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1 Introduction

In this chapter we are interested in accurately recognizing human faces in the presence of
large and unpredictable illumination changes. Our aim is to do this in a setup realistic for
most practical applications, that is, without overly constraining the conditions in which image
data is acquired. Specifically, this means that people’s motion and head poses are largely
uncontrolled, the amount of available training data is limited to a single short sequence per
person, and image quality is low.

In conditions such as these, invariance to changing lighting is perhaps the most signif-
icant practical challenge for face recognition algorithms. The illumination setup in which
recognition is performed is in most cases impractical to control, its physics difficult to accu-
rately model and face appearance differences due to changing illumination are often larger
than those differences between individuals [1]. Additionally, the nature of most real-world
applications is such that prompt, often real-time system response is needed, demanding ap-
propriately efficient as well as robust matching algorithms.

In this chapter we describe a novel framework for rapid recognition under varying illumi-
nation, based on simple image filtering techniques. The framework is very general and we
demonstrate that it offers a dramatic performance improvement when used with a wide range
of filters and different baseline matching algorithms, without sacrificing their computational
efficiency.

1.1 Previous work and its limitations

The choice of representation, that is, the model used to describe a person’s face is central
to the problem of automatic face recognition. Consider the components of a generic face
recognition system schematically shown in Figure 1.

A number of approaches in the literature use relatively complex facial and scene mod-
els that explicitly separate extrinsic and intrinsic variables which affect appearance. In most
cases, the complexity of these models makes it impossible to compute model parameters as a
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Figure 1: A diagram of the main components of a generic face recognition system. The
“Model parameter recovery” and “Classification” stages can be seen as mutually comple-
mentary: (i) a complex model that explicitly separates extrinsic and intrinsic appearance
variables places most of the workload on the former stage, while the classification of the
representation becomes straightforward; in contrast, (ii) simplistic models have to resort to
more statistically sophisticated approaches to matching.

closed-form expression (“Model parameter recovery”in Figure 1). Rather, model fitting is
performed through an iterative optimization scheme. In the3D Morphable Modelof Blanz
and Vetter [7], for example, the shape and texture of a novel face are recovered through gradi-
ent descent by minimizing the discrepancy between the observed and predicted appearance.
Similarly, in Elastic Bunch Graph Matching[8, 23], gradient descent is used to recover the
placements of fiducial features, corresponding to bunch graph nodes and the locations of lo-
cal texture descriptors. In contrast, theGeneric Shape-Illumination Manifoldmethod uses a
genetic algorithm to perform a manifold-to-manifold mapping that preserves pose.

One of the main limitations of this group of methods arises due to the existence of lo-
cal minima, of which there are usually many. The key problem is that if the fitted model
parameters correspond to a local minimum, classification is performed not merely on noise-
contaminated but rather entirelyincorrect data. An additional unappealing feature of these
methods is that it is also not possible to determine if model fitting failed in such a manner.

The alternative approach is to employ a simple face appearance model and put greater
emphasis on the classification stage. This general direction has several advantages which
make it attractive from a practical standpoint. Firstly, model parameter estimation can now
be performed as a closed-form computation, which is not only more efficient, but also void
of the issue of fitting failure such that can happen in an iterative optimization scheme. This
allows for more powerful statistical classification, thus clearly separating well understood
and explicitly modelled stages in the image formation process, and those that are more easily
learnt implicitly from training exemplars. This is the methodology followed in this chapter.
The sections that follow describe the method in detail, followed by a report of experimental
results.
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Figure 2: (a) The simplest generative model used for face recognition: images are assumed
to consist of the low-frequency band that mainly corresponds to illumination changes, mid-
frequency band which contains most of the discriminative, personal information and white
noise. (b) The results of several most popular image filters operating under the assumption
of the frequency model.

2 Method details

2.1 Image processing filters

Most relevant to the material presented in this chapter are illumination-normalization meth-
ods that can be broadly described as quasi illumination-invariantimage filters. These include
high-pass [5] and locally-scaled high-pass filters [21], directional derivatives [1, 10, 13, 18],
Laplacian-of-Gaussian filters [1], region-based gamma intensity correction filters [2, 17] and
edge-maps [1], to name a few. These are most commonly based on very simple image for-
mation models, for example modelling illumination as a spatially low-frequency band of
the Fourier spectrum and identity-based information as high-frequency [5, 11], see Figure 2.
Methods of this group can be applied in a straightforward manner to either single or multiple-
image face recognition and are often extremely efficient. However, due to the simplistic na-
ture of the underlying models, in general they do not perform well in the presence of extreme
illumination changes.
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2.2 Adapting to data acquisition conditions

The framework proposed in this chapter is motivated by our previous research and the find-
ings first published in [3]. Four face recognition algorithms, theGeneric Shape-Illumination
method [3], theConstrained Mutual Subspace Method[12], the commercial systemFaceIt
and aKullback-Leibler Divergence-based matching method, were evaluated on a large database
using (i) raw greyscale imagery, (ii) high-pass (HP) filtered imagery and (iii) the Self-Quotient
Image (QI) representation [21]. Both the high-pass and even further Self Quotient Image rep-
resentations produced an improvement in recognition for all methods over raw grayscale, as
shown in Figure 3, which is consistent with previous findings in the literature [1, 5, 11, 21].
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Figure 3:Performance of the (a) Mutual Subspace Method and the (b) Constrained Mutual
Subspace Method using raw greyscale imagery, high-pass (HP) filtered imagery and the Self-
Quotient Image (QI), evaluated on over1300 video sequences with extreme illumination, pose
and head motion variation (as reported in [3]). Shown are the average performance and±
one standard deviation intervals.

Of importance to this work is that it was also examined in which cases these filters help
and how much depending on the data acquisition conditions. It was found that recognition
rates using greyscale and either the HP or the QI filter negatively correlated (withρ ≈ −0.7),
as illustrated in Figure 4. This finding was observed consistently across the result of the four
algorithms, all of which employ mutually drastically different underlying models.

This is an interesting result: it means that while on average both representations increase
the recognition rate, they actuallyworsenit in “easy” recognition conditions when no nor-
malization is needed. The observed phenomenon is well understood in the context of energy
of intrinsic and extrinsic image differences and noise (see [22] for a thorough discussion).
Higher than average recognition rates for raw input correspond to small changes in imag-
ing conditions between training and test, and hence lower energy of extrinsic variation. In
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Figure 4: A plot of the performance improvement with HP and QI filters against the per-
formance of unprocessed, raw imagery across different illumination combinations used in
training and test. The tests are shown in the order of increasing raw data performance for
easier visualization.

this case, the two filters decrease the signal-to-noise ratio, worsening the performance, see
Figure 5 (a). On the other hand, when the imaging conditions between training and test are
very different, normalization of extrinsic variation is the dominant factor and performance is
improved, see Figure 5 (b).

This is an important observation: it suggests that the performance of a method that uses
either of the representations can be increased further by detecting the difficulty of recognition
conditions. In this chapter we propose a novel learning framework to do exactly this.

2.2.1 Adaptive framework

Our goal is to implicitly learn how similar the novel and training (orgallery) illumination
conditions are, to appropriately emphasize either the raw input guided face comparisons or
of its filtered output.

Let {X1, . . . ,XN} be a database of known individuals,X novel input corresponding to
one of the gallery classes andρ() andF (), respectively, a given similarity function and a
quasi illumination-invariant filter. We then express the degree of beliefη that two face sets
X andXi belong to the same person as a weighted combination of similarities between the
corresponding unprocessed and filtered image sets:

η = (1− α∗)ρ(X ,Xi) + α∗ρ(F (X ), F (Xi)) (1)

In the light of the previous discussion, we wantα∗ to be small (closer to0.0) when novel
and the corresponding gallery data have been acquired in similar illuminations, and large
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Figure 5:A conceptual illustration of the distribution of intrinsic, extrinsic and noise signal
energies across frequencies in the cases when training and test data acquisition conditions
are (a) similar and (b) different, before (left) and after (right) band-pass filtering.

(closer to1.0) when in very different ones. We show thatα∗ can be learnt as a function:

α∗ = α∗(µ), (2)

whereµ is theconfusion margin– the difference between the similarities of the twoXi most
similar toX . The value ofα∗(µ) can then be interpreted as statistically the optimal choice of
the mixing coefficientα given the confusion marginµ. Formalizing this we can write

α∗(µ) = arg max
α

p(α|µ), (3)

or, equivalently

α∗(µ) = arg max
α

p(α, µ)
p(µ)

. (4)

Under the assumption of a uniform prior on the confusion margin,p(µ)

p(α|µ) ∝ p(α, µ), (5)
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and

α∗(µ) = arg max
α

p(α, µ). (6)

2.2.2 Learning theα-function

To learn theα-functionα∗(µ) as defined in (3), we first need an estimatep̂(α, µ) of the joint
probability densityp(α, µ) as per (6). The main difficulty of this problem is of practical
nature: in order to obtain an accurate estimate using one of many off-the-shelf density esti-
mation techniques, a prohibitively large training database would be needed to ensure a well
sampled distribution of the variableµ. Instead, we propose a heuristic alternative which, we
will show, will allow us to do this from a small training corpus of individuals imaged in vari-
ous illumination conditions. The key idea that makes such a drastic reduction in the amount
of training data possible, is to use domain specific knowledge of the properties ofp(α, µ) in
the estimation process.

Our algorithm is based on an iterative incremental update of the density, initialized as a
uniform density over the domainα, µ ∈ [0, 1], see Figure 7. Given a training corpus, we iter-
atively simulate matching of an “unknown” person against a set of provisional gallery indi-
viduals. In each iteration of the algorithm, these are randomly drawn from the offline training
database. Since the ground truth identities of all persons in the offline database are known,
we can compute the confusion marginµ(α) for eachα = k∆α, using the inter-personal
similarity score defined in (1). Densitŷp(α, µ) is then incremented at each(k∆α, µ(0))
proportionally toµ(k∆α) to reflect the goodness of a particular weighting in the simulated
recognition.

The proposed offline learning algorithm is summarized in Figure 6 with a typical evolution
of p(α, µ) in Figure 7.

The final stage of the offline learning in our method involves imposing the monotonicity
constraint onα∗(µ) and smoothing of the result, see Figure 8.

3 Empirical evaluation

To test the effectiveness of the described recognition framework, we evaluated its perfor-
mance on 1662 face motion video sequences from four databases:
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Input : training dataD(person, illumination),
filtered dataF (person, illumination),
similarity functionρ,
filter F .

Output : estimatêp(α, µ).

1: Init
p̂(α, µ) = 0,

2: Iteration
for all illuminationsi, j and personsp

3: Initial separation
δ0 = minq 6=p [ρ(D(p, i), D(q, j))− ρ(D(p, i), D(p, j))]

4: Iteration
for all k = 0, . . . , 1/∆α, α = k∆α

5: Separation givenα
δ(k∆α) = minq 6=p[αρ(F (p, i), F (q, j))

−αρ(F (p, i), F (p, j))
+(1− α)ρ(D(p, i), D(q, j))
−(1− α)ρ(D(p, i), D(p, j))]

6: Update density estimate
p̂(k∆α, δ0) = p̂(k∆α, δ0) + δ(k∆α)

7: Smooth the output
p̂(α, µ) = p̂(α, µ) ∗Gσ=0.05

8: Normalize to unit integral
p̂(α, µ) = p̂(α, µ)/

∫
α

∫
x

p̂(α, x)dxdα

Figure 6:Offline training algorithm.
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(d) Iteration 150
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(e) Iteration 200
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(f) Iteration 250
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(g) Iteration 300
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(h) Iteration 350
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(i) Iteration 400
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(j) Iteration 450
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(k) Iteration 500
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(l) Iteration 550

Figure 7: The estimate of the joint densityp(α, µ) through 550 iterations for a band-pass
filter used for the evaluation of the proposed framework in Section 3.1.
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(a) Rawα∗(µ) estimate
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(b) Monotonicα∗(µ) estimate
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(c) Final smooth and monotonicα∗(µ)
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Figure 8:Typical estimates of theα-function plotted against confusion marginµ. The esti-
mate shown was computed using 40 individuals in 5 illumination conditions for a Gaussian
high-pass filter. As expected,α∗ assumes low values for small confusion margins and high
values for large confusion margins (see(1)).
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CamFace with 100 individuals of varying age and ethnicity, and equally represented
genders. For each person in the database we collected 7 video sequences
of the person in arbitrary motion (significant translation, yaw and pitch,
negligible roll), each in a different illumination setting, see Figure 9 (a)
and 10, at 10fps and320× 240 pixel resolution (face size≈ 60 pixels)1.

ToshFace kindly provided to us by Toshiba Corp. This database contains 60 individ-
uals of varying age, mostly male Japanese, and 10 sequences per person.
Each sequence corresponds to a different illumination setting, at 10fps and
320× 240 pixel resolution (face size≈ 60 pixels), see Figure 9 (b).

Face Video freely available2 and described in [14]. Briefly, it contains 11 individuals
and 2 sequences per person, little variation in illumination, but extreme and
uncontrolled variations in pose and motion, acquired at 25fps and160×120
pixel resolution (face size≈ 45 pixels), see Figure 9 (c).

Faces96 the most challenging subset of the University of Essex face database, freely
available from http://cswww.essex.ac.uk/mv/allfaces/
faces96.html . It contains 152 individuals, most 18–20 years old and
a single 20-frame sequence per person in196 × 196 pixel resolution (face
size≈ 80 pixels). The users were asked to approach the camera while
performing arbitrary head motion. Although the illumination was kept
constant throughout each sequence, there is some variation in the manner
in which faces were lit due to the change in the relative position of the user
with respect to the lighting sources, see Figure 9 (d).

For each database exceptFaces96, we trained our algorithm using a single sequence per
person and tested against a single other sequence per person, acquired in a different session
(for CamFaceand ToshFacedifferent sessions correspond to different illumination condi-
tions). SinceFaces96database contains only a single sequence per person, we used the first
frames 1–10 of each for training and frames 11–20 for test. Since each video sequence in
this database corresponds to a person walking to the camera, this maximizes the variation
in illumination, scale and pose between training and test, thus maximizing the recognition
challenge.

Offline training, that is, the estimation of theα-function (see Section 2.2.2) was performed
using 40 individuals and 5 illuminations from theCamFace database. We emphasize that
these were not used as test input for the evaluations reported in the following section.

Data acquisition. The discussion so far focused on recognition using fixed-scale face im-
ages. Our system uses a cascaded detector [20] for localization of faces in cluttered images,

1A thorough description of the University of Cambridge face database with examples of video sequences is
available athttp://mi.eng.cam.ac.uk/ ∼oa214/ .

2Seehttp://synapse.vit.iit.nrc.ca/db/video/faces/cvglab .
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(a) Cambridge Face Database

(b) Toshiba Face Database

(c) Face Video Database

(d) Faces 96 Database

Figure 9:Frames from typical video sequences from the four databases used for evaluation.
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(a) FaceDB100

(b) FaceDB60

Figure 10:(a) Illuminations 1–7 from database FaceDB100 and (b) illuminations 1–10 from
database FaceDB60.

which are then rescaled to the unform resolution of50×50 pixels (approximately the average
size of detected faces in our data set).

Methods and representations. The proposed framework was evaluated using the follow-
ing filters (illustrated in Figure 11):

• Gaussian high-pass filtered images [5, 11] (HP):

XH = X− (X ∗Gσ=1.5), (7)

• local intensity-normalized high-pass filtered images – similar to the Self-Quotient Im-
age [21] (QI):

XQ = XH/(X−XH), (8)

the division being element-wise,

• distance-transformed edge map [3, 9] (ED):

XE = DistTrans(Canny(X)), (9)

• Laplacian-of-Gaussian [1] (LG):

XL = X ∗ ∇Gσ=3, (10)

and

• directional grey-scale derivatives [1, 10] (DX, DY):

Xx = X ∗ ∂

∂x
Gσx=6 (11)

Xy = X ∗ ∂

∂y
Gσy=6. (12)
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Figure 11:Examples of the evaluated face representations: raw greyscale input (RW), high-
pass filtered data (HP), the Quotient Image (QI), distance-transformed edge map (ED),
Laplacian-of-Gaussian filtered data (LG) and the two principal axis derivatives (DX and
DY).

For baseline classification, we used two canonical correlations-based [15] methods:

• Constrained MSM (CMSM) [12] used in a state-of-the-art commercial system FacePassr

[19],

• Mutual Subspace Method (MSM) [12], and

These were chosen as fitting the main premise of the chapter, due to their efficiency, numerical
stability and generalization robustness [16]. Specifically, we (i) represent each head motion
video sequence as a linear subspace, estimated using PCA from appearance images and (ii)
compare two such subspaces by computing the first three canonical correlations between
them using the method of Björck and Golub [6], that is, as singular values of the matrix
BT

1 B2 whereB1,2 are orthonormal basis of two linear subspaces.

3.1 Results

To establish baseline performance, we performed recognition with both MSM and CMSM
using raw data first. A summary is shown in Table 3.1. As these results illustrate, theCam-
FaceandToshFacedata sets were found to be very challenging, primarily due to extreme
variations in illumination. The performance onFace VideoandFaces96databases was sig-
nificantly better. This can be explained by noting that the first major source of appearance
variation present in these sets, the scale, is normalized for in the data extraction stage; the
remainder of the appearance variation is dominated by pose changes, to which MSM and
CMSM are particularly robust to [4, 16].

Next we evaluated the two methods with each of the 6 filter-based face representations.
The recognition results for theCamFace, ToshFaceandFaces96databases are shown in blue
in Figure 12, while the results on theFace Videodata set are separately shown in Table 2
for the ease of visualization. Confirming the first premise of this work as well as previous
research findings, all of the filters produced an improvement in average recognition rates.
Little interaction between method/filter combinations was found, Laplacian-of-Gaussian and
the horizontal intensity derivative producing the best results and bringing the best and average
recognition errors down to 12% and 9% respectively.
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Figure 12:Error rate statistics. The proposed framework (-AD suffix) dramatically improved
recognition performance on all method/filter combinations, as witnessed by the reduction in
both error rate averages and their standard deviations. The results of CMSM on Faces96 are
not shown as it performed perfectly on this data set.
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Table 1:Recognition rates (mean/STD, %).

CamFace ToshFace FaceVideoDB Faces96 Average

CMSM 73.6 / 22.5 79.3 / 18.6 91.9 100.0 87.8

MSM 58.3 / 24.3 46.6 / 28.3 81.8 90.1 72.7

Table 2:FaceVideoDB, mean error (%).

RW HP QI ED LG DX DY

MSM 0.00 0.00 0.00 0.00 9.09 0.00 0.00

MSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CMSM 0.00 9.09 0.00 0.00 0.00 0.00 0.00

CMSM-AD 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Finally, in the last set of experiments, we employed each of the 6 filters in the proposed
data-adaptive framework. The recognition results are shown in red in Figure 12 and in Ta-
ble 2 for theFace Videodatabase. The proposed method produced a dramatic performance
improvement in the case of all filters, reducing the average recognition error rate to only 3%
in the case of CMSM/Laplacian-of-Gaussian combination.This is a very high recognition rate
for such unconstrained conditions (see Figure 9), small amount of training data per gallery
individual and the degree of illumination, pose and motion pattern variation between different
sequences. An improvement in the robustness to illumination changes can also be seen in the
significantly reduced standard deviation of the recognition, as shown in Figure 12. Finally,
it should be emphasized that the demonstrated improvement is obtained with a negligible
increase in the computational cost as all time-demanding learning is performed offline.

4 Conclusions

In this chapter we described a novel framework for automatic face recognition in the presence
of varying illumination, primarily applicable to matching face sets or sequences. The frame-
work is based on simple image processing filters that compete with unprocessed greyscale
input to yield a single matching score between individuals. By performing all numerically
consuming computation offline, our method both (i) retains the matching efficiency of simple
image filters, but (ii) with a greatly increased robustness, as all online processing is performed
in closed-form. Evaluated on a large, real-world data corpus, the proposed framework was
shown to be successful in video-based recognition across a wide range of illumination, pose
and face motion pattern changes.
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