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Abstract

Surface curvature along extremal boundaries is potentially useful information for nav-
igation, grasping and object identification tasks. Previous theories have shown that such
qualitative information about curvature can be obtained from a static view. Furthermore
it is known that, for orthographic projection, under planar viewer-motion, quantitative
curvature information is available from spatio-temporal derivatives of flow. This theory
is extended here to arbitrary curvilinear viewer-motion and perspective projection.

We show that curvatures can actually be computed this way in practice, but that
they are highly sensitive to errors in viewer-motion estimates. Intuitively, relative or
differential measurements of curvature might be far more robust. Rather than measuring
the absolute deformation of an apparent contour, differential quantities depend on the
rate at which surface features are swept over an extremal boundary as the viewer moves.
It is shown that, theoretically, such differential quantities are indeed far less sensitive
to uncertainty in viewer-motion. Ratios of differential measurements are less sensitive
still. In practice sensitivity is reduced by about two orders of magnitude. We believe

this represents a significant step in the development of practical techniques for robust,
qualitative 3D vision.



1 Introduction

The deformation of an apparent contour (the silhouette of a smooth surface) under viewer-
motion is a potentially rich source of geometric information for navigation, motion-planning
and object-recognition. Barrow and Tenenbaum [Barrow78] pointed out that surface orien-
tation along an extremal boundary ! can be computed directly from image data. Koenderink
[Koenderink84] related the curvature of an apparent contour to the intrinsic curvature of the
surface (Gaussian curvature); the sign of Gaussian curvature is equal to the sign of the curva-
ture of the contour. Convexities, concavities and inflections of an apparent contour indicate,
respectively, convex, hyperbolic and parabolic surface points. Giblin and Weiss [Giblin87]
have extended this by adding viewer motions to obtain quantitative estimates of Gaussian
and mean curvature. A surface can be reconstructed from the envelope of all its tangent
planes, which in turn are computed directly from the family of silhouettes of the surface,
obtained under planar motion of the viewer. By assuming that the viewer follows a great
circle of viewer directions around the object they restricted the problem of analysing the
envelope of tangent planes (a 2-parameter family) to the less general one of computing the
envelope of a family of lines in a plane. Their algorithm was tested on noise-free, synthetic
data (on the assumption that extremal boundaries had been distinguished from other image
contours) demonstrating the reconstruction of a planar curve under orthographic projection.

This paper extends these theories further, to the general case of arbitrary non-planar
camera motion under perspective projection. The Gaussian curvature of a surface, at a point
on its silhouette, can be computed given some known local motion of the viewer. Curva-
ture is computed from spatio-temporal derivatives (up to second order) of image-measurable
quantities. The theory can, of course, be applied to detect extremal boundaries and distin-
guish them from surface markings or discontinuities. Experiments show that, with adequate
viewer-motion calibration, itself computed from visual data [T'sai87], it is possible to obtain
curvature measurements of useful accuracy.

A consequence of the theory, representing an important step towards qualitative vision,
concerns the robustness of differential measurements of curvature at two nearby points. Intu-
itively it is relatively difficult to judge, moving around a smooth, featureless object, whether
its silhouette is extremal or not — whether the Gaussian curvature along the contour is
bounded or not. This judgment is much easier to make for objects with feature-rich surfaces.
Under small viewer-motions, features are “sucked” over the extremal boundary, at a rate
which depends on surface curvature. Our theory reflects this intuition exactly. It is shown

that differential measurements of curvature across two adjacent points are entirely immune

!Consider a smooth rigid body for which the tangent plane is defined at every point of the surface. For
each vantage point all the rays through the vantage point that are tangent to the surface can be constructed.
They touch the object along a smooth curve on its surface called the extremal boundary [Barrow78] but which
is alternatively known as the contour generator [Marr77), the rim [Koenderink84] or the critical set of a surface

whose visual mapping is singular [Giblin87). Its projection is known as the apparent contour, profile, outline
or silhouette.



to uncertainties in the viewer’s rotational velocity. This is somewhat related to earlier results
showing that differential measurements of this kind are important for depth measurement
from optic flow [LHiggins80, Weinshall88] and for curvature measurements from stereoscopi-
cally viewed highlights [Blake88]. Furthermore, they are relatively immune to uncertainties
in translational motion in that, unlike single-point measurements, they are independent of
the viewer’s acceleration. Only dependence on velocity remains. Experiments show that this
theoretical prediction is borne out in practice. Differential curvature measurements prove to
be more than an order of magnitude less sensitive than single-point measurements to errors
in viewer-motion calibration. There is some theoretical evidence that ratios of differential
curvature measurements are less sensitive by about another order of magnitude. In our ex-
periments absolute measurements of curvature were so sensitive that they became unreliable
for viewer motion errors of 0.5mm in position and 1mrad in orientation. For ratios of differ-
ential measurements of curvature the corresponding figures were about 50mm and 70mrad
respectively.

2 Theoretical framework

The following theory relates the geometry of apparent contours and their deformation under
viewer-motion to the geometry of the observed object. The use of spherical projection (rather
than planar), which has previously proven to be a powerful tool in structure-from-motion
[Maybank85], makes it feasible to extend the theory of Giblin and Weiss [Giblin87)] to allow
for perspective. A significant technical issue is the choice of spatio-temporal parameterisa-
tion. There is no unique parameterisation because the mapping between contour-generators
(extremal boundaries) at successive instants is underdetermined. This is essentially a form
of the “aperture problem”.

2.1 General properties of the extremal boundary and its projection

Generically (that is, given stability under arbitrarily small perturbations such as a small
excursion of the vantage point) the extremal boundary is a smooth space curve, in general
non-planar, whose tangent is everywhere defined. However, its projection (the apparent
contour) may not necessarily be smooth everywhere. For generic situations there may exist
a finite number of rays for which the extremal boundary and the view direction are aligned.
At these points the apparent contour has cusps. For opaque surfaces only one branch of the

cusp is visible, however, corresponding to a contour-ending [Koenderink82,Koenderink84).

2.2 Surface Geometry

Consider a point P on the extremal boundary of a smooth, curved surface in R3 and pa-
rameterised locally by a vector valued function r(s,t). The parametric representation can be
considered as covering the surface with 2 families of curves: r(s,to), and r(so,t) where so,o



are fixed for a given curve in the family. A one-parameter family of views is indexed by the
time parameter t and s,t are defined so that the s-parameter curve, r(s,to), is an extremal
boundary for a particular view #o. A t-parameter curve r(sg,t) can be thought of as the 3D
locus of points grazed by a light-ray from the viewer, under viewer-motion. Given a starting
point s = sg, t = 1o, such a locus is not uniquely defined because the correspondence, as the
viewer moves, between “successive” (in an infinitessimal sense) extremal boundaries is not
unique. Hence there is considerable freedom to choose a parameterisation r(s,t).

Local surface geometry is specified in terms of the basis {r;s,r;} for the tangent plane (r,
and r; denote 9r/ds and 9r/0t respectively). The surface normal is a unit vector n (figure
1) satisfying

rs,n = 0 (1)
r.n = 0. (2)

Surface curvature is represented by the first and second fundamental forms [DoCarmo76]
[Millman77). The first fundamental form (with coefficients represented by a matrix I)

I= [ ri.ry Ity :l (3)

Ts.F; Ts.Ty

is used to express the length of any infinitessimal element in the tangent plane. The second
fundamental

II = I: ri.0 g :| (4)

rst 913 rss I

form quantifies the “bending away” of the surface from the tangent plane. The geometry of
the surface is uniquely determined locally up to a rigid motion in R® by these two quadratic
forms and our aim is therefore to make these and other intrinsic descriptions (such as Gaussian
curvature) explicit from image-measurable quantities.

2.3 Imaging model

A general model of the imaging device is to consider it as determining the unit vector, T of
an incoming ray. This is effectively a spherical pin-hole camera of unit radius (figure 3). Its
simplicity arises from the fact that there are no special points on the image surface, whereas
the origin of the perspective plane is special and the consequent loss of symmetry tends to
complicate mathematical arguments.

For a given vantage position to the image of the extremal boundary is a continuous family
of rays T(s,to) emanating from the camera’s optical centre which are tangent to the surface:

T.n=0. (5)

The moving observer at position v(t) sees a 2 parameter family of apparent contours which we

represent as a family of unit view vectors T(s, ). As before with r(s,t), the parameterisation



is underdetermined (an “aperture problem”) — to be fixed later. At any given position, the
observer measures the direction T of a ray from image measurements and knowledge of the
orientation of the camera co-ordinate system relative to the world frame. The ray touches

the surface at point P (figure 2), whose position vector is
2(s,1) = v(t) + MT(s, 1), (6)

where A is the distance along the ray to the point P. The tangent to the extremal boundary
is

1'5 = AsT + ATS (7)
and which must lie in the tangent plane of the surface:

rs.n = 0.

From (1),(5) and (7), we see that
T, n=0 (8)

and the orientation of the surface normal is (figure 3)

TAT,
=T AT, ®

This is a generalisation to perspective projection of the well-known result of Barrow and
Tenenbaum [Barrow78,Barrow81).

2.4 Conjugate relationship of view vector and extremal boundary

It is well known that, for orthographic projection, the view direction and the extremal bound-
ary are in conjugate directions with respect to the second fundamental form [Koenderink76]
[Koenderink84]. This is immediately apparent in the current framework since the second
fundamental form has the property that

II(r,,T) = -T.n,
which, by differentiating (5) and substituting (8), is zero.
T.n, =0 (10)

The view direction and the extremal boundary are conjugate but not in general perpendicular.
They are perpendicular only if the ray T is along a principal direction.

- 2.5 Recovery of depth

Depth can be computed from the 1st derivative of the deformation of the apparent contour
under known viewer motion [Bolles87). The contact point of a ray, P, moves with velocity

r: = vi+ AT+ AT, (11)



Since r; lies in the tangent plane of the surface at P:
ryn = 0

so that depth (distance along the ray, A) is given by

v D

= 2
A Tt.n (1 )

This formula is an infinitessimal analogue of triangulation with stereo cameras. The numer-
ator is analogous to baseline and the denominator to disparity. The result also holds for a
rigid space curve or an occluding boundary — not surprisingly since we claimed that second

but not first derivatives of T are sensitive to curvature.

2.6 Recovering the first and second fundamental forms

Given an arbitrary choice of T;, n; or ry, the coefficients of the first and second fundamental
forms can be expressed in terms of image-measurable quantities, T and its spatio-temporal
derivatives. The elements of the first fundamental form can be determined from (7), (11) and
(12). Taking also their partial derivatives and dot products with n and using (8) and (10)
determines the coefficients of the second fundamental form:

rseom = ATz m=-AT,.n, = A\T.n,, (13)

JTYS 43 )\Ttt.n + 2}\tTt.n 4+ vygn = AT.ntt - V. — 2Vt.nt

i

rgn = ANTgun+4+AT.n=ATng— ven,

2.7 Choice of Parameterisation

We can consider the problem of choosing a parameterisation as an “aperture problem” for
contours on the spherical perspective image (T(s,t)) or on the Gauss sphere (n(s,t)), or
between space curves on the surface (r(s,t)) (figure 4).

A natural parameterisation is the “epipolar parameterisation” defined by
AT =0 (14)
or, equivalently,
(l‘t/\T)/\T=0 (15)

for which the tangent-plane basis vectors ry, and r; are in conjugate directions. Substituting
for ry from (11)
(Vi AT)AT+AT:AT)AT =0 (16)

leading to the “matching” condition

A
7o WATIAT an)



Points on different contours are “matched” by moving along great-circles on the image sphere
with poles defined by the direction of the viewer’s velocity v; (figure 5). This induces a
correspondence on the surface between extremal boundaries from different viewpoints. If the
motion is linear corresponding points on the image sphere will lie on an epipolar great-circle.
This is equivalent to Epipolar Plane matching in stereo. For a general motion, however, the
epipolar structure rotates continuously as the direction of v¢ changes and the space curve,
r(so, t), generated by the movement of a contact point will be non-planar.

There are two possible cases of degeneracy of the parameterisation, occurring when {r,,r;}

fails to form a basis for the tangent plane:

1. r: = 0
The contour is not an extremal boundary but a 3D rigid space curve (surface marking
or discontinuity in depth or orientation). The parameterisation degrades gracefully and

hence this condition poses no special problems.

2.rsArp=0andr;#0
For a special viewing geometry in which the view direction T is along an asymptotic
direction of a hyperbolic patch on the surface, the tangent to the extremal boundary
and the view direction are aligned. This is because the asymptotic directions at a
point on a hyperbolic patch on the surface are self-conjugate [DoCarmo76].2 A cusp is
generated in the projection of the extremal boundary which appears in the image as a
contour-ending [ Koenderink82,Koenderink8].

2.8 Determination of local curvature

Substituting the matching constraint of (17) into (11) and using (5) we obtain:
ry = (/\t + T.Vt)T (18)

ri.n = (/\t + T.vt)Tt.n (19)

The physical interpretation of equation (18) is that the contact (grazing) point on an extremal
boundary moves/slips along the line of sight T with a speed given by |ry|.

The normal curvature ?, of the space curve, r(sq, t), at P is given by:

t Ty

K = lrtlz (20)
Tt.n
= (’\t + T.Vt) (21)

The numerator is analogous to stereo disparity (as appeared in the denominator of the depth
formula (12)) and depends only on the distance of the contact point and the “stereo baseline”.

2For an asymptotic direction II(T,T) = —T.n, = Te.n = 0 and the view direction is self-conjugate. The
tangent to the extremal boundary and the view direction are also conjugate. These conditions are satisfied if
the view direction and the tangent to the extremal boundary are parallel.



The denominator is the speed of the contact point and is therefore inversely proportional to
the curvature (normal) of the space curve generated as the viewer moves in time. It “clings”
to points with high curvature and speeds up as the curvature is reduced. This property will
be used later to distinguish surface markings or creases from extremal boundaries.
Gaussian curvature at a point is defined to be the product of the principal curvatures
[DoCarmo76). With the epipolar parameterisation , Gaussian curvature can also be expressed
as a product of two curvatures: the normal curvature x? of the space curve generated by the
motion of a contact-point and the geodesic curvature of the image (under spherical projection)
of the extremal boundary scaled by inverse-depth. In general the Gaussian curvature can be
expressed as the ratio of the determinants of the matrices of coefficients of the second and
first fundamental forms: Vet
Kgauss = T‘I'-l— (22)
It is easy to show that, as a consequence of choosing the epipolar parameterisation, the

second fundamental form is diagonal. The off-diagonal components are both equal to
res.n = —reng = —|r¢|Tong = 0.
Consequently the expression for Gaussian curvature is simplified. From (22),

(rye.n)(rss.n)
(rere)(rs.rs) — (rp.15)?

(5e) () - .
Yy (1 _ (1.5 )2) (24)

|5 |

KRgauss =

where ! and x° are the normal curvatures of the space curves, r(so,t) and r(s, #o) respectively,
and the denominator is a scaling factor - the square of the sine of the angle between the view
vector T and the tangent ry to the extremal boundary.

Gaussian curvature can be expressed even more simply in terms of the curvature in the
image — more precisely the geodesic curvature 3, kP, of the apparent contour on the projection
sphere, T(so, t).

(25)

Using equation (7) to express T, in terms of surface basis vectors r; and r,, the geodesic
curvature of the apparent contour can be expressed as:

A?T,..n

KP =
(rs.rs) — (Turs)?

(26)

The curvature, , and the Frenet-Serret normal, N, for a space curve T(s) are given by [Fauz79, p103] :
kN = (T, ATs)AT,/|T,|*. The normal curvature is the magnitude of the component of N in the direction
of the surface normal (here T since T(s, ) is a curve on the image sphere); the geodesic curvature is the
magnitude of the component in a direction perpendicular to the curve tangent (T,) and the surface normal.



It can also be written in terms of the extremal boundary’s normal curvature:

KS

K = A (27)
1-— (T.ﬁ:—ry
since from equation (13):
Ks' _ Tssem
rs.Ts
_ AT,,.n (28)
rs.Ts

Equation (27) shows that an apparent contour is smooth except where the parameterisation
is degenerate (see earlier). Its curvature has the same sign as the normal curvature x° of the
extremal boundary. A similar result was derived by Brady et al for orthographic projection
[Brady85] and Verri and Yuille [ Verri85] for perspective projection.

Now equations (23) and (27) can be used to derive Koenderink’s simple expression for

Gaussian curvature:
KPK?
Rgauss = —)\—"' (29)

We can express this purely in terms of image measurables and their spatio-temporal deriva-

tives, up to second order:
T”.n 1 Tt.n )
ss = | 75" ke —e T 30
Faou <|Ts|2) <)\> (/\t+T.Vt (30)

where 2
At Tovy = (Lee)(ven) + 2(T&¥3.(f)3'n) ~ (ven)(Tym) )

and
A= g (32)

Since the sign of x* and the depth A are always positive at an extremal boundary, a corollary
of equation (29) is the well known result that the sign of Gaussian curvature is equal to the
sign of the curvature of the projection [ Koenderink84,Brady85).

2.9 Experimental Results: Determining curvatures from absolute mea-
surements

Figure 6 shows 3 views from a sequence of a scene taken from a camera mounted on a moving
robot-arm whose motion has been accurately calibrated from visual data [T'sai87).

Using a numerical method for estimating surface curvatures from 3 discrete views (see
Appendix) we estimate the radius of curvature R for both a point on an extremal boundary
of a cup,B, and a surface marking, A.

measured (mm) | actual (mm) | error (mm)
surface marking A 1.95 0.0 1.95

extremal boundary B 45.7 44.4 1.3




Table 2. Estimating surface curvatures from 3 distinct views of a point on a surface marking

and a point on an extremal boundary.

The radius of the cup was measured using calipers as 44.4 & 2mm. A surface marking
can be considered as a point with infinite curvature and hence ideally will have a radius of
curvature of 0.0mm. The estimated curvatures agree with the actual curvatures. However,
the results are very sensitive to perturbations in the motion parameters. Figures 7a shows
how an error of lmm (in a translation of 55.3mm) in determining the position of the camera
centre for view 2 produces an error of about 190% in the estimate of curvature for the point
on the extremal boundary. Similarly the estimate of curvature is very sensitive to errors in
the orientation of the camera (figure 8a). In particular a perturbation in rotation about an
axis defined by the epipolar plane of 1mrad (in a rotation of 178 mrad) produces an error of
70% in the estimate of the radius of curvature.

3 Differential measurement of curvature

We have seen that although it is perfectly feasible to compute curvature from the observed
deformation of an apparent contour, the result is highly sensitive to motion calibration. This
may be acceptable for a moving camera mounted on a precision robot-arm or when a grid is
in view so that accurate visual calibration can be performed. In such cases it is feasible to
determine motion to the accuracy of around 1 part in 1000 that is required. However, when
only crude estimates of motion are available another strategy is called for. It is sometimes
possible in such a case to use the crude estimate to bootstrap a more precise visual egomotion
computation [Harris87. However this requires an adequate number of identifiable corner
features, which may not be available in an unstructured environment. Moreover, if the
estimate is too crude the egomotion computation may fail; it is notoriously ill-conditioned
[Tsai84] and is in danger of converging to an incorrect solution.

The alternative approach is to seek qualitative measurements of geometry that are much
less sensitive to error in the motion estimate. In this section we show that differential mea-
surements of curvature have just this property. Differential measurements based on two
points are insensitive to errors in rotation and in translational acceleration. Typically, the
two features might be one point on an extremal boundary and one fixed surface point. The
surface point has infinite curvature and therefore acts simply as a stable reference point for
the measurement of curvature at the extremal boundary. Intuitively the reason for the in-
sensitivity of differential curvature is that it is a function only of the differential motion of
image features. Thus global additive errors in motion measurement have no effect.

Consider two visual features whose projections on the image sphere are T(s;,t), i = 1,2
which we will abbreviate to T¢, i = 1,2. Think of them as two points on extremal boundaries,
which trace out curves r(sy,t) and r(sg,t) with normal curvatures ! and «*? as the viewer

moves. If one of the points, say T!, is actually a surface feature then it has infinite curvature



—1/k% = 0. The two features are considered to be instantaneously spatially coincident, that
is, initially,
T(s1,t) = T(s2,1).
Moreover they are assumed to lie at a common depth A. In practice, of course, the feature
pair will not coincide exactly. The first temporal derivatives of T? are dependent only on
image position, viewer velocity and rotation and depth:*
. (Vi ATHAT
7j= WATINT (33)
and hence, instantaneously, T} = T? = T, . Second order temporal derivatives are, (rear-
ranging equation (21) and using (31)):
. 1 Ti.n)? : : }
wh = p _(_,:;t_i)n + 2(T".v¢)(Tin) — vgm| i =1,2. (34)
Now we must define two differential quantities. The differential curvature Ax? of the

feature pair is defined by

1 11
N (35)

The relative view vector is defined to be
o(t) = T(s2,t) — T(s1,1) (36)

Now, taking the difference of equation (34) for ¢ = 1,2 leads to a relation between these two
differential quantities:

_ (Tt.n)2 1
6tt.n = by Art (37)
which, from (12),
(Vt.n)2 1
A3 Axt’ (38)

From this equation we can obtain differential curvature Ax? as a function of depth A, viewer
velocity vi, and the 2nd temporal derivative of §. Absolute measurement of curvature (34)
depended also on the viewer’s translational acceleration vi. Uncertainty from practical
measurements (based on finite differences, for example) of the lower derivative will, of course,
be much reduced. Hence the relative measurement should be much more robust. Moreover,
because § is a relative measurement on the projection sphere it is unaffected by errors in

viewer rotation, unlike the image vectors T* which occur in the absolute measurement of
curvature.

*If we choose the reference frame to be the instantaneous camera co-ordinate system we can express T
and T: in terms of an image position vector, Q, and image velocities {(optic flow) Q:. Namely T = Q and

T: = Q: +wAQ. Equation (33) reduces to the equation of motion and structure from motion from optic flow
[Maybank85).
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In the case that T is known to be a fixed surface reference point, with 1/k™ = 0, then
Aﬁ',t - HtZ

so that the differential curvature Ax? constitutes an estimate, now much more robust, of the
normal curvature 2 at the extremal boundary point T2. Of course this can now be used in
equation(29) to obtain a robust estimate of gaussian curvature.

Our experiments confirm this. Figures 7b and 8b show that the sensitivity of the dif-
ferential curvature to error in position and rotation computed between points A and B is
reduced by an order of magnitude from 190%/mm and 70%/mrad to 17%/mm and 8% /mrad
respectively.

Further robustness can be obtained by considering the ratio of differential curvatures.
Ratios of two-point differential curvature measurements appear, in theory, to be completely
insensitive to viewer motion. This is because in a ratio of Ak’ measurements for two different
point-pairs, terms depending on absolute depth A and velocity v; are cancelled out in equation
(38). This result corresponds to the following intuitive idea. The rate at which surface
features rush towards or away from an extremal boundary is proportional to the (normal)
curvature there. The constant of proportionality is some function of viewer-motion and depth;
it can be eliminated by considering only ratios of curvatures.

In fact there is a hidden dependence on viewer-velocity since the epipolar parameterisation
has been used and that depends on v; in the "matching equation” (equation(17)). Further-
more, in practice there is a residual sensitivity because the features involved cannot coincide
exactly, as the theory requires. Nonetheless our results show a striking decrease in sensitiv-
ity again, for ratios of differential curvatures, compared with the differential curvatures on
their own (figures 7c and 8c). Sensitivities are again reduced by an order of magnitude to
1.5%/mm and 1.1%/mrad respectively.

4 Conclusion

It appears that, in practice, given just one known surface reference point, highly robust
relative curvature measurements can be made at an arbitrary number of other points on
apparent contours (one reference point can be used as the first partner T! in any number of
point pairs). These can be used either to measure curvature along an extremal boundary, or
to confirm the hypothesis that a point is on a fixed surface feature.

Suppose no known surface feature has been identified in advance. Can the robust relative
measurements be made to bootstrap themselves without an independent surface reference?
One possibility is that relative (two-point) curvature measurements could be obtained first
for a whole set of points (taking many pairings within the set). That fixes curvatures at
those points up to one global additive constant. Then look for a mode in the set of relative

curvature values. That mode, if it exists, is very likely to correspond to the fixed features.

11



(This strategy would, of course, go wrong for non-generic objects like cylinders which have
constant curvature along their extremal boundaries.

We have shown that ratios of differential measurements are theoretically robust. We
have shown furthermore that this robustness is exhibited in practice. The next topic for
investigation is the analysis of sensitivities both for differential curvature measurements and
their ratios. In particular, we will attempt to predict how sensitivity degrades with separation
of points in point-pairs.

12



Appendix: Numerical method for curvature estimation

Computing surface curvatures from equations (30) and (31) is a non-trivial problem since
it involves the estimation of second order spatio-temporal derivatives. Numerical analysis
for estimating curvature and its uncertainty and sensitivity to errors in image measurement
and camera motion is in general difficult. This involves a tradeoff between truncation error
and measurement error. We here describe a simple numerical method for estimating surface
curvatures from three discrete views for the case of linear camera motion. Numerical analysis
for the general case remains {o be done.

Consider 3 views taken at times ¢, t1, and ¢2 from camera positions v(tg), v(¢1) and v(¢2)
respectively. From each view and for a point on an image contour, measurements are made
of view vector T, surface normal n and camera position v.

For linear motion and epipolar parameterisation the view vectors and the contact point
locus, r(so, ), lie in a plane — the epipolar plane. The 3 view vectors are tangents to r(sg, t).
They do not, in general, define a unique curve. They may, however, constrain its curvature.
If we assume the curvature of the curve r(sg,?) is locally constant it can be approximated
(locally) as part of a circle of radius R (the reciprocal of curvature) and with centre at p such
that (figure 9):

r(so,t) = p + RN(2) (39)

where N is the curve normal (which is perpendicular to the view vector and in the case of
epipolar parameterisation lies in the epipolar plane and hence is defined by only 2 compo-
nents) in the Frenet-Serret sense for each view.

Since the view vectors T(t) are tangent to the curve we can express (39) in terms of image
measurables, N(t), and a priori unknown quantities p and R:

(r(s0,) — v(¢)).N(2)
(p + RN(t) — v(1)).N(t)

0
0 (40)

These quantities can be uniquely determined from measurements in 3 distinct views. For
convenience we use subscripts to label the measurements made for each view.

pNi+R = v;.N;

p.N2 + R = wvyo.N3

pN3+ R = wv3.N3 (41)
Equations (41) are linear equations in 3 unknowns (2 components of p in the epipolar plane

and the radius of curvature, R) and can be solved by standard techniques.

For surface normal, n (measured from the image from (9)), the normal curvature of r(so, t)
is given by:

1
Kt = -EN.n (42)

and the Gaussian curvature can then be estimated from (29).
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Surface tangent plane

Figure 1. Surface Geometry.

P lies on a smooth surface which is parameterised by a vector valued function r(s,t). The 2 tangent vectors r,
and r; are a local basis for the tangent plane and are perpendicular to the surface normal n.

extremal boundary

r{s,ty)

Figure 2. Surface and Viewing Geometry.

The image defines the direction of a ray (unit vector T) which grazes the surface at P. The distance along the
ray from the camera centre to the contact point, CP, is A; the position of the camera centre is v(¢) and a point
on the surface has position r{s, ).
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view vector T

\
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Figure 3. Spherical Perspective Image Geometry

The view vector T defined by the image of a point on an extremal boundary and the spherical perspective
image tangent T, lie in the tangent plane of the surface at P in perpendicular directions. Their measurement
can be used to recover the orientation of the surface normal.
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Perspectlive Image Sphere

Figure 4. Ambiguity of Parameterisation.

It is impossible to identify a point on the image of an extremal boundary from 1 viewpoint T(s,?;), uniquely
with a point on the image from a different viewpoint, T(s,t2), since the 2 extremal boundaries are different
space curves. The choice of constant s parameter curves T(t) is arbitrary. Each choice defines a different
parameterisation of the surface.

Figure 5. Epipolar Parameterisation

t-parameter curves between the images of an extremal boundary from different viewpoints are defined by
moving along great-circles on the image sphere with poles defined by the direction of motion v;.
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a). Points are selected on image contours in view 1, indicated by crosses A and B for points on a surface
marking and extremal boundary respectively.

b). View 2. Corresponding features lie on epipolar lines.

¢). Corresponding features in view 3.

Figure 6. Estimating surface curvatures from 3 views

19



1 D

s R 5
200 4

150 /“

4

i
100 -
}

25 20 15 180 Q5 o5 16 15 20 25
80 1 Q’Z‘m?r\mm

-100 -
150

a) Sensitivity of curvature estimated from absolute measurements

The radius of curvature (mm) for both a point on a surface marking (A) and a point on an extremal boundary (B) is
plotted against error in the position (mm) of the camera for view 2. The estimation is very sensitive and a
perturbation of 1mm in position produces an error of 190% in the estimated radius of curvature for the point on the
extremal boundary.
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b) Sensitivity of differential curvature

The difference in radii of curvature between a point on the extremal boundary and the nearby surface marking is
plotted against error in the position of the camera for view 2. The sensitivity is reduced by an order of magnitude to
17% per mm error.
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¢) Sensitivity of ratio of differential curvatures

The ratio of differential curvatures measurements made between 2 points on an extremal boundary and the same
nearby surface marking is plotted against error in the position of the camera for view2. The sensitivity is further
reduced by an order of magnitude to 1.5% error for a Imm error in position. The vertical axis is scaled by the actual
curvature for comparision with figures 7a and 7b

Figure 7. Sensitivity of curvature estimate to errors in the camera position for view 2.
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a) Sensitivity of curvature estimated from absolute measurements

The radius of curvature (mm) for both a point on a surface marking (A) and a point on an extremal boundary (B) is
plotted against error in the rotation (mrads). The estimation is very sensitive and a perturbation of 1mrad in
rotation produces an error of 70% in the estimated radius of curvature for the point on the extremal boundary.
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b) Sensitivity of differential curvature

The difference in radii of curvature between a point on the extremal boundary and the nearby surface marking is
plotted against error in the rotation between view 1 and view 2. The sensitivity is reduced by an order of magnitude
to 8% per mrad error.

R o

Rl mrad

¢) Sensitivity of ratio of differential curvatures

The ratio of differential curvatures measurements made between 2 points on an extremal boundary and the same
nearby surface marking is plotted against error in the rotation The sensitivity is further reduced by an order of
magnitude to 1.1% error for a 1mrad error in rotation. The vertical axis is scaled by the actual curvature for
comparision with figures 8a and 8b

Figure 8. Sensitivity of curvature estimate to errors in the orientation of the camera for view 2 about an axis defined
by the epipolar plane.



v(tl)

Figure 9. Discrete motion of an extremal boundary

Each view defines a tangent to r(sg,t). For linear camera motion and epipolar parameterisation the view
vectors and r(sp,t) lie in a plane. If x(sg,t) can be approximated locally as a circle, it can be uniquely defined
from measurements in 3 views.
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