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We explore how global symmetry can be detected prior to segmentation and under noise
and occlusion. The definition of local symmetries is extended to affine geometries by con-
sidering the tangents and curvatures of local structures, and a quantitative measure of local
symmetry known as symmetricity is introduced, which is based on Mahalanobis distances
from the tangent-curvature states of local structures to the local skewed symmetry state-
subspace. These symmetricity values, together with the associated local axes of symmetry,
are spatially related in the local skewed symmetry field (LSSF). In the implementation, a
fast, local symmetry detection algorithm allows initial hypotheses for the symmetry axis to
be generated through the use of a modified Hough transform. This is then improved upon
by maximising a global symmetry measure based on accumulated local support in the LSSF
— a straight active contour model is used for this purpose. This produces useful estimates
for the axis of symmetry and the angle of skew in the presence of contour fragmentation,
artifacts and occlusion.

1 Motivation

Symmetry, like the other properties described in the Gestalt principles of perceptual
grouping [22], represents information redundancy which may be used to overcome
noise and occlusion. The reason why it is rarely used in computational perceptual
organisation [19, 22| is that symmetry is much harder to detect compared to other
grouping properties such as continuity and token similarity. Nevertheless, our visual
system seems to be able to recover symmetry from images even when the symmetry

is badly distorted [2].

Two dimensional symmetry can be exploited in various ways in computer vision.
For example, the symmetry axis transform [3] and smoothed local symmetries [4]
are intended for 2-D shape description. Other applications to symmetry detection, or
asymmetry detection, range from medical image analysis [24] to feature detection [27].

Much of the research literature is concerned with bilateral symmetry detection.
Abstract mathematical theory [1, 10] has been used but in most cases is only intended
to handle perfect set of figures. On the other hand Marola [20] catered for deviations
from perfect symmetry. Others adopt different approaches, eg. Labonté et al. [18]
who detected symmetry in textured patterns over a number of stages. Directional



correlations were used by Masuda et al. [21] to extract partial symmetry, while Reis-
feld et al. [27] employed a low-level symmetry operator to detect small salient features.

Under normal viewing conditions however, we are more likely to encounter skewed
symmetry [16], which is planar bilateral symmetry transformed affinely when viewed
under weak perspective [29].

Brady and Yuille [5] proposed maximising a compactness measure to backpro-
ject a closed image contour displaying skewed symmetry, ie. parallelograms are in-
terpreted as squares, and ellipses as circles. Friedberg [11, 12] described a method
based on moments to detect skewed symmetry axes of 2-D shapes, which assumes
prior segmentation of objects and hence difficult to apply to real images. Glachet et
al. [13] proposed a technique for recovering symmetric axes in line drawings under
full perspective projection, involving recovery of accurate straight line segments from
the convex-hull of the figure, pairing them and predicting the symmetry parameters
through the use of cross-ratios. Ponce [26] exploited straight-spined Brooks Ribbons
and their curvature relationships to pick out symmetrical pairs of points. Yuen [33]
suggested carrying out Hough Transforms on the sets of mid-points of point-pairs ly-
ing at a particular orientation and doing this over a series of discretized orientations,
but did not implement it. Mukherjee et al. [25] exploited bitangents in objects to de-
fine affine bases, from which relative invariants are used to compare pairs of contours
with bitangents for symmetry. The transformation matrix relating the affine bases is
then tested for conformity with the 3-DOF structure required for affine-transformed
reflections. Van Gool et al. constructed the Are Length Space (ALS) [32] to analyse
symmetric contours, and also studied their invariant signatures [31]. A more detailed
survey of these methods may be found in [7].

Many of these methods apply only to objects which are easy to segment, or are
special cases, and do not consider circumstances when symmetry will be useful to
perceptual grouping, such as in cases where objects are occluded, or have fragmented
contours.

In this paper a local approach to skewed symmetry detection is adopted to
handle occlusion. Sensitivity to noise inherent in local measurements is coped with
through

e non-committal classification,
e uncertainty analysis, and

e arriving at global decisions by accumulation of independent, local support.

In particular we

e review the number of parameters (ie. degrees of freedom) needed to specify
symmetry bases under different geometries,



e extend the classification of local symmetries to affine transformations based on
the number of such parameters,

e define a continuous measure of local symmetry (symmetricity) rather than a
binary accept/reject threshold,

e spatially represent these measures for all pairs of contour points in the form of
the local skewed symmetry field,

e develop and implement a three stage symmetry detection scheme designed to
handle noise and occlusion, based on the above theories as well as introducing a
separate, novel symmetry detection algorithm as the first stage of the process.

2 Theoretical Framework

2.1 Transformations of 2D Reflectional Symmetry

Image contours of planar objects may be considered under three classes of 2D trans-
formations: scaled Euclidean, affine or projective. A 2D scaled Euclidean transforma-
tion requires four parameters for unique specification (scale, rotation and translation
in 2D), an affine transformation requires siz (including magnitude and axis of pure
shear) and a projective transformation requires eight (additional location of horizon
to specify the perspective distortion).

As symmetry is similar to having two views of half the object, symmetry bases
under these transformations require less parameters to specify:

(a) (b) ()

Figure 1: Symmetry under various transformations: the figures show the same
symmetrical shape under different transformations: (a) scaled Euclidean, (b) affine,
and (¢) projective. Symmetry bases under these transformations require 2, 3 and 4
parameters respectively for unique specification.

Scaled Euclidean Two parameters are required for the axis of symmetry. The lines
joining symmetric points are perpendicular to this line.

Affine Three parameters are required to additionally define the angle of skew, which
is not perpendicular to the axis of symmetry.



Projective Four parameters are needed because instead of an angle of skew, we have
a vanishing point for lines of skew.

A symmetric shape under these transformations is shown in figure 1. Since skewed
symmetry and stereo are similar, the two cases share similar difficulties such as the
correspondence problem. A common task after identifying a shape as belonging to
affine or projective symmetry is to find the transformation under its class which maps
the shape to one exhibiting scaled Fuclidean symmetry. This is known as backprojec-
tion or deskewing.

3 Fundamental Properties of Skewed Symmetry

In this section, the basic properties of skewed symmetry are presented. Many of these
are intuitively obvious and mentioned in a number of articles including [16, 14], but
for the sake of completeness, listed below.

S S’

Figure 2: Symmetric shape S and affine-transformed contour S’

Suppose S is a 2D bilaterally symmetric shape, and its affine-transformed contour
is denoted by S’ (figure 2), then:

o The axis of skewed symmetry on S’ is straight. This results from the fact that
projective and affine transformations preserve collinearity, ie. straight lines map
to straight lines.

e Lines joining symmetrical pairs of points on S’ are not necessarily orthogonal
to the axis of symmetry. The lines joining symmetric point pairs on S are
orthogonal to the axis of symmetry. However affine/projective transformations
do not preserve angles (while scaled euclidean transformations do).

e Lines joining symmetrical pairs of points on S" are parallel to each other. These
are termed lines of skew. Since lines joining symmetric point pairs on S are
orthogonal to the symmetry axis, they are therefore parallel to each other.
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Affine transformations (but not projective) preserve parallelism. This allows
an angle of skew to be associated with S’, which is defined to be the angle of
deviation of the lines of skew from being perpendicular to the symmetry axis.

o The the mid-points of the lines of skew on S’ lie on the symmetry axis. The
symmetry axis bisects the lines joining symmetric point pairs on S. Affine
transformations preserve ratio of lengths on a straight line, hence mid-points on
S remains as mid-points on S’. Projective symmetries do not have this property.

In addition, a number of properties are presented below which are incorporated
into key ideas discussed in later sections.

Property 1 Tangents of a symmetric pair of points belonging to S™ will intersect at
the symmetry axis if they are not parallel, in which case they intersect at the symmetry
axis atl infinity.

Figure 3 describes property 1 pictorially. No formal proof is given, but if one
accepts that tangents from symmetric pairs of points on S intersect at the symmetry
axis, a simple intuitive proof may be suggested: The intersection point is shared by
the two tangents and the symmetry axis. Projective transformations preserves the
collinearity of the ‘double’ points (defining the tangent) at the contour with the in-
tersection point at the symmetry axis in S’, as well as the collinearity of the points
on the symmetry axis. Hence the intersection point will always maintain the ‘link’
between the the three lines.

Symmetric pair
of edgels

I nter section /

of tangents

Figure 3: Tangent pairs intersect on the axis of symmetry.

Property 2 The orientation of the skewed axis of symmetry for S must lie between
the extrapolation directions of the two tangents at every pair of symmetric points on

S’

This property constraints the direction of the axis of symmetry at every inter-
section point of tangents belonging to symmetric contour point pairs, and is also
invariant under projective transformation as well.

The following proposition states that the angle of skew may be calculated based
on the tangent directions at every such intersection point.
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Figure 4: Constraints on the direction of the symmetry axis

Proposition 1 Given only the directions of tangents belonging to a symmetric point
pair in S’, and the direction of the skewed symmetry axis, we can compute a unique
direction of skew for S, given by

tan § = %(cot*y—cotﬁ) (1)

where 0, 3 and v are as shown in figure 5.

I nter section
of tangents
at symmetry axis

\ Symmetric edgel pair

Figure 5: Notation for proposition 1

Referring to figure 5,

k=d tanf (2)
But
d d
— =2k

tany  tanf (3)

Eliminating & we have

1 1 1 1

tanf = — — = t v — cot 4
a 2 (tan’y tanﬁ) Q(CO v —cotf) (4)



3.1 Local Symmetry Relation of Curvatures to Tangent An-
gles

Since there is only one direction of skew per symmetry axis under affine transforma-
tion, it follows that the direction of skew computed for all tangent-pair intersections
lying on the symmetry axis should theoretically be the same. Under noisy conditions
this may be computed as a mean, with an associated variance.

Backprojection (section 2.1) may be used to deskew S’. Although it may appear
that the planar orientation of the shape is uniquely determined, this is not true [16]
and only a one-parameter family of shapes with orthogonal symmetry axes may be
recovered. All that is needed is to determine the affine coordinates of each point us-
ing the axes of symmetry and skew as basis vectors, and project them to a canonical
frame where the basis vectors are orthogonal.

3.2 Local Skewed Symmetries
There are two justifications for the use of local measures:

e local measures are less sensitive to occlusions compared to global ones, and

e the correspondence problem is reduced by comparing pairs of contour points
and their derivatives rather than comparing larger sets of points.

These two factors are important when attempting to include symmetry as a viable
grouping technique in computational perceptual organisation.

For a point on a curve, its description may be expressed as a Taylor series expan-
sion [8]. The zeroth order term gives the location of the point, the first order term the
orientation of the tangent, the second order term the curvature, etc. The locations of
two skewed symmetric points provide two constraints on two parameters: the angle
of skew and the mid-point between them (the axis of symmetry must pass through
this mid-point). Orientation information gives another constraint to fully define the
axis of symmetry by property 1, which states that the intersection of tangents to a
pair of skewed symmetric contour points lie on the axis of symmetry.

Having uniquely defined the symmetry basis consisting of an axis of symmetry
and an angle of skew for the pair of points, we can verify the basis through a further
constraint based on curvature:

Proposition 2 Suppose k, and ky are the curvatures (inverses of the radii of cur-
vature R, and R, shown in figure 6) and o, and o, are the respective angles between
the curve normals and the angle of skew, as shown in figure 6. Then if the two points
are skewed symmetric, the following must hold:

Ka _ (cosaa>3 (5)

Cos 0y,




- axis of symmetry

Figure 6:  Proposition 2 relates the curvatures of a pair symmetric contour points
to the angles between the normals and the aris of skew, as shown above. This
provides the additional constraint mentioned in definition 1 to define local skewed
symmetries.

The result is similar to that given by Ponce [26]!, but the derivation is obtained
independently via a different approach and shown in appendix A.1. We can extend
this constraint verification process to the highest order derivative to which the curve
is locally differentiable. This allows us to extend the definition of local symme-
tries to different transformation groups:

Definition 1 A local symmetry for a particular transformation group refers to a pair
of contour points defining a unique symmetry basis within that group. The required
number of parameters is obtained through the derivatives of the contours at those
points. Additionally, the symmetry basis must also be consistent with at least one
other independent constraint provided by the next higher order derivative.

Notice that the smoothed local symmetries proposed by Brady and Asada [4] sat-
isfy this definition, since a symmetry basis under scaled Euclidean transformations
may be uniquely defined by the positions of two points; the requirement that the
orientations of the tangents to the contours must be equal with respect to the line
joining the points, provides the additional independent constraint. We can also de-
fine local skewed symmetries, for which the positions and the tangents at the
symmetric contour points define a unique symmetry basis under affine transforma-
tions, and the curvatures provide the extra constraint to be satisfied in the form of (5).

Another important point to note is that pairs of points on straight line segments
are not distinguishable because there are no second derivatives — in fact every pair of
points on two straight line segments are local skewed symmetries. This is analogous

lPonce acknowledged typographical errors in two of the final three equations given in [26], re-
placing cosines with sines.



to the local aperture problem because of the lack of distinguishable points?®.

3.3 Symmetricity

The reliability of derivatives extracted from image features degrades considerably
with increasing order of derivative, and attempting to classify pairs of points on con-
tours as local skewed symmetries is unlikely to be accurate, even if splines are used
to fit smoothly varying contours. It is therefore proposed that a continuous measure
of local symmetry be adopted based on (5).

It is possible to rewrite (5) as k,cos® o, = Ky cos®o,, and select the terms on
both sides of the equation as state variables. In figure 7, the state space with state
variables v = k4 cos® 0y and u = Ky cos® o, is shown for a pair of contour points.
The state of the contour-point pair will map onto a single spot (uo) in this state
space, and the straight line v = wu is the subspace for which local skewed symme-
try holds. Noise perturbs the positions of contour-point pairs in this state space,
and therefore the proposed symmetry measure is based on the shortest distance to
the subspace. Since the error variances are not the same nor necessarily indepen-
dent for both state variables, then on the assumption that the errors are Gaussian?®

Mahalanobis distances [30] is used instead of the perpendicular (Euclidean) distances.

Ka uO

V=u

S~

local skewed symmetry subspace

u= (cos (0N )3
cos Oy,

Figure 7: In the above symmetricity state-space the straight line v = u represents
the local skewed symmetry subspace. The symmetricity between a pair of contour
points is inversely proportional to (1 + the shortest Mahalanobis distance squared
(d?) from their observed combined state position (ug) to the subspace).

Assuming that the covariance matrix K between u and v may be obtained (eg.

2we will however be able to determine if line segments, are symmetrical if we know the exact end

points, without the need for curvature.

3The errors in observation data (orientation, etc.) are assumed to be Gaussian. If these errors
are small, then considering only first order terms in the Taylor series expansion of the expressions
for the state variables, the errors in the state variables are also approximately Gaussian.



via automated B-spline fitting; see A.4), then the Mahalanobis distance squared d?
is given by

d*=(u — ue) K (u — uy) (6)

where u = [uv] and u, is the observed state of the contour-point pair. The short-
est Mahalanobis distance to the local skewed symmetry subspace may be found by
substituting v = w into (6) and minimising the quadratic equation. These steps are
further elaborated in appendix A.2.

This leads us to the following redefinition for symmetricity.

Definition 2 Given the shortest Mahalanobis distance d from the observed state of
the pair of contour points a and b, to the local skewed symmetry subspace within the
state-space spanned by u and v as described above, the symmetricity between a and

b is given by
1

Vop= s
T kd? )

where k s a empirical constant determining the scale of the Mahalanobis distance.

3.4 The Local Skewed Symmetry Field

In order to spatially represent the symmetry evaluation for each pair of contour points
in an intuitive and useful way, we define a local skewed symmetry field for the
set of contours in an image:

Definition 3 The local skewed symmetry field (LSSF) for a set of contours is formed
by:

e assigning the symmetricity for a pair of points on the contours to the location
of the mid-point of the line joining the pair of points. If more than one pair of
points maps to this location, only the pair with highest symmetricity is retained.
This is the magnitude of the field at the location.

e assigning a direction vector representing the direction of the local axis of sym-
metry ; This is termed the ‘first direction’ of the LSSF.

e assigning another direction vector parallel to the line joining the pair of points,
representing the direction of skew; the ‘second direction’.

Figure 8 shows two planar symmetric objects to which cubic B-splines are man-
ually fitted to the edge maps (obtained from the Canny edgefinder [6]) in order to
obtain the derivatives for computation of the local skewed symmetry fields.

The magnitude and first direction components of the local skewed symmetry fields
are shown in figure 9.
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Figure 8: In order to obtain curvature information to calculate the local skewed
symmetry field, cubic B-splines are fitted to the output from the Canny edge-detector.

Figure 9:  Two components of the local skewed symmetry fields for the object
contours in figure 8 are represented separately: the symmetricity values are shown on
the left image, the first directions (local azes of symmetry) are mapped on the right.
These local skewed symmetry fields should not be judged solely on the appearance
of the either map: when combined together they specify the effectiveness of each
local symmetry when considering a particular orientation, eg. the direction of the
hypothesised axis of symmetry.

11



Of importance is the fact that the peaks and ridges in the fields are the suggested
local skewed symmetries. In the total absence of errors, these ridges will be analogous
to the symmetry set for smoothed local symmetries* [4]. The symmetricity values rep-
resent estimations of the likelihood for pairs of points to be local symmetries, and
provide some robustness when noise is introduced.

These properties allow it to degrade more gracefully than if we were to use global
measures or strict local measures. This makes it useful as a tool for recovering the
global axis of symmetry from imperfect local skewed symmetries.

Recent research [28] has also independently proposed a similar field for local bi-
lateral symmetries, which is applied to locating useful points for fixation. Also, the
magnitudes for the local symmetries were calculated based on sinusoids instead of
derived error measures as in the case of symmetricity mentioned above.

4 Implementation

4.1 Symmetry Detection Strategy

In images of objects with complicated contours, it is hard to automatically infer the
axis of symmetry purely from its LSSF, much less do so in the presence of noise and
occlusion. A vast amount of computation will be required to analyse and compare
different portions of the LSSF. Our strategy is therefore to:

1. Obtain initial hypotheses for the axis of symmetry from a fast but approximate
symmetry detection process. The symmetry detection process has to use local
measures as well to avoid problems of occlusion and incomplete contours.

2. Compute the local skewed symmetry field with the aid of B-splines (to obtain
curvature information from the edge map of the image).

3. Improve the accuracy of the axis of symmetry and angle of skew by maximising
a global symmetry measure from local support in the LSSF.

Steps 1 and 2 can in principle be carried out in parallel.

4.2 Initial Symmetry Detection (Hough Transform) Tech-
nique

A novel, fast method is introduced for the initial symmetry detection. In the same
spirit of the paper it allows local structures to vote independently for the global axis

“The ridges in the field bear some similarity to the symmetry set for smoothed local symmetries.
However the ridges of the LSSF are not affine-transformed smoothed local symmetries because
smoothed local symmetries are not classified by curvatures.
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Figure 10: Flow diagram for symmetry detection strategy

of symmetry and angle of skew, but in this case, the local structures are limited to
low-curvature segments and straight edges.

Using the edge map of the image as input, the symmetry detection process com-
prises of 4 steps as shown in figure 11:

Edge Data

Extrapolate I solate

Tangents

I nter sections

Symmetry Axis
Location

Output to
Second Stage

Calculate
Angle of Skew

Hough
Transform

Figure 11: Flow diagram for the initial symmetry detection algorithm

1. Extrapolate tangents of edgels in an array. This is shown in figure 12.
Each entry in the array contains data on the directions and numbers of tangents
passing through it.

2. Recover locations of strong intersections. Entries with more than one
registered direction are classified as intersection points. Each intersection point
is given a strength corresponding to the number of votes for the second strongest
direction, and only points above a specified intersection threshold are retained.
By recovering only strong intersections, we are effectively considering only the
tangents belonging to low-curvature segments. The locations of these intersec-
tions are more accurate than those obtained from high-curvature segments.

3. Carry out a reduced Hough Transform on the intersection points.

The variation of the Hough Transform used here parameterise lines by the nor-
mal vector from the origin to the line, expressed in polar coordinates (d, 6), as
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Figure 12: Based on the edge map of the image in (a), the tangents for each
edgel are extrapolated in (b). In (c), strong intersection points are recovered which
represent intersections of low-curvature segments or straight lines.

shown in figure 13.

y

AN

Normal vector
d fromorigin toline

\6
N

Figure 13: A line in image space is parameterise by the normal vector from the
ortgin to the line, expressed in polar coordinates.

Each intersection point maps to a half-sinusoidal curve in Hough space, as may
be seen in figure 14. The additional knowledge of property 2 allows us to re-
duce the Hough Transform by coding only the relevant portions of the sinusoids
representing the angular sweep between the directions of the extrapolated tan-
gents, since the property states that the orientation of the axis of symmetry
must lie between the extrapolation directions of tangents belonging to a skewed
symmetric edgel pair. This reduces the computation time as well as ignore false
hypotheses such as those joining the tips of a serrated edge. The locations of
multiple intersections in the Hough Space represent hypotheses for symmetry
axis, which is based on property 1. Since there is no guarantee that the axis
of symmetry has the largest number of intersections on it, we have to look at a
number of strong hypotheses rather than just one.

4. Estimate angle of skew and rank the hypotheses. Ranking the hypotheses
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Standard Hough Transform
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Figure 14: The Hough space in (a) shows the result of carrying out a standard
Hough Transform on the intersection points shown wn figure 12. Knowledge of the
directions of tangents at the intersections allows reduction of the complexity of the
Hough space (b), from property 2.
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is important since the more likely axes of symmetry should be passed onto the
next stage first. This is achieved in a dual-purpose manner by predicting the
angle of skew per hypothesis for the axis of symmetry. It is possible to calculate
the angle of skew from just the directions of tangents at one intersection point
and knowledge of the axis of symmetry, based on (1). Since we will have a
number of intersection points contributing votes 8 for the angle of skew with
different degrees of accuracy, we will sum 6, modified by an optimal set of
weights ay (obtained through sensitivity analysis and Lagrange multipliers) as
expressed:

. N
0= Z apf (8)
k=1

where 6 is the optimal estimate. A detailed derivation is shown in appendix A.3.
The sample variance may be obtained as well

1 & ;
A2 29 _92
Sl S PIUSL) 9)

This sample variance will be high for collinear intersection points which do not
have similar predictions for the angle of skew, and hence can be used to reject
false hypotheses. Therefore the hypotheses are ranked in ascending order of
their sample variances.

This algorithm is a symmetry detection technique by itself since it recovers both
the axis of symmetry and the angle of skew, and carries this out by making use of
local data. The method is fast (O(kN) where k is a linear dimension of the image
and N is the number of edgels) but suffers from the disadvantage that near-parallel
segments (which have intersection points outside the array) and high-curvature seg-
ments (which do not generate strong intersection points) do not vote.

5 B-Spline Curve Fitting

B-spline curve fitting is presently used to recover smoothed local curvature informa-
tion, although any robust curvature estimation algorithms may be substituted.

Present techniques used in automatic fitting of B-splines by Medioni and Ya-
sumoto [23] suffer from unstable estimated derivatives, since the method assumes
that the control points of the spline are evenly spread out. In our experiments a par-
tially automated technique is used. Chains of edgels are first automatically selected,
followed by the manual specification of the control point locations along the spline
parameters, and finally least squares solutions are obtained for the spline fits.

The least squares approach to spline-fitting is described in detail in a number of
texts including [15], and assumes the model

X=BP+E (10)
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where X is the matrix of observed boundary points, B is the standard spline blending
matrix, P is the matrix of control points, and E is the error matrix with independent
elements. T'wo constraints are also included to force the ends of each spline to coin-
cide with the ends of the associated list of sampled edge points. The only difference
between splines with an even spread of control points and those with individually-
specified control point spacings is in the formulation of B — otherwise the spline
models are the same.

The least squares estimation of the control points is found using Lagrange multi-
pliers by solving

2B'B —b; —by, P 2B’X
b} 0 0 Nl =] xj (11)
by, 0 0 w X}

where b’ ,b}, are respectively the top and bottom rows of B; x),x}, are coordinates
of the ends of the list of edge points (top and bottom rows of X; and A,u are vector
forms of Lagrange multipliers.

Furthermore, the unbiased estimates for the overall & and y error variances, &,
and &, for the boundary points may be obtained, which in turn provides estimates
of the x and y covariance matrices for the control point positions. The full deriva-
tion may be found in a number of texts including [9]. We are also able calculate
the variances and covariances between a point on the spline (as an estimate for the
actual boundary point) and its derivatives with respect to the spline parameter t.
The covariance matrix K, mentioned in section 3.3, may be obtained after further
manipulation. Details may be found in appendices A.4 and A.5.

This technique has the advantage that the spline fits are smoother and more accu-
rate than the fully automated method, and it is also possible to obtain the covariances
of estimated derivatives.

5.1 Calculating the Local Skewed Symmetry Field

A number of sample points per polynomial piece are then extracted with tangent and
curvature information. Each sample point is compared with the rest in %N(N - 1)
operations (where N is the number of sample points), to derive the LSSF in three
arrays of the same size as the original image, containing separately the symmetricity
values, and the two direction data. Although computationally expensive, this method
has the advantage of not involving any occlusion-sensitive parameters.

17



5.2 Maximisation of Symmetry Measure in the Local Skewed
Symmetry Field

Having obtained a ranked list of hypotheses for the axis of symmetry, we are able
to calculate an overall symmetry measure for each of the hypothesis by averaging
the effective symmetricity values of the points in the LSSF crossed by the axis of
symmetry. Taking S as the global symmetry measure and P as the number of sample
points, we have

1 Z .
P =1
Uy = Uyl cos(d — o) (13)

where W is the effective symmetricity value at sample point ¢ with respect to the
global axis direction 8, ¥, is the absolute symmetricity value measured at sample point
1 and «; is the direction of the local axis of symmetry in the LSSF at sample point 1.

We then proceed to locate the position of maximum symmetry measure for the
symmetry axis by initialising a straight active contour model [17] (a ‘pole’). This
‘pole’, unlike normal ‘snakes’, is driven by effective symmetricity values which change
according to the orientation of the pole. See figure 15.

Figure 15:  The above figure diagrammatically shows a straight active contour
model (a ‘pole’) being used to locate the position in the LSSF where the global sym-
metry measure is marimised. The ‘forces’ on the pole are based on effective sym-
metricity (defined in (13)) which depend on both the absolute symmetricity as well
as the angle between the (first) direction of the field and the orientation of the pole.
The pole is initialized at the location of the hypotheses obtained from the symmetry
detection algorithm forming the first stage.

Once the location of maximum symmetry measure has been found, the angle of
skew may be estimated based on the weighted average of the second directions in
the LSSF (local angles of skew) scaled by their effective symmetricity values. The
new hypotheses for the axes of symmetry may then be ranked again by their global
symmetry measure S. However this does not mean we reject all but one of the hy-
potheses, since different symmetrical objects, or separate symmetrical components,

18



may be present.

6 Analysis of Results

6.1 Preliminary Results

(e)

Figure 16: Results obtained from the first symmetry detection stage indicate that
the first stage is performing reasonably. However the accuracy is not robust enough
to noise and occlusion, such as in the case of (d) and (f). Hence the need to use

the LSSF.

The initial symmetry detection algorithm was tested on a number of synthetic and
real images, with straight and curved contours. The results show good performance
by the initial technique, in most cases the location of the axis is found to a satisfac-
tory degree, and often with an angle of skew of adequate accuracy. The images in
figure 16 show the results obtained just after the first stage of the algorithm.

Figure 17 shows back-projection of the relatively more intact edge maps belong-
ing to the images in the top row of figure 16, to a canonical frame with orthogonal
symmetry axes.

However, there is a possibility of having extraneous intersection points from other

structures located on the predicted axis of symmetry, and their votes are likely to
badly distort the estimation for the angle of skew. This occurs in some of the lower
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Figure 17:  Backprojection of the relatively intact edge maps of (a), (b) and (c)
in figure 16 to a canonical frame where the symmetry azves are orthogonal.

ranked hypotheses where slight displacement of the axis of symmetry resulted in large
errors for the angle of skew. Ranking the hypotheses is also not always accurate, and
therefore there is a need to use the LSSF to improve the robustness of such estima-
tions. Some of these poorer hypotheses are used in the final stage of the algorithm
to demonstrate the ability of the algorithm to handle such errors.

Besides the easily segmented objects shown in figure 8, we have also calculated
the LSSF for two other scenes of objects for which mild occlusion is present, which
results in fragmented contours and unwanted artifacts. These are shown in figure 18.

Figure 18:  The above figure shows the local skewed symmetry fields derived from
the B-spline fitted edge maps of two objects, with the magnitude and direction maps
shown respectively third and fourth from the left. These will be used in the last stage
of the symmetry detection algorithm.

Since accurate results are obtained in general from the initial algorithm, lower
ranked hypotheses have been used to demonstrate the use of the ‘pole’ in the max-
imisation of the global symmetry measure in the LSSF, as mentioned earlier. The
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errors in both the positions of the axes of symmetry and the angles of skew are min-
imized accurately. These examples are shown in figure 19.

Figure 19:  The left column shows the initial hypotheses obtained from the first
stage of the algorithm. Lower ranked hypotheses are used for images (a) and (b)
i order to demonstrate this stage of the algorithm. The middle column shows
the active ‘poles’ searching for the positions returning maximum global symmetry
measures. The final results are shown in the right column. Notice that in both (b)
and (c) where the objects are difficult to segment (because of shadows and occlusion)
the algorithm still returned good estimates for the axis of symmetry and the angle
of skew.

Overall, the results obtained for the thinner and better segmented objects are

particularly good. For objects which have significant thicknesses and those in scenes
which include shadows, occlusion or noise, the results still return useful estimates.
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6.2 Discussion

Both the initial symmetry detection algorithm and the later stages share similar ad-
vantages. The algorithm uses low-level data directly to extract symmetry. It is local
in nature and does not depend on accurate grouping of edgels into complete contours,
nor does it require segmentation of the object (as is necessary for a moment-based
approach). Instead it allows individual pairs of points to vote for the symmetry axis
and angle of skew, and hence it is resistant to occlusion and fragmentation. Noise
and quantisation errors are handled by uncertainty analysis in the first stage and
by adopting a continuous measure of local symmetry (symmetricity). The sample
variance obtained for the angle of skew from the first stage and the global symme-
try measure obtained in the final stage both provide means of measuring the overall
symmetry. This mean that it is possible to gauge how symmetric the object is under
the estimated set of axes and hence to be able to reject false hypotheses. The initial
symmetry detection algorithm also has a speed advantage without having to adopt
global measures, unlike other algorithms which are normally slow if they use local
measures, or suffer from having to test a discretized set of orientations.

Some of the problems faced with our implementation are described below. The
initial symmetry detection algorithm is unable to handle symmetric objects com-
prising solely of parallel symmetric edges, eg. a rectangle (in fact it interprets a
rectangle as a skewed rhombus). The performance of this stage is also proportional
to the number of unique intersection points of symmetric edgel pairs. Hence the algo-
rithm favours gently curved objects or those with many non-parallel symmetric edges.

Two difficulties are encountered in the second stage of the algorithm. The first
problem is speed, since every pair of sample points must be compared, which makes
it slow. The other problem is that the curvature measurements are sensitive to errors,
and the B-spline fits must be smooth in orientation to have stable curvature values.
In some cases it may be better to ignore the symmetricity value and maximise the
global symmetry measure using only the first directions in the LSSF. Finally, if a
scene is over-cluttered with details, the large number of overlapping entries in the
LSSF will reduce the coherency of the entries which contribute to the overall global
symmetry.

7 Conclusions and Future Work

Although many methods have been presented for symmetry detection, they do not
handle occlusion, fragmentation or noise well, which makes them unsuitable candi-
dates to detect the symmetries needed in conditions where perceptual organisation is
most useful. We have presented a new method which does not depend on segmenta-
tion of objects or any accurate determination of occlusion-sensitive global measures
(eg. moments). Instead, independent support from local structures may be combined
to achieve global symmetry detection in the presence of noise and even occlusion, via
the local skewed symmetry field. Preliminary results obtained have been promising.
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The next stage of development will be to allow coherent neighbouring elements in
the LSSF to reinforce each other in order to suppress non-generic local skewed sym-
metries, ie. those which occur only instantaneously at two particular points on two
contours, thereby relieving the problem faced when there are too many overlapping
entries.

Given a method for detecting global skewed symmetry axes from an image, we
will proceed on to investigate the recovery of the image contours from which the
symmetry axes were formed, and to improve the accuracy of the estimated contours
based on symmetrical redundancy. The eventual goal will be to accurately detect and
segment symmetrical objects in an image, in reverse to the conventional method of
segmenting the objects first followed by recovery of the symmetry axes. It is hope
that this will be of particular use to computational perceptual organisation since it
has been shown that symmetry is both a local and a global property, and is therefore
useful in a grouping process.
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Appendices

A.1 Local Symmetry Relation of Curvatures to Tangent
Angles

il

’
7 tangent directions

N
AN
N
N

'
/
’ N
1 > N
symmetric point pair

(a)

Figure 20: Notation for appendiz A.1 (a) symmetry base system; (b) close-up of
symmetric point pair.

Referring to figure 20, we consider small angles +, and 4,. From simple trigonometry,

ke = Raovesin(T +74)
ky = Ryysin(o+ )

| = Ry7ya cos(T 4+ 74) = Ryyy cos(a + ) (14)
Now let
m = k,—ltanT
n = ky,—ltano

From the property of skewed symmetry, we have

m=n = k,—k,=I(tano —tanT)
= tano —tan7 = tan(o + ) — tan(7 + 7,)
= tano —tan(o+ ) = tant — tan(r + 7,)

tan A—tan B

1+4tan Atan B’ we have

Using the simple trigonometric formula tan(A — B) =

[l 4+ tan o tan(o + ;)] tan vy, = [L + tan 7 tan(7 + 7, )] tan v,

This approximates to

26



(1+ tan? oy = (1+ tan? T)Ya

sec’ oy, = sec’ T,
Substituting into (14), we get

Ry, sec?o cosT cosiT

T . _ (15)

R, sec?t cosoc cosPo

A.2 Minimization of Mahalanobis Distance

The multivariate Gaussian probability density function for the state-space shown in
figure 7 is given by

1 -
716
(27)[K]2

(ST

p(f() = (X-m)’K~!(%-m)] (16)

where m is the true state vector of a pair of contour-points. The Mahalanobis dis-
tance is given by the power term of the exponential

& =(%-m)K™" (% —m) (17)

Since this is a proper distance function it is possible to use the function to measure
the distance between any two points in the state-space, and in this application we
consider the minimum Mahalanobis distance from the observed state to the local
skewed symmetry subspace v = u.

For

a b coso,\> K
K—l — T, = < a> = e
( b ¢ ) ’ ¢ cosoy/ Yo Kp

d* =a(z, — 2)* +2b(zy — 2)(yo — y) + c(yo — y)*
substituting v = u and equating £ (d?) =0,

(b+a)z, + (b+ )y,

a—+2b+c (18)
N I . (a +b)? 2 _ (b+¢)? 2
ma:md - la a+2b+c o ¢ a+2b+cl|”°
(¢ +b)(b+c)
b——— 2, vy, 19
l a+2b+c o (19)

27



A.3 Sensitivity Analysis in Angle of Skew Calculations

Inter section
of tangents
at symmetry axis

Referring to figure 21, we have from (1),
1
tanf = E(Cot’y — cot f3)

or as a function,
0 =yg(8,7)

Expanding and differentiating,
dg 1 1

—cosec?f3

o8 1+ 1(coty — cot 8)2 2

This applies to v as well, and simplifying gives

\ Symmetric edgel pair

Figure 21: Notation for Sensitivity Analysis

(20)

(21)

(22)

o0 2
OB sin® B[4 + (coty — cot 3)?]
90 2
oy sin®~[4 + (cot vy — cot 3)2]
From N intersection points lying on the axis of symmetry, we derive observations of
the angle of skew 0y, k = 1,... N using (1). These estimates have an error
O =0+ 60,

(23)

where 8§ is the exact value of the angle of skew, 6, is the error introduced by 63, and

5‘)%.
Each estimate and error are assumed independent.

We seek a set of parameters aj, such that the estimate for the angle of skew is optimal:

. N
0= Z akﬁk
k=1
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This can be expressed as a minimisation problem, ie. minimise Var{é} subject to
E{0} = 0, and traditionally solved with Lagrange multipliers. Treating a;’s as a
vector a, the system of equations are

N
VaVar{0} — AV, (Z ak> =0
k=1
N
k=1

which are N + 1 linear equations in the same number of unknowns.
Solving this will give

a;, = —————— (26)

1
N
oty
! k=1 Tk
where o7 = E{063} is the variance of the errors, with E{66;00;} = 0 for j # k.

We can combine this with perturbation analysis:

dg dg
%55 + a&y

= mpdfl+ m,dy (27)

60 =

with substitutions to m’s for convenience.

Hence

B{50%} = E{(mp0Bi+m,idv)}
= (mp;+m3;) o’ (28)

where 0 = E{63?} = E{§+?} assuming that §3;, dv; are independent with zero
means and have statistically the same distribution.

Putting this into (26) gives

1
(mQ. + mQ») ]ZV: 1
Bt yi

.
p=1 "Rtk

a; =

(29)

which are the weights needed to obtain the optimal estimate for the angle of skew.
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A.4 Error Analysis in Spline Fitting

The calculation of the spline coordinates at parameter ¢ may be formulated as

X(t) =b'(t)P (30)

where

b'(t)y =]t 2 .. 1][f £, - £, ]G (31)

f’s are column vectors of polynomial coefficients for each polynomial piece in the basis
function, k is the order of the spline, and G is a matrix dependent on the integer
quotient of ¢ which is used to select the relevant control points for the calculation.
The other variables are as described in section 5.

Let
2B'B —b; —byt
C = b} 0 0 (32)
bl 0 0

which is the non-singular square matrix shown in equation 11. For simplicity, we
define M as the upper portion of C~! and W as shown.

M 2B’X
IJn-}—l = C_l ) W= X/1 (33)
Thi2 Xy
The least squares solution for the control points is P = MW leaving an error

matrix E. Since x and y coordinates are assumed independent, there is no loss in
generality by only considering the spline fit for the x ordinate of the boundary point
positions. The squared-error magnitude of the least squares solution is given by

€6 = (Bpx — x)'(Bpx — x) (34)

& :—b—n+2 (35)

where b is the number of boundary points, n is the number of control points, and
n —b— 2 represents the number of degrees of freedom in the regression (including the
two additional constraints on the end points of the spline.
The covariance matrix of the positions of control points may be derived as follows:
Cov(p;) = E{opdp'} = F{(M éwy)(sw), M)}
— Q# (36)
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where

2B’ 6%
Owy = dxy , Q=M l
oz,

which is based on the assumption that the end sample points x; and x, are exact
(ie. dxy and dx,, are zero), since the spline is forced to lie on these.

1B'B 0

0 ] M/ (37)

Furthermore the variances and covariances of the estimated boundary position
and its derivatives at t may be obtained. Two of these are shown below as examples:

Var(i(t) = b'Qbs’ (33)
Cov(#(1),4(t)) = b'Qbs? (39)

Derivation of the variance and covariance of various terms may then be carried out
in a similar manner.

A.5 Covariance Matrix of Symmetricity State-Space

In order to obtain the covariance matrix K of the symmetricity state-space in sec-
tion 3.3, we need to consider the variances of v = k,cos0;, and u = kjcos3c, , which
may be derived from the results shown in appendix A.4.

The variance of the curvature term may be found by

ji —
K = Wa 6k = (Vp,6)'6ps + (Vp,k) 0py

Vo) = s (05— 0B -2 20

(Vp,k) = W((@H_séb')_ggiﬁ;sz') (10)
and

Var(x) = (Vp,x) Q(Vp,#)57 + (Vp,x) Q(Vp,#)5, (41)

The derivation of the variances for the angles o, and o, may be carried out similarly.
For clarity, a change in notation a = o, will be used.

a=tan"' % — tan™! u, da = (Vp,a)'ép, + (Vp,a) dp,

o Ty — Tq
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where (z,,y,) are the coordinates of the point a and similarly for point b.

Yo ¢ Yo — Ya
Vv = ———->——- b, + b, — b,
pza xaz + ya2 ¢ (xb - :Ca)z + (yb - ya)2 ( ’ )
Ty . Ty — Tq
\Y% = — — by, + b, — b, 42
pya xaz + ya2 4 (:Cb - xa)2 + (yb - ya>2 ( ’ ) ( )

and
Using (40) and (42), the covariance between x and o may also be obtained:

Cov(k,a) = (vpz"?),Q(vsz‘)&g + (prK/)/Q(vpya)a-j (44)

In order to obtain variances for u and v, we consider the differentials:

Su = &(kpcos® @) = cos® adry — 3k cos® asina da (45)

v = §(kgcos® ) = cos® 3k, — 3k, cos® Bsin 363 (46)

where [ is only a notation change (like o) and equivalent to the angle o;,. Assuming
that the points a¢ and b are on different splines, the variances and covariances of u
and v are as given below:

Var(u) = cos® o Var(ky) + 9/4;2 costasin? a Var(a) (47)
Var(v) = cos®BVar(k,) + 9x2 cos* Bsin® B Var(3) (48)

Cov(u,v) = —3k,cos® acos® Bsin B Cov(ky, 3) —
3k cos® B cos? asin o Cov(k,, ) (49)

Finally, the covariance matrix K is given by

k= ooty Vot ) o

which by substitution from previous equations may be evaluated for a particular state

(v, u).
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