point u in the other view is given by

l′ = Fu (5.25)

and u′ must lie on this line to satisfy the epipolar constraint:

u′ · l′ = 0.

The epipolar line corresponding to u′ is given by l = F⊤u′.

(ii) Epipoles.

The epipole is defined as the point in each image which is common
to all the epipolar lines. The left and right epipoles (e and e′ in
homogeneous coordinates) are therefore given by the null spaces of F
and F⊤ respectively

Fe = 0 (5.26)

F⊤e′ = 0. (5.27)

5.6 Epipolar geometry from projection matrices

For calibrated cameras with known projection matrices it is trivial to com-
pute the fundamental matrix and hence obtain the epipolar geometry (epipoles
and epipolar lines for each image feature). We here outline a simple method
by exploiting the following result.

Property 5.6.1 Projective ambiguity. The pair of cameras and pro-
jection matrices P and P

′

give rise to the same fundamental matrix as the
pair of cameras and projection matrices PH and P

′

H where H is a 4 × 4
non-singular matrix.
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A simple proof can be found in (Hartley 1992 and 1994) but follows trivially
from the fact that the simultaneous transformation of the projection ma-
trices, P by H and the 3D point coordinates, X, by H−1 leaves the image
coordinates u = PX, unchanged.
Assume we are given the projection matrices for two viewpoints, P and

P
′

. The position of the optical centre of the first camera, c, can be com-
puted directly from the projection matrix P from (5.17). In homogeneous
coordinates we can represent it by a 4-vector C = (c⊤1) so that

PC = 0

and its projection into the second image plane defines the epipole, e′,

e′ = P′C. (5.28)

We can also compute the pseudo-inverse, P+, of the projection matrix P,

P+ = P⊤(PP⊤)−1, (5.29)

such that multiplication with the first projection matrix gives the identity
matrix, I, and multiplication with the second projection matrix gives a 3×3
matrix (a two-dimensional projective transformation), M:

I = P P+ (5.30)

M = P′P+ (5.31)

The two projection matrices have in this way been normalized to have the
special forms:

PH = [I | 0] (5.32)

P′H = [M | e′] (5.33)

These normalized projection matrices are known as canonical cameras. From
Property 5.6.1 both the original projection matrices and these normalized
forms have the same fundamental matrix F given by (see Property 6.3.1):

F = [e′]×M. (5.34)

An example of the epipolar geometry of two discrete views computed from
calibrated projection matrices using (5.28) - (5.31) and (5.34) is shown in
Figure 5.10.
For uncalibrated cameras we do not have the projection matrices and

hence E, K and K′ are unknown a priori. The fundamental matrix and
epipolar geometry, however, can still be estimated from point and curve
correspondences between the two views (see Chapter 6).
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Fig. 5.10. Epipolar geometry computed from known projection matrices. Selected
image points are shown in the left view with corresponding epipolar lines shown in
the right view. The corresponding image feature satisfies the epipolar constraint.

5.7 Reconstruction of surfaces

Implementation of the epipolar parametrization

In the epipolar parametrization of the spatio-temporal image and surface, a
point on an apparent contour in the first image is matched to a point in suc-
cessive images (in an infinitesimal sense) by searching along the correspond-
ing epipolar lines. This allows us to extract t-parameter curves (u(s0, t) or
p(s0, t)) from the spatio-temporal image. As shown in Chapter 4, depth and
surface curvature are then computed from first and second-order temporal
derivatives of this t-parameter spatio-temporal curve by equations (4.5) and
(4.11). This requires a dense (continuous) image sequence.

In practice the epipolar parametrization and the reconstruction can be
implemented in a variety of ways. In (Cipolla and Blake 1992) and (Cipolla
1995) two simple methods are described for special cases. For pure transla-
tion perpendicular to the optical axis and with a dense (continuous) image
sequence it is possible to recover the depth and surface curvature from the
first and second-order derivatives of the spatio-temporal image trajectories
directly (see Figure 5.11). For linear motion and a minimum of three dis-
crete views a simple numerical method was proposed to estimate the depth
of the contour generators and the osculating circle in each epipolar plane by
assuming that the curvature of the epipolar curve, r(s0, t), is locally con-
stant. See Figure 5.12. This approximation was also exploited by (Vallaint
and Faugeras 1992) and (Szeliski and Weiss 1998).
We choose to implement the theory presented in Chapter 4 directly by

estimating temporal derivatives from measurements in the discrete views of
the apparent contours, u(s, t0),u(s, t1), . . . ,u(s, tn), which are indexed by
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first image(a)

(b)

last image

Fig. 5.11. 3D spatio-temporal image. (a) The first and last image from an image
sequence taken from a camera mounted on a robot arm and moving horizontally
from left to right without rotation. (b) The 3D spatio-temporal image formed from
the image sequence piled up sequentially with time. The top of the first image and
the bottom of the last image are shown along with the spatio-temporal cross-section
corresponding to the same epipolar plane. For simple viewer motions consisting
of camera translations perpendicular to the optical axis the spatio-temporal cross-
section image is formed by storing the scan-lines (epipolar lines) for a given epipolar
plane sequentially in order of time. The t-parameter curves p(s0, t) are easily
extracted from this spatio-temporal image and its first and second derivatives can
be used to recover depth and surface curvature respectively (Cipolla and Blake
1992).
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Fig. 5.12. The epipolar plane. Each view defines a tangent to the epipolar curve
r(s0, t). For linear camera motion and epipolar parametrization the rays and r(s0, t)
lie in a plane. If r(s0, t) can be approximated locally by its osculating circle, it can
be uniquely determined from measurements in three views, p(s0, t0), p(s0, t1) and
p(s0, t2). For curvilinear motion the epipolar geometry is continuously changing
and the epipolar curve is no longer planar (Cipolla and Blake 1992).

time, ti and the corresponding camera position, c(ti). Figure 5.5 shows 4
of 36 images taken by rotating an object in front of a fixed camera. This
is equivalent to considering the image sequence to have been obtained by
the camera rotating about the same axis of rotation, i.e. circular motion.
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Fig. 5.13. In the epipolar parametrisation of apparent contours, correspondence
between points on successive snapshots of an apparent contours is set by matching
along epipolar lines.

Fig. 5.14. The epipolar parametrisation is degenerate at frontier points where the
epipolar plane is tangent to the surface. Frontier points appear as epipolar tan-
gencies – the epipolar lines are tangent to the apparent contour. In the vicinity
of an epipolar tangency the parametrization is sensitive to errors in the epipolar
geometry and the localization of the image contour. Reconstruction is therefore
poor near a frontier point.

The apparent contours are extracted and tracked over the sequence using
B-splines snakes.
The family of image contours is then parametrized using the known epipo-

lar geometry obtained by first calibrating the sequence of discrete viewpoints
by viewing a calibration grid as described in the previous section and illus-
trated in Figure 5.10. The projection matrices for each view can be used
to obtain camera positions, c(ti), and the epipolar geometry as described in
§5.6. The epipolar geometry is then used to parametrize the image contours
as follows.
Points are selected on the apparent contours in the first view, e.g. u(si, t0),
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shown in Figure 5.13(a), and the calibrated epipolar geometry is used to
induce a parametrization of the apparent contour in the other views, e.g.
u(si, t1), . . . ,u(si, tn). An example is shown in Figure 5.13(b). This requires
finding the intersection of the cubic B-spline representing the apparent con-
tour and the epipolar line. This is done analytically and multiple solutions
are disambiguated by using ordering and disparity gradient constraints as in
stereo vision. Particular care must be taken at an epipolar tangency (fron-
tier point). See Figure 5.14. The known (calibrated) projection matrices for
each viewpoint can then be used to convert image plane pixel coordinates,
u(si, t1), . . . ,u(si, tn), to rays in 3-space, p(si, t1), . . . ,p(si, tn), as described
in §5.2.

Recovery of depth

The depth is then estimated by a finite-difference (discrete) approximation
to the infinitesimal analysis presented in (4.5). For each apparent contour
point (indexed by spline parameter, s0) in each view (indexed by time, ti)
an approximation to the depth to the contour generator can be computed
from:

λ(s0, ti) ≈ −
∆c · n
∆p · n

(5.35)

where ∆c = c(ti+1) − c(ti) and ∆p = p(s0, ti+1) − p(s0, ti). The surface
normal, n = n(s, ti+1), is estimated directly from the apparent contour in a
single view as described by Property 3.6.1.
The use of finite-differences introduces an error. Equation (5.35) is in fact

equivalent to estimating the distance to the surface point by triangulation
as the intersection of two rays. This is, of course, exact in the stereo recon-
struction of a fixed point from its correspondences in two discrete views but
is an approximation when the views are of contour generators except in the
infinitesimal limit as ∆c → 0. See Figure 4.9.
The error introduced by using a finite-difference approximation can be

easily quantified in the case of circular motion. See Figure 5.15. By assuming
that the radius of curvature R along the epipolar curve is locally constant,
the error in the recovered distance, ∆λ, is given by:

∆λ = R tan(
ϕ

2
). (5.36)

The error ξ, which is the distance between the reconstructed point and the
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ϕ

ξ

R

Fig. 5.15. The error ξ between the reconstructed point and the surface is related
to the radius of curvature R and the angle ϕ between the viewing rays.

surface, is however given by

ξ =
(
sec(

ϕ

2
)− 1

)
R ≈

ϕ2

8
R (5.37)

where ϕ is the angle between the viewing directions (see Figure 5.15). If the
camera is far from a rotating object, ϕ can be approximated by the angle of
rotation ω. For ω equals 10◦, the error will be 0.38% of the radius R, which
will be negligible for small values of R.
Except for the degenerate cases listed in §4.6, we can use the epipolar

parametrization of the family of apparent contours to recover the two fami-
lies of parametric curves. The s-parameter curves are the contour generators
from the different viewpoints and the t-parameter curves are the epipolar
curves formed by the intersection of a pencil of epipolar planes defined by
the camera centres in adjacent views. These surface curves form a conjugate
grid, shown in Figure 5.16 and Figure 5.17.
The reconstructed surface from the image sequence of Figure 5.5 is shown

in Figure 5.17 as a grid of 36 contour generators and 100 epipolar curves.
The reconstruction is surprisingly accurate given that the views are discrete
and not continuous. Figure 5.18 shows another example of a reconstruction
using the epipolar parametrisation but in which greater care is taken in
computing the spatio-temporal derivatives (Boyer and Berger 1997).
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Fig. 5.16. Recovery of surface strip in vicinity of apparent contour. The surface is
recovered as a family of s-parameter curves, r(s, ti) – the contour generators – and
t-parameter curves, r(s0, t) – portions of the osculating circles measured in each
epipolar plane. The strip is shown projected into the image of the scene from a
different viewpoint and after extrapolation (Cipolla and Blake 1992).
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Fig. 5.17. The reconstruction of the head from 36 views of the apparent contour
under circular motion. Three discrete views of the 36 reconstructed contour gen-
erators and epipolar curves are shown. The reconstructed surface is also shown
shaded.
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Fig. 5.18. Reconstruction of a vase using the epipolar parametrization and the
method of triangulation described in (Boyer and Berger 1997).



6

Recovery of viewer motion from profiles

In the previous chapter we described the algorithms and their practical im-
plementation to recover the geometry of visible surfaces from the deforma-
tion of apparent contours (profiles) under known viewer motion. The epipo-
lar geometry between the distinct viewpoints played an important part in
the parametrization and recovery of the surface. In this chapter we describe
how the epipolar geometry (and hence the camera motion) can be recovered
from the deformation of apparent contours when the viewer motion is not
known a priori.
The recovery of the structure and motion from point correspondences

has attracted considerable attention and many practical algorithms exist to
recover both the spatial configuration of the points and the viewer motion
compatible with the views. These are briefly reviewed in §6.1 to §6.3 before
showing how the deformation of apparent contours, and in particular frontier
points, can be used to recover viewer motion. A set of working algorithms are
then presented which are able to recover viewer motion and which exploit
this to reconstruct surfaces. The special case of circular motion, which
is often used in 3D model acquisition and hence has important practical
applications, is described in greater detail.

6.1 The fundamental matrix from point correspondences

For uncalibrated cameras we do not have the projection matrices and hence
the essential matrix parameters, t andR, and the camera calibration param-
eters, K and K′, are unknown a priori. The fundamental matrix, however,
can be estimated from point correspondences between the two views. We
briefly describe the algorithms used for computing the epipolar geometry
from point correspondences (also reviewed in Zhang 1998) before describing
the extension to curves and apparent contours.

145
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From the epipolar constraint (5.24) we see that each point correspon-
dence, ui = (ui, vi, 1)⊤ and u′

i = (u′i, v
′
i, 1)

⊤, generates one constraint on
the epipolar geometry which can be expressed in terms of the elements of
the fundamental matrix F:

[
u′i v′i 1

]
⎡

⎢⎣
f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤

⎥⎦

⎡

⎢⎣
ui
vi
1

⎤

⎥⎦ = 0.

For n pairs of correspondences, the constraints can be rearranged as linear
equations in the 9 unknown elements of the fundamental matrix:

⎡

⎢⎢⎣

u′1u1 u′1v1 u′1 v′1u1 v′1v1 v′1 u1 v1 1
...

...
...

...
...

...
...

...
...

u′nun u′nvn u′1 v′nun v′nvn v′n un vn 1

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11
f12
f13
f21
f22
f23
f31
f32
f33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

or in matrix form:

Af = 0

where A is an n× 9 measurement matrix, and f represents the elements of
the fundamental matrix as a 9-vector. Given 8 or more correspondences a
solution† can be found by least squares as the unit eigenvector (f is defined
up to an arbitrary scale) corresponding to the minimum eigenvalue of A⊤A.
A unique solution is obtained unless the points and the camera centres lie
on a ruled quadric or all the points lie on a plane (Faugeras and Maybank
1990).

The computation can be poorly conditioned and it is important to pre-
condition the image points by normalizing them to improve the condition
number of A⊤A before estimating the elements of the fundamental matrix
by singular value decomposition (Hartley 1998).

† Note that the fundamental matrix has only 7 degrees of freedom since its determinant must
be zero. A non-unique solution can be obtained from only 7 point correspondences and is
described in (Huang and Netravali 1994).
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Parametrization of the fundamental matrix

Two steps can be taken to improve the solution. The most important re-
quires enforcing the rank 2 property of the fundamental matrix. This can
be achieved by a suitable parametrization of F.

The epipolar geometry between two uncalibrated views is completely de-
termined by 7 independent parameters: the position of the epipoles in the
two views, e = (ue, ve, 1)⊤ and e′ = (u′e, v

′
e, 1)

⊤, and the 3 parameters of the
one-dimensional projective transformation† relating the pencil of epipolar
lines in view 1 to those in view 2 (Luong and Faugeras 1996),

τ ′i = −
h2τi + h1
h4τi + h3

(6.1)

where τi and τ ′i represent the directions (as the gradient of a line) of a pair
of corresponding epipolar lines, li and l′i, in the first and second images
respectively. Namely:

τi =
vi − ve
ui − ue

(6.2)

τ ′i =
v′i − v′e
u′i − u′e

. (6.3)

The transformation of epipolar lines between views is sometimes known as
the epipolar transformation and is fixed by 3 pairs of epipolar line correspon-
dences. The correspondence of any additional epipolar line is completely de-
termined since it must preserve the cross-ratio of the 4 epipolar planes and
corresponding epipolar lines. See (Luong and Faugeras 1996) and Figure 6.1.

Substituting (6.2) and (6.3) into (6.1) for the image coordinates of a pair
of corresponding points results in the epipolar constraint and leads to the
following minimal parametrization of the fundamental matrix:

F =

⎡

⎢⎣
h1 h2 −ueh1 − veh2
h3 h4 −ueh3 − veh4

−u′eh1 − v′eh3 −u′eh2 − v′eh4 ueu′eh1 + veu′eh2 + uev′eh3 + vev′eh4

⎤

⎥⎦

(6.4)

This parametrization will be exploited later when apparent contours are
used instead of point correspondences to estimate the epipolar geometry.

† This one-dimensional projective transformation (also known as a collineation or homography)
can be represented by a 2× 2 matrix in homogeneous coordinates.
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Optimization

Another improvement requires finding the 7 independent parameters of the
fundamental matrix which minimize the distances between the image points
and their epipolar lines.

Property 6.1.1 Geometric error using epipolar distances. The geo-
metric distance between an image point u′ and the epipolar line, l′ = Fu is
given by:

(u′⊤
i Fui)2

(Fui)21 + (Fui)22
(6.5)

A suitable cost function, C, consisting of the sum of the squared geometric
distances (defined above) between image points and their epipolar lines in
both images (Luong and Faugeras 1996),

C =
∑

i

(
1

(Fui)21 + (Fui)22
+

1

(F⊤u′
i)21 + (F⊤u′

i)22

)
(u′⊤

i Fui)
2

can be minimized by non-linear optimization techniques (Press et al. 1988).

6.2 Recovery of the projection matrices and viewer motion

As shown above it is possible to recover the epipolar geometry (via the fun-
damental matrix) from point correspondences in the case of uncalibrated
cameras. Nevertheless we must recover the projection matrices correspond-
ing to each viewpoint if we are to attempt reconstruction.

Factorization of the essential matrix

If the camera internal parameters, K and K′, are known the viewer motion
and the projection matrices are determined by the epipolar geometry. We
can transform the recovered fundamental matrix into an essential matrix
(5.22):

E = K′⊤FK (6.6)

and decompose this matrix into a skew-symmetric matrix corresponding
to translation and an orthonormal matrix corresponding to the rotation
between the views:

E = [t]×R. (6.7)

The latter is in fact only possible if the the essential matrix has rank 2 and
two equal singular values (Tsai and Huang 1984). This property turns out
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Fig. 6.1. The epipolar geometry of an uncalibrated stereo pair of images is com-
pletely specified by the image positions of the epipoles and 3 pairs of corresponding
epipolar lines. The projective parameters τ and τ ′ represent the intersection of the
epipolar line and the line at infinity. The directions in the 2 views are related by a
one-dimensional projective transformation (homography).

to be very important in recovering constraints on the internal parameters of
the cameras when they are uncalibrated. The difference in the two singular
values can be used to refine the camera parameters. In fact, each funda-
mental matrix places two quadratic constraints on the internal calibration
parameters (the Kruppa equations) which can be used to estimate, for ex-
ample, the scale factors of the two cameras. This is known as self-calibration
(Maybank and Faugeras 1992 and Hartley 1992).
The translation vector, t, which can only be recovered up to an unknown

magnitude, can be found as the unit eigenvector corresponding to the small-
est eigenvalue of EE⊤ since it must satisfy

E⊤t = 0.

The rotation can then be obtained as the orthonormal matrix which mini-
mizes the matrix Frobenius norm

||E − [t×]R||2

which can be solved linearly if we represent the rotation with a quaternion
(Horn 1987).
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Numerical considerations

An alternative numerical approach is to perform the singular value decom-
position (Strang 1988) of the essential matrix (Hartley 1992):

E = UΛV⊤ (6.8)

where Λ = diag(σ1,σ2,σ3) and the matrices U and V are orthogonal. The
decomposition into a translation vector and the rotation between the two
views requires that σ1 = σ2 ̸= 0 and σ3 = 0. The nearest (in the sense of
minimizing the Frobenius norm between the two matrices) essential matrix
with the correct properties can be obtained by setting the two largest singu-
lar values to be equal to their average and the smallest one to zero (Hartley
1992). The translation and axis and angle of rotation can then be obtained
directly up to arbitrary signs and unknown scale for the translation:

[t]× = U

⎡

⎢⎣
0 1 0
−1 0 0
0 0 0

⎤

⎥⎦U⊤ (6.9)

R = U

⎡

⎢⎣
0 −1 0
1 0 0
0 0 1

⎤

⎥⎦V⊤ (6.10)

The projection matrices follow directly from the recovered translation and
rotation by aligning the reference coordinate system with the first camera
to give:

P = K[I | 0]
P′ = K′[R | t].

Four solutions are possible due to the arbitrary choice of signs for translation,
±t, and rotation, R or R⊤. The correct solution is easily disambiguated by
ensuring that reconstructed points lie in front of the cameras.

6.3 Recovery of the projection matrices for uncalibrated cameras

If the camera calibration matrices are unknown the projection matrices can
not be uniquely recovered from the epipolar geometry of two views alone.
In fact we will see that they can only be recovered up to an arbitrary 3D
projective transformation, known as a projective ambiguity.
From (5.22) it follows that the fundamental matrix can, like the essential
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matrix, be factorized into a skew-symmetric matrix corresponding to trans-
lation and a 3 × 3 non-singular matrix (ignoring arbitrary scalings of the
elements of F):

F = K′−⊤[t]×RK−1

= [K′t]×K
′RK−1

= [e′]×M∞ (6.11)

where

M∞ = K′RK−1 (6.12)

is a 2D projective transformation (homography) which maps points on the
plane at infinity in one image to the other (Luong and Vieville 1996).
The factorization of the fundamental matrix as the product of a skew-

symmetric matrix and a non-singular matrix M is not unique since there
is a 3 parameter family of matrices M (which represents the 2D projective
transformation between views induced by different planes) such that:

M = M∞ + e′v⊤

where v can be arbitrarily chosen to give a different projective transforma-
tion but the same fundamental matrix (Hartley 1994 and Luong and Vieville
1996)†.

Property 6.3.1 Factorization of the fundamental matrix. The fun-
damental matrix can be factorized into a skew-symmetric matrix and a 3×3
non-singular matrix, M:

F = [e′]×M

where e′ is equivalent to the epipole in the second view:

F⊤e′ = 0

and M can be chosen from the 3-parameter family (defined by the arbitrarily
choice of v) of homographies given by:

M = [e′]×F+ e′v⊤.

† Note the relationship with the minimal parametrization introduced in (6.4). A 3-parameter
family of two-dimensional projective transformations, M, representing the transformation be-
tween views induced by points on a plane, can be recovered from the pair of epipoles and 3
pairs of corresponding epipolar lines. The epipoles must satisfy e′ = Me while the epipolar
lines must pass through the epipoles and satisfy l′i = M−⊤li.



152 Recovery of viewer motion from profiles

Singular value decomposition of the fundamental matrix

As with the essential matrix, we can factorize the fundamental matrix into
a skew-symmetric component and a non-singular matrix by analysing its
singular value decomposition:

F = UΛV⊤

where Λ = diag(r, s, 0). The skew-symmetric component can be recovered
from:

[e′]× = U

⎡

⎢⎣
0 1 0
−1 0 0
0 0 0

⎤

⎥⎦U⊤ (6.13)

in exactly the same way as with calibrated cameras. The non-singular matrix
M is no longer an orthogonal transformation and is not uniquely defined.
As shown by Property 6.3.1, the homography (two-dimensional projective
transformation) is defined up to an arbitrary choice of parameters, here
described by {α,β, γ}:

M = U

⎡

⎢⎣
0 −1 0
1 0 0
0 0 1

⎤

⎥⎦

⎡

⎢⎣
r 0 0
0 s 0
α β γ

⎤

⎥⎦V⊤. (6.14)

Canonical cameras and projective ambiguity

The factorization of the fundamental matrix can be used to compute the
canonical cameras – the normalized projection matrices – given by (5.32)
and (5.33)

PH = [I | 0]
P′H = [M | e′]

The real projection matrices, P and P′, have only been recovered up to an
arbitrary 3D projective transformation represented algebraically by a 4× 4
matrix H, and known as a projective ambiguity.

Property 6.3.2 Projective ambiguity. A general 3D projective transfor-
mation can be represented by a non-singular 4× 4 matrix, H, of the form

H =

[
sRw tw
0⊤ 1

] [
K−1 0
0⊤ 1

] [
I 0
v⊤ 1

]

. (6.15)
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The projective ambiguity is composed of the following effects. A metric
transformation resulting from the rigid body motion between the coordi-
nate system of the first camera and the reference frame and an arbitrary
scaling. This can be ignored if we align the reference coordinate system
with the first camera and accept that shape can only be recovered up to
an arbitrary scale, s, if the distance between the two camera centres is un-
known. The second component of the ambiguity results from an 3D affine
transformation due to the unknown parameters of the first camera. Finally
we are left with a projective transformation which transforms points on the
plane (v⊤1)X = 0 to points on the plane at infinity and results from the
ambiguity of Property 6.3.2.

The ambiguity in the projection matrices is of the form above and will
result in a projective ambiguity in the recovered geometry, i.e. the 3D co-
ordinates of visible points, X, can only be recovered up to a 3D projective
transformation, H−1X. This ambiguity can only be removed with additional
information derived from scene constraints or knowledge of the camera pa-
rameters, K and K′. In particular the ambiguity is completely removed by
using the 3D position of 5 known scene points to determine the transfor-
mation H or H−1. Alternatively we require the internal camera parameters
of the first camera and must then find the equation of the plane at infinity
represented by v where

M = K′RK−1 + e′v⊤.

The ambiguity is removed by using knowledge of the camera parameters to
fix v to make the homography, M, be that induced by the plane at infinity
(Hartley 1994). The rotation matrix follows.

6.4 Frontier points and epipolar tangencies

As described in Chapter 4 an important degeneracy of the epipolar paramet-
rization occurs when an epipolar plane (spanned by the direction of trans-
lation and the visual ray) coincides with the tangent plane to the surface.
This will occur at a finite set of points on the surface where the surface
normal n is perpendicular to the direction of translation:

ct · n = 0. (6.16)
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Fig. 6.2. The frontier point and epipolar tangencies in two distinct views.

The contour generator is locally stationary. In fact (See Figure 4.13) con-
secutive contour generators will intersect at a point on the surface called a
frontier point (Rieger 1986 and Giblin et al. 1994)†.
For larger discrete motions (see Figure 6.2) the contour generators defined

by the discrete viewpoints also intersect at points on the surface where the
epipolar plane is tangent to the surface. This is easily seen if we consider
the motion to be linear. ct is then a constant vector, and the frontier point
on the surface at time t satisfies the frontier condition at subsequent times.
The frontier degenerates to a point on the surface. In the discrete case the
frontier points are defined by the condition

∆c · n = 0 (6.17)

† In the image sphere model of Figure 4.13 the epipole e is the intersection of the epipolar great
circle with the baseline c1 − c2, or with the velocity vector ct in the limit as the two camera
centres tend to coincidence. Thus the epipolar great circle passes through the epipole in exactly
the same way as, in the image plane model adopted here, the epipolar line passes through the
epipole.
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where ∆c = c(t2)− c(t1) and n is the surface normal at the point of inter-
section of the two contour generators.

Property 6.4.1 Epipolar tangency. The frontier point projects to a point
on the apparent contour which is an epipolar tangency, i.e. the epipolar line
is tangent to the apparent contour.

The property follows directly from the fact that the epipolar plane is also
the tangent plane at a frontier point. Its projection in the two views, u(s)
and u′(s), must be such that its tangent (us(s) and u′

s(s)) passes through
the respective epipole (e and e′):

det[e u(si) us(si)] = 0 (6.18)

where us(si) represents the image contour tangent.
The surface curvature can not be recovered at these points since the epipo-

lar parametrization fails (§4.8). However frontier points correspond to real,
fixed feature points on the surface which are visible in both views. Once
detected they can be used to provide a constraint on the epipolar geometry
(Figure 6.3) and hence the viewer motion. In fact they can be used in the
same way as points in the recovery of the epipolar geometry via the epipolar
constraint:

u′(si)
⊤Fu(si) = 0. (6.19)

The epipoles and epipolar tangencies in each view completely determine
the epipolar geometry ((Cipolla et al. 1995) and (Aström et al. 1996)).

Property 6.4.2 Epipolar tangency constraint. Given two images, and
the epipoles e and e′, the set of lines through e which are tangent to the ap-
parent contour, and the corresponding set of epipolar tangency lines through
the epipole in the other image, are related by a one-dimensional projective
transformation (since they arise from the same pencil of planes through the
two camera centres).

6.5 Recovery of motion under pure translation

Under pure translation (i.e. the rotation R of §4.3 is constant, or that Ω in
§4.3 is zero) the epipolar geometry is completely determined by the position
of the epipole in a single view. The fundamental matrix has the simple



156 Recovery of viewer motion from profiles

Fig. 6.3. Epipolar geometry and epipolar tangencies under arbitrary motion. The
epipolar geometry is completely determined by the epipoles and 3 epipolar tangen-
cies in each view.

skew-symmetric form:

F = [e]×. (6.20)

If the camera parameters do not change the position of the epipole is the
same in both views. The epipolar lines have the same directions with cor-
responding image points lying on the same epipolar line (i.e. are auto-
epipolar):

e = e′

l = l′.

The key fact here is that, when there is no rotation, the projection of the
frontier is simply the envelope of apparent contours in rotated coordinates;
generally it is only the envelope when the coordinates are unrotated. See
Property 4.8.1, and (4.8) which, when R(t) is constant, states the (obvious)
fact that pt = Rqt. Note that ps = Rqs always, since this refers to a
particular time for which R will have some particular value.
For a discrete motion we superimpose the two views and find common

tangents to the two consecutive apparent contours instead of the envelope.
See Figure 6.4. We refer to these informally as bitangents (though they
are only tangent to each apparent contour once). The bitangents are in
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Fig. 6.4. Under pure translation the epipolar tangency point moves along the epipo-
lar line since the position of the epipole and the direction of the epipolar lines do
not change. From a minimum of two bitangents of the apparent contour in two
views it is possible to recover the epipole, e.

fact epipolar tangencies and hence the projection of frontier points. The
intersection of at least two distinct tangencies (epipolar lines) is therefore
sufficient to determine the position of the epipole and hence the epipolar
geometry. A simple procedure to find the epipole, and hence the direction
of translation, is described in (Sato and Cipolla 1998).

6.6 General motion

The solution is no longer trivial in the case of arbitrary motion with rotation.
There is in fact no closed form solution since the epipoles are needed to define
the epipolar tangency points and these are needed to determine the epipolar
geometry.

The solution proceeds as a search and optimization problem to find the
position of the epipoles in both views such that the epipolar tangencies in
the first view are related to the set of epipolar tangencies in the second
view by a one-dimensional projective transformation or homography (see
Property 6.4.2 and (6.1)).
A suitable cost function is needed. Geometric distances are used in the

estimation of the fundamental matrix from point correspondences and can
also be used in the case of curves. The geometric distance is computed as
the sum over all tangency points of the square of the distance between the
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d’

d

Fig. 6.5. Illustration of the cost function to be minimized in the motion estimation
algorithm. From the initial guess of the epipoles the 1D projective transformation
which maps epipolar lines can be determined from a minimum of 3 tangencies.
Epipolar tangencies are then transfered from one image to the other. The length d
is the distance from a tangency point in the first image and an epipolar line obtained
by the transfer of an epipolar tangency from the second image. The distance d′ is
found in the same way, interchanging the roles of the images. The cost function is
then the sum

∑
i(d

2
i +d′i

2) for each matching pair i of putative epipolar tangencies.

image point and the corresponding epipolar line from the tangency point in
the other view, as shown in Figure 6.5.
The key to a successful implementation is to ensure that the search space

is reduced and that the optimization begins from a good starting point using
approximate knowledge of the camera motion or point correspondences. A
minimum of 7 epipolar tangencies of features which are visible in each image
are required. The solution proceeds as follows.

Algorithm 6.6.1 Motion recovery under general motion and per-
spective projection.

(i) Start with an initial guess or estimate of the epipoles in both views,
e and e′.

(ii) Compute the epipolar tangencies, ui(e) and u′
i(e′), in both views

respectively. These are points on the apparent contours with tangents
passing through the epipole as defined by (6.18).

(iii) Estimate the elements of the homography (one dimensional projective
transformation) between the pencil of tangencies in both views (6.1).
This can be done linearly by minimizing

∑

i

(h4τiτ
′
i + h3τ

′
i + h2τi + h1)

2 (6.21)
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Fig. 6.6. Starting point for optimization (above). An initial guess of the position
of the epipoles is used to determine epipolar tangencies in both views and the
homography relating the epipolar lines. For each tangency point the corresponding
epipolar line is drawn in the other view. The distances between epipolar lines
and tangency points are used to search for the correct positions of the epipoles.
Convergence to local minimum after 5 iterations (below). The epipolar lines are
tangent to apparent contours in both views.

by least squares over all pairs (n ≥ 3) of correspondences, τi and τ ′i .

(iv) The fundamental matrix is now given by the parametrization of §6.1
and the cost function, i.e. sum of squared geometric distances between
tangency point and corresponding epipolar line, can be computed as
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Fig. 6.7. Local minimum obtained by iterative scheme to estimate the epipolar
geometry from 8 epipolar tangencies in a stereo pair of a Henry Moore sculpture.

below:

C =
∑

i

(
1

(Fui)21 + (Fui)22
+

1

(FTu′
i)21 + (FTu′

i)22

)
(u′T

i Fui)
2.

(6.22)

(v) Minimize the cost function by using the Levenberg-Marquardt algo-
rithm or the conjugate gradient method (Press et al. 1992). The
search space is restricted to the four coordinates of the epipoles only.
This requires the first-order partial derivatives of the cost function
(6.22) with respect to the coordinates of the epipoles which can be
computed analytically but are more conveniently estimated by nu-
merical techniques.

At each iteration of the algorithm, steps (ii) to (v) are repeated, and the
positions of the epipoles are iteratively refined. The search is stopped when
the root-mean-square distance converges to a minimum (usually less than
0.1 pixels). It is of course not guaranteed to find a unique solution and we do
not know whether there is a unique solution. The only case where we know
of a uniqueness theorem is that of circular motion and parallel projection
(Giblin et al. 1994).

Experimental results

A number of experiments were carried out with simulated data (with noise)
and known motion (Figure 6.6). The apparent contours were automatically
extracted from the sequence by fitting B-splines. 5-10 iterations each for
4 different initial guesses for the position of the epipole were sufficient to
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find the correct solution to within an root-mean-square error of 0.1 pixel
per tangency point.
Figure 6.7 shows an example with real data whose apparent contours

are detected and automatically tracked using B-splines snakes. A solution is
found very quickly which minimizes the geometric distances. The solution is
however incorrect and corresponds to a local minimum. As with all structure
from motion algorithms, a limited field of view and small variation in depths
result in a solution which is sensitive to image localisation errors. A more
stable solution can be obtained by considering a simpler projection model
(see below).
Other more practical alternatives include using a planar contour (if present

in the scene) to estimate the 2D projective transformation component, M,
directly. Recall that the fundamental matrix can be factored into:

F = [e′]×M.

We can apply this planar projective transformation, M, to an apparent
contour in the first view. The epipolar constraint can be rewritten as:

u′(si)
⊤[e′]×(Mu(si)) = 0

and the epipolar geometry between points in this rectified view, Mu(s), and
the second view, u′(s), has now been simplified. This has, in fact, reduced
the general problem to the case of pure translation and is known as projec-
tive reduction (Aström et al. 1999). The pure translation algorithm can now
be applied to find common tangents to the pairs of apparent contours (anal-
ogous to bitangents) to determine the epipole and hence the full epipolar
geometry.
Finally, analysing extended image sequences, instead of only two views,

avoids convergence to a local minima and results in a more accurate and
better conditioned solution for the epipolar geometry and motion (Aström
and Kahl 1999).

6.7 Weak perspective

When the field of view is narrow or the depth variation is small compared
with the distance from the camera to the scene, the epipoles will be far
from the image centre, and the epipolar lines will be approximately parallel.
This viewing geometry suggests the use of a weak perspective camera model.
The epipolar geometry under weak perspective is known as affine epipolar
geometry (Shapiro et al. 1995), and assumes that the epipoles will be at
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infinity. This reduces the degrees of freedom of the fundamental matrix
which will then take the form:

F =

⎡

⎢⎣
0 0 c
0 0 d
a b e

⎤

⎥⎦ . (6.23)

There are two circumstances when the affine fundamental matrix may be
used. The first is when the weak perspective camera model can be used to
describe the cameras, as described in §5.3. Another favourable situation for
the use of the affine fundamental matrix is when the motion is restricted to
translation orthogonal to the optical axis and rotation about the optical axis.
In this case the affine fundamental matrix can be used even though the weak
perspective camera model is inappropriate. It is important to notice that a
rotation by a small angle around a distant axis is a good approximation for
such motion.
As scale factors are not important, the affine fundamental matrix has

only four degrees of freedom, and can be linearly computed from 4 point
correspondences. Each epipole, being at infinity, is described by a single
parameter, corresponding to its direction in the image plane. This obser-
vation suggests another parametrization for the fundamental matrix, where
the directions of the epipoles are made explicit. If φ and φ′ are the directions
of the epipolar lines in the first and second images, the affine fundamental
matrix can be expressed as

F =

⎡

⎢⎣
0 0 α′ sinφ′

0 0 −α′ cosφ′

−α sinφ α cosφ
√
1− α2 − α′2

⎤

⎥⎦ (6.24)

where the parameters α and α′ are related to the distances between epipolar
lines in each image. The geometric interpretation of the parameters α and
α′ can be seen in Figure 6.8. It is easy to show that they are proportional
to the distance between epipolar lines, or, in the notation of Figure 6.8,
[

α
α′

]

=
1

√
(d2d′1 + d1d′2)

2 + (d′1 − d′2)
2 + (d1 − d2)2

[
d′1 − d′2
d2 − d1

]

. (6.25)

In the affine case the epipolar tangencies will be parallel lines, with di-
rections given by the corresponding epipole, and, as in the perspective,
the epipolar tangencies will touch the apparent contours at corresponding
points. Since the number of degrees of freedom of the affine fundamental
matrix is 4, this will also be the minimum number of epipolar tangencies
necessary for its computation.
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Fig. 6.8. Geometric interpretation of the parametrization of the affine fundamental
matrix presented in (6.24). The orientation of the epipolar lines in each image is
given by the angles φ and φ′, and the parameters α and α′ are proportional to the
differences of distances d′2 − d′1 and d2 − d1, respectively (see (6.25)).

The algorithm for computing the epipolar geometry from apparent con-
tours under weak perspective is described as follows:

Algorithm 6.7.1 Motion recovery under weak perspective.

(i) Start with initial estimates for the directions of both epipoles, φ and
φ′.

(ii) Determine tangency point correspondences ui(φ) and u′
i(φ

′) from
epipolar tangencies consistent with the directions of the epipoles.

(iii) Compute the affine fundamental matrix from the epipoles and the
correspondences. This must be done by using the parametrization
given in (6.24).

(iv) Minimize the sum of geometric distances from the tangency points
on the contours to their corresponding epipolar lines. The search is
restricted to the two directions of the epipoles, and the cost function
is the same as given by (6.22).

Experimental Results

The algorithm was tested on the images shown in Figure 6.7, with the di-
rections of the epipoles initialized at 0◦. The recovered epipolar lines are
shown in Figure 6.9. There is some discrepancy between the result obtained
with the general motion algorithm and that obtained by the algorithm for
the affine case. The epipolar geometry found by the algorithm assuming
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Fig. 6.9. Estimated affine epipolar geometry from the apparent contours of the
Moore sequence. The result differs with the one found by the general motion
algorithm shown in Figure 6.7.

weak perspective is consistent with planar motion along the ground plane
and includes an epipolar line parallel with the horizon. This is qualitatively
correct for the motion used in acquiring the images.

6.8 Circular motion

Circular motion is commonly used in model acquisition. An object is placed
on a turntable and a sequence of snapshots are taken from a fixed camera as
the object rotates about a fixed axis. This is equivalent to a stationary object
and a camera undergoing motion with its centre moving on a circle and its
image plane rotating rigidly with it (compare Example 4.1.1). Figure 6.10
shows a sequence obtained by a single camera under circular motion.
The estimation of epipolar geometry under circular motion is considerably

simpler than more general motions. It is possible to exploit features which
remain fixed in the image over the complete sequence. In fact the epipolar
geometry of two views is completely specified with 6 parameters (compared
with 7 in the general motion case). The epipolar geometry for a sequence of n
images can be parametrized with only 5+n parameters: each additional view
adding only one additional degree of freedom and with 5 of the parameters
corresponding to features which remain fixed over the whole image sequence,
irrespective of the viewpoints (Fitzgibbon et al. 1998).
Consider circular motion with the camera internal parameters remaining

fixed during the object rotation. The following relationships between corre-
sponding features lead to a simple parametrization of the epipolar geometry
and fundamental matrices (Figures 6.10 and 6.11):
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6.10. Five images from a single camera and circular motion after a rotation
of 10◦, 20◦, 40◦ and 80◦ are shown in (b), (e), (h) and (k). The epipolar geometry
between pairs of images is shown. Epipolar tangencies are found that intersect at
a common axis; lie on a common horizon (above and not shown) and which are
projectively symmetric about this axis shown superimposed onto a single image in
(c), (f), (i) and (l).

(i) There is no relative motion between the axis of rotation and the
camera. The projection of the axis of rotation in the image, ls, is
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therefore a fixed image line. Points on the projection of the axis,
ls · u = 0, have correspondences with the same image position:

u = u′.

(ii) Points on the projection of the axis of rotation must therefore lie
on the corresponding epipolar line drawn in the same image (i.e. are
auto-epipolar). If we superimpose the two pencils of epipolar lines
onto a common image, corresponding epipolar lines must intersect on
the projection of the axis.

(iii) The image of the plane of motion containing the camera centres, lh,
remains fixed in the image sequence. We refer to it as the horizon.
All image points on the horizon, lh ·u = 0, have corresponding image
points which lie on the same epipolar line, i.e. are also auto-epipolar:

l = l′.

The epipoles are constrained to lie on the horizon. In homogeneous
coordinates a line (the horizon) is defined by two points (the epipoles)

lh = e ∧ e′.

(iv) The rays corresponding to pairs of epipoles superimposed onto a sin-
gle image are bisected by the plane containing the camera centre and
the axis of rotation (i.e. exhibit bilateral symmetry).

(v) There is a fixed point on the horizon, us, which is the same for all
views and depends on the orientation of the camera relative to the
axis of rotation. As a consequence, the positions of the epipoles on
the horizon are constrained. The cross-ratio of the two epipoles, the
intersection of the axis of rotation and the horizon and the fixed point
on the horizon, is fixed and must correspond to bilateral symmetry
in space (explained below).

All points u which lie on the projection of the axis or the horizon are
auto-epipolar and must therefore satisfy the quadratic form:

u⊤Fu = 0 (6.26)

when l⊤h u = 0 or l⊤s u = 0. The condition is satisfied by any skew-symmetric
matrix. The symmetric part of the fundamental matrix (up to an arbitrary
scale factor) is constrained to be of the form

F+ F⊤ = lsl
⊤
h + lhl

⊤
s .
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Property 6.8.1 Epipolar geometry under circular motion. Un-
der circular motion the fundamental matrices, Fij, relating correspondences
in two views in the sequence, i and j, have a special form which can be
parametrized into an anti-symmetric component which depends on a fixed
vanishing point on the horizon, us, and a symmetric component which de-
pends only on the image of the axis of rotation, ls,and the horizon, lh:

Fij = [us]× + kij
[
lsl

⊤
h + lhl

⊤
s

]
(6.27)

The scaling factor, kij , depends on the angle between the two views, φij, and
uniquely determines the position of both epipoles once the other 5 parameters
are known.

A derivation of (6.27) follows directly by considering two projection ma-
trices parametrized for circular motion (see (6.34)). The scaling factor, kij
can be shown to be equal to tan(φij/2). The anti-symmetric component re-
sults from symmetry properties of circular motion which will be considered
below. The latter can be used to derive a simpler parametrization of the
fundamental matrix.

Bilateral symmetry under perspective projection

Symmetry properties play a useful role in the recovery of epipolar geometry
under circular motion. These are briefly derived below. Consider the pro-
jection of pairs of points in space which are bilaterally symmetric about the
plane containing the camera centre and the axis of rotation. If the optical
axis intersects the axis of rotation, the projection of point correspondences
will also display bilateral symmetry about the projection of the axis of ro-
tation, ls.
The symmetry transformation, T, between corresponding points in the

image, u and u′:

u′ = Tu

has a very special structure since it must satisfy T2 = I and must map
points on the axis to themselves. In fact the transformation has eigenvalues
{−1, 1, 1} with the eigenvectors with the same eigenvalue defining the image
of the axis of symmetry and the other corresponding to the vanishing point
of the lines of symmetry (i.e. in a direction perpendicular to the axis and
at infinity). See Figure 6.12(a).
The bilateral symmetry is projectively distorted if the optical axis is ro-

tated away from the axis of rotation. Note that the components of rotation
about the optical axis and perpendicular to the axis of rotation leave this



168 Recovery of viewer motion from profiles

h
/x

sl

usu ee
l\\

(a)

u

us

/

x
e

s

h
e

l

l

(b)

Fig. 6.11. Epipolar geometry under circular motion. The epipolar geometry of two
views is completely determined by the projection of the axis of rotation, ls, and
the position of the two epipoles. Corresponding epipolar lines intersect on the axis.
Only two epipolar tangencies are required to fix the one-dimensional projective
transformation between pencils of epipolar lines. The epipoles are also bilaterally
symmetric about the axis when the optical axis intersects the axis of rotation (a).
Rotation of the optical axis away from the axis of rotation introduces a projective
distortion with lines of symmetry meeting at a vanishing point us, (b). This point
is a infinity in (a).

symmetry unchanged. Only the component of rotation about an axis parallel
to the rotation axis will result in projective distortion. See Figure 6.12.
Under rotation about the optical centre, image points are mapped by a 2D

projective transformation given by (6.12). The new transformation relating
points in the image which are bilaterally symmetric in space is given by:

Ts = M∞TM−1
∞
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where M∞ is the 2D projective transformation which maps image points
before and after the rotation. The eigenvalues are preserved under this
transformation, leading to the following property (Springer 1964).

Property 6.8.2 Planar projective symmetry transformation. Under
perspective projection, pairs of points in space which are bilaterally symmet-
ric about the plane containing the camera centre and the axis of rotation, are
related in the image by a projective symmetry transformation, Ts, which can
be represented by a 3 × 3 matrix with 4 degrees of freedom and eigenvalues
{−1, 1, 1} given by:

Ts = I− 2
usl⊤s
l⊤s us

. (6.28)

The transformation is known as a planar harmonic homology and is fixed
by the image of the axis of rotation, ls, and the vanishing point, us. The
latter corresponds to the image of parallel lines of symmetry which map
corresponding points and is known as the centre of the homology. us is at
infinity in the special case of bilateral symmetry in the image.
The transformation must satisfy T2

s = I and maps the point us and points
on the axis, l⊤s u = 0, to themselves:

Tsus = −us (6.29)

Tsu = u. (6.30)

The transformation can therefore be parametrized by (6.28).

Fundamental matrix under circular motion

The camera centres, epipoles and pencils of epipolar lines are also symmetric
about the axis of rotation. See Figure 6.11. The epipoles are therefore
mapped by the projective symmetry transformation:

e′ = Tse (6.31)

while corresponding epipolar lines are related by

l′ = T−⊤
s l = T⊤

s l. (6.32)

The projective transformation, Ts, is in fact a special case of the 2D
projective transformation (homography) between views induced by an arbi-
trary plane (i.e. M in Property 6.3.1) and can be used to define a minimal
parametrization of the fundamental matrix.
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(a) (b) (c) (d)

(e)

Fig. 6.12. Under perspective projection objects with a plane of symmetry which
passes through the camera centre exhibit a projective symmetry. The axis and
lines of symmetry are shown for different orientations of the camera relative to the
object’s rotation axis. If the optical axis intersects the axis of rotation the sym-
metry is bilateral (a). The amount of projective distortion increases with camera
rotation about an axis parallel to the rotation axis of the object. The projective
transformation for rotations of 20◦, 30◦ and 40◦ is shown in (b), (c) and (d) re-
spectively. The transformation is completely determined by the axis, ls and the
vanishing point, us, shown in (e).

Property 6.8.3 Parametrization of fundamental matrix under cir-
cular motion. The fundamental matrix under circular motion can be
parametrized by a single epipole and the planar projective symmetry trans-
formation:

F = [e′]×Ts (6.33)

where

Ts = I− 2
usl⊤s
l⊤s us

.

The epipolar geometry of two views is completely determined by a single
epipole, the fixed point us and the projection of the axis of rotation, ls.
Alternatively the two epipoles, e and e′, and the projection of the axis of
rotation, ls can be used. It has only 6 degrees of freedom.
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Computation of epipolar geometry

Consider a pair of views obtained under circular motion. The key observa-
tion with apparent contours is that every epipolar tangency must be trans-
ferred to an epipolar line which remains tangent to the apparent contour in
the other image. The two epipolar lines must also be related by the projec-
tive symmetry transformation and hence intersect at the projection of the
axis of rotation. See Figures 6.10 and 6.11. This provides a very simple
constraint for finding the epipolar tangencies in both views.
If we assume that the positions of the epipoles are known, two epipolar

tangencies are sufficient to fix ls and thus the epipolar geometry. The posi-
tion of the epipoles is controlled by four degrees of freedom (the coordinates
of the epipoles), and at least four more epipolar tangencies are required to
determine the epipolar geometry of the pair of cameras. The general mo-
tion algorithm can be applied to the two images, exploiting the simplified
parametrization for the fundamental matrix.
With more images better results can be obtained by exploiting the fact

that the horizon, lh; the projection of the axis of rotation, ls; and the van-
ishing point, us, remain fixed in all of the images. Each view, in fact, adds
only 1 additional unknown (parameter kij in (6.27)) corresponding to the
position of one of the epipoles on the horizon. Two epipolar tangencies in at
least four images is sufficient to completely determine the epipolar geometry
and fix the angles of rotation between the views. Results on real images are
as shown in Figure 6.10.

6.9 Envelope of apparent contours under circular motion

Simpler methods exist when viewing an object that undergoes a full rotation
around a fixed axis. The object sweeps out a surface of revolution. In the
image the envelope of the apparent contours is in fact the image of the
envelope of surfaces (a surface of revolution in this case) as described in
§4.12) and (Giblin et al. 1994). If viewed by a camera pointing towards
the axis of rotation, the two contour generators are a bilaterally symmetric
pair with the plane of symmetry passing through the camera centre. In the
image the envelope will also be symmetric about the image of the axis of
rotation. See Figure 6.13.
The symmetry in the image is projectively distorted if the optical axis is

rotated away from the axis of rotation (see Figure 6.12) with the two sides of
the envelope being mapped by the projective symmetry transformation Ts.
The envelope can thus be used to recover the transformation Ts. Its eigen-
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Fig. 6.13. Envelope of apparent contours under circular motion. If the optical axis
intersects the axis of rotation the two sides of the envelope are bilaterally symmetric.
Rotation of the optical axis away from the axis of rotation introduces a projective
distortion.

vectors will determine the image of the axis of rotation, ls, and a vanishing
point on the horizon, us.

Hence the epipolar geometry is determined by only 2 parameters once this
transformation is known, corresponding the position of one of the epipoles.
Alternatively if the horizon is also known, then only one parameter is re-
quired to fix the epipolar geometry. This parameter corresponds to the angle
between the two views or the position of one of the epipoles on the horizon.

Again the key observation with apparent contours is that every epipolar
tangency must be transferred to an epipolar line which remains tangent to
the apparent contour in the other image. See Figure 6.15. By exploiting
symmetry properties, this provides a very simple constraint for finding the
epipolar tangencies in both views. In fact only a one-parameter search is
required to fully compute the epipolar geometry once the transformation Ts

has been determined as described in the algorithm below.

Implementation

The implementation proceeds in two stages. First the projective symmetry
transformation, Ts, is estimated from the envelope of the apparent contours.
Many methods exist to do this, for example, by using invariant descriptions
of planar curves (Sato and Cipolla 1998). Here we choose to find the trans-
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(a)

(b) (c)

Fig. 6.14. (a) Image 1, 8, 15 and 22 in a sequence of 36 images of a rotating vase. (b)
Envelope of apparent contours produced by overlapping all images in the sequence.
(c) Initial guess (dashed line) and final estimation (solid line) of the image of the
rotation axis.

formation by search (Cham and Cipolla 1996). The second stage involves a
one-parameter search for the epipolar tangencies.

Algorithm 6.9.1 Motion recovery under circular motion.

Estimate the projective symmetry transformation, Ts from the envelope
of apparent contours:

(i) Extract the envelope of apparent contours, E. This can be obtained
from the family of B-spline snakes used to track the apparent contour.
See Figure 6.14.

(ii) Estimate the 4 parameters of the homography Ts(ls,us) by sampling
the envelope at N image points, u, and finding the transformation
which minimizes the sum of the squared distances between the en-
velope and mapped points. Initialization is performed by assuming
bilateral symmetry (i.e. optical axis pointing at axis of rotation).

Search for epipolar tangencies between pairs of images with the following
algorithm:
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Fig. 6.15. Corresponding pair of epipolar tangents near the top and bottom of an
apparent contour in two images.

(i) For each epipolar tangency, assume the orientation of the epipolar
line in the first view is α such that the epipolar line is l(α).

(ii) Transfer this tangency to the other apparent contour by computing

l′(α) = T⊤
s l(α)

and compute the geometric distance to the apparent contour.
(iii) Update α (one-parameter optimization problem) which minimizes the

geometric distance.

Figure 6.16 shows the cost function for the top and bottom epipolar tan-
gencies of the apparent contours of Figure 6.15. A minimum of two epipolar
tangencies uniquely define the epipoles and the epipolar geometry.
An alternative to performing the one-parameter search is to map the

apparent contour of one view into the other view by using the projective
symmetry transformation. The two epipoles have been mapped to a single
point and common tangents to the pair of apparent contours (referred to
as bitangents for convenience) define the epipoles uniquely. This is exactly
the same method exploited under pure translation and projective reduction.
Again the epipolar geometry between the apparent contour in the rectified
image, Tsu(si), and the second image has been reduced to the case of pure
translation:

u′(si)
⊤[e′]×(Tsu(si)) = 0.

See Figure 6.17(a) and (b). Note that this computation is ill-conditioned
when the apparent contours display symmetry about the projection of the



6.9 Envelope of apparent contours under circular motion 175

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
10−2

10−1

100

101

102

103

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
10−1

100

101

102

103

(a) (b)

Fig. 6.16. Plot of the cost function for the pair of apparent contours shown in
Figure 6.15. The cost function related to the orientation (in radians) of the epipolar
lines for an epipolar tangency near the top of the apparent contour (a) and bottom
(b).

axis. This is well-known to pyschophysicists who have reported a similar
result in experiments on the human perception of shape from profiles (Pollick
1994).

Recovery of projection matrices

After computing the fundamental matrices, the projection matrices can
be recovered for each viewpoint. If the camera internal parameters are
known this is straightforward and follows the decomposition of §6.2. See
Figure 6.18.
In the following we provide an alternative. Without loss of generality, we

can fix the reference coordinate system to be centred at the axis of rotation,
with the Z axis aligned with the axis of rotation. The X axis can be aligned
with the ray defined by the intersection of the horizon and the projection of
the axis of rotation. The projection matrices are then given by (Fitzgibbon
et al. 1998)

P(φi) = KR0

⎡

⎢⎣
cosφi sinφi 0 −ρ
− sinφi cosφi 0 0

0 0 1 0

⎤

⎥⎦ (6.34)

and defined up to a 2D projective transformation KR0 where R0 is the ori-
entation of the camera relative to the reference coordinate system attached
to the turntable. This transformation is completely fixed by the 3 vanishing
points in the image plane corresponding to the directions of the reference
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(a) (b)

(c) (d)

Fig. 6.17. Exploiting symmetry. The one-dimensional parameter search to find the
tangencies can by avoided by exploiting the projective symmetry transformation.
The original contours with symmetry axis (a). Common tangents (bitangents) to
the apparent contour and transformed apparent contour from other view uniquely
determine the epipolar geometry (b). The epipolar geometry for the pair of images
is shown in (c) and (d).

coordinate system,

KR0 = [uX uY uZ ] .

Two of the vanishing points have already been determined directly from im-
age measurements alone. The intersection of the horizon and the projection
of the axis of rotation rotation, uX = lh ∧ ls, is in fact the projection of the
X axis. The vanishing point corresponding to the Y axis is the fixed point,
uY = us, i.e. the vanishing point of the lines of symmetry in (6.28). Note
that both of these can be obtained without knowledge of internal camera
parameters.
The last component of orientation requires the position of the vanishing

point of lines parallel to the axis of rotation. This must lie on the projection
of the axis of rotation. The direction in space is of course perpendicular
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Fig. 6.18. (a-c) Final configuration of the estimated motion of the cameras. (d)
Estimated angles of rotation.

to the others and can be computed up to an arbitrary sign from the other
vanishing points if the camera calibration parameters are known. For an un-
calibrated camera with unknown internal parameters an ambiguity remains
in the orientation of the camera and leads to a 3D projective ambiguity in
the reconstructed surface (Fitzgibbon et al. 1998).
The angles of rotation, φi, can be recovered from the position of the

epipole in each image. Projecting the camera centre of the first viewpoint
(φ = 0), c = (ρ, 0, 0), into view i gives the epipole position:

e′i = KR0

⎡

⎢⎣
cosφi − 1
sinφi

0

⎤

⎥⎦

or alternatively (up to an arbitrary scale):

e′i = us − tan(
φi

2
)uX . (6.35)

As noted before the epipoles are constrained to lie on the horizon. The
arbitrary scale and angles can be recovered from a minimum of three views,
even when the cameras are uncalibrated.
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The epipolar geometry and the recovered projection matrices under cir-
cular motion have proven to be extremely reliable. In combination with the
methods of reconstruction presented in Chapter 5, it is now possible to ac-
quire a three-dimensional model of an arbitrary object placed on a turntable
in front of a fixed camera. Both the estimation of camera motion and the re-
construction can be made to be fully automatic. Extensions to more general
motions are in progress.



Afterword

We have tried to show in this book that the visual geometry of curves and
surfaces is a rich field for mathematical and experimental investigation. (It
has kept us busy for the last decade or so.) On the mathematical side, we
have developed enough of the geometry of surfaces to show how apparent
contours can, in principle, be used to reconstruct the surfaces of objects in
the environment, using a calibrated camera with known motion. We hope
that, in fact, the discussion of surface geometry will serve as an introduction
and reference for anyone wishing to apply this powerful theory to problems in
computer vision. On the experimental side, we have shown how the theory
can be put into practice, even in the very difficult case of uncalibrated
cameras with restricted but not fully known motion. It is, to our minds,
very surprising that any useful information can be obtained from apparent
contours in this situation. This brings us back to mathematical questions of
uniqueness of reconstruction: could the data be consistent with two different
restricted motions of a camera viewing different objects? The method we
presented is iterative, and it is possible that iteration does not lead to a
unique solution. Even harder is the question of whether motion and object
can be recovered from apparent contours when the camera motion is not
restricted, and, correspondingly, whether the answer is unique. These are
problems for future investigation by ourselves or others. We hope that we
have shown that there are highly practical problems to be solved here, and
also that there is elegant and powerful mathematics at hand with which to
attack them.
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