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Abstract

In this paper we propose a novel, efficient and geometrically intuitive method to
compute the four components of an affine transformation from the change in simple
statistics of images of texture. In particular, we show how the changes in second circular
moments of edge orientation are directly related to the rotation (curl), scale (divergence)
and deformation components of an affine transformation, and how these components can
be computed from multi-scale texture moments. A simple implementation is described
which does not require point, edge or contour correspondences to be established. It is
tested on repetitive and non-repetitive visual textures which are neither isotropic nor
homogeneous. The theoretical accuracy and the noise sensitivity of this method are
compared with other linear moment and circular moment methods.

Keywords: texture moments, affine transformation, multi-scale, image registration,
visual motion

1 Introduction

Structure from motion (or stereo) and shape from texture can sometimes be conveniently
analysed in a two stage framework. The first stage involves the estimation of image velocities
(disparities) in structure from motion (stereo) or terture gradients in shape from texture [1].
The second stage involves their interpretation to infer the viewer motion and/or the distance
and shape of the visible surfaces.

In structure from motion, relative motion between the viewer and scene induces distortion
in image detail and apparent shape. In small neighbourhoods and for smooth surfaces this
distortion — the image velocity field or disparity field — can be conveniently described by an
image translation and a four parameter affine (linear) transformation [2, 3]. In shape from
texture, the distortion in a given direction of an image of a surface with a repeated texture
pattern — texture gradients — can also be modelled by affine transformations [4, 5].

The estimation of an affine transformation is often an integral part in recovering the image
velocity field and distortion map. Better still, the affine transformation can be decomposed
into an image translation, a change in scale (divergence), an image rotation (curl) and a shear
(deformation) [2] which are related to the scene structure and viewer’s motion in a simple,
geometrically intuitive way.

Many methods have been proposed in the literature to extract the affine transformations
from an image sequence (structure from motion) or between different parts of a single image
(shape from texture). These can be broadly divided into methods which require the corre-
spondence of features or tokens, and methods which exploit the temporal coherence in an
image sequence and avoid the correspondence problem.



The simplest method is based on the accurate extraction of points or corner features and
their correspondences [6]. The image motion of a minimum of three points (provided they are
not colinear) is sufficient to completely define the affine transformation. Unfortunately, many
corner finders produce poorly localised features which are often temporally unstable [7, 8, 9,
10, 11], although clusters of corners can be used [12]. The technology for edge detection is
more advanced than isolated point detection. Reliable, accurate edge detectors, which localise
surface markings to sub-pixel accuracy [13], can be used to recover the normal (vernier)
component of velocity at edges. A minimum of six normal velocities can then be used to
compute the affine transformation [14, 15]. Both corner and edge tracking require finding
correspondences over the image sequence. This becomes a non-trivial problem when the
image motion is large or in densely textured images. Cipolla and Blake [16] presented a novel
method to recover the affine transformation of a deforming closed contour from the integral of
simple functions of the normal image velocities around the contour. This integration provided
some immunity to image measurement noise. This is equivalent to measuring the temporal
changes in the area of a closed contour. Although this method did not require point or line
correspondences, the extraction and tracking of closed contours is also not always possible in
richly textured images.

A large number of techniques have been developed which avoid the extraction and explicit
correspondence of tokens or features. For small visual motions or distortions, a common
method is to estimate the affine transform from spatiotemporal gradients of image intensity
from the motion constraint equation [17, 18, 19]. The amount of visual motion allowed
(especially rotation) is limited by the smoothing scale factor. For larger image motions, brute
force search techniques have been used [20].

For estimating the texture distortion map, Malik and Rosenholtz [5] and others [21, 22]
have attempted to solve for the affine transformation in the Fourier domain, although this
involves the choice of a suitable window and is computationally expensive. A more common
approach exploits the second moment statistics of image edge orientations. Under the as-
sumptions of directional isotropy [23] in the real texture, it is possible to estimate the surface
orientation from the second moment matrix of image element orientations [24, 25, 26]. Mod-
ifications of the second moment matrix, which also exploit image intensity gradients, have
also been used [27, 28]. Tt is, of course, impossible to recover the affine transformation (four
independent parameters) uniquely from the second moment matrix (which is symmetric and
positive semidefinite). (This is equivalent to the “aperture problem in the large” [29] when
trying to distinguish the rotation (curl) and pure shear components (deformation) in the
distortion of an ellipse under small viewer motions.) In many existing schemes, restrictions
on the class of texture — isotropy or homogeneity — or on the stereo geometry [28] allow an
incomplete solution. In Malik and Rosenholtz’s work [5] all four affine parameters are needed
to completely specify surface position and 3D shape for a general repetitive texture. All four
parameters of the affine transformation are also required for an arbitrary stereo configuration
or in structure from motion.

Recently, a novel method [30] was proposed to compute all four parameters of the affine
transformation from simple linear moments. Although this method succeeds in deriving the
affine transformation of texture images which are neither isotropic nor homogeneous, it suffers
from the aliasing problem, that is the distribution of orientation is not continuous at 0 and 7
radians, and the theory breaks down at these points. Although this problem can be avoided
by using circular moments, second circular moments are not sufficient to compute all the four
parameters of affine transformation. One solution is to use higher moments, but these are
sensitive to noise.

In this paper, we propose a novel, efficient and geometrically intuitive method to compute
the four components of an affine transformation only from the change in second circular
moments of the images of texture using multi-scale-space representations. This method does
not require any correspondence of the image feature to be established, and does not suffer
from the aliasing problem. The theoretical accuracy and noise sensitivity of this method
are compared with other linear and circular moment methods. A simple implementation is
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Figure 1: Distribution of the orientation of the original and distorted texture elements. The
original distribution is shown by a dashed line in each graph and the distribution changed
by scaling, rotation and deformation are shown by solid lines in (a), (b) and (c) respectively.
The original distribution is a Gaussian distribution of 50000 elements with mean value of 50
degrees and standard deviation of 9 degrees. The scale factor used in (a) is 0.7, the rotation
used in (b) is -15 degrees, and the magnitude and axis of deformation used in (c) are 1.5 and
80 degrees respectively. Scaling does not change the shape of the orientation distribution but
changes its area (a). Rotation changes the mean value of the distribution (b). Deformation
changes the variance and skewness of the distribution (c).

()

described, and is tested on repetitive and non-repetitive visual textures which are neither
isotropic nor homogeneous.

2 Approach

In this section, we show how the moments of orientation of the texture elements are closely
related to the components of an affine transformation, and how the moments of multi-scale
images can be used to recover the affine transformation.

Consider the texture to have oriented elements with distribution, f(¢), which will be
changed to f'(p) by an affine transformation. An affine transformation can be described
by the four components, that is an isotropic scale, rotation, magnitude of deformation and
axis of deformation. As shown in Fig.1 (a), if the scale is changed, the distribution, f(¢),
changes similarly, that is the zeroth moment of f(¢) is changed but any higher moments are
not affected. The rotation, as shown in Fig.1 (b), changes the orientations of the texture
elements equally. This means that rotation is related to a shift in the mean value of f(p) (i.e.
the first moment of f(¢)), and does not affect the zeroth moment or higher moments. The
deformation term, on the other hand, depends on the original orientation of the element and
hence affects the variance of f(y) (i.e. the second moment of f(¢)) as shown in Fig.1 (c).
Furthermore, the changes in the distribution of orientation will not generally be symmetric
about the mean of the orientations, and hence the skewness of f(¢) (i.e. the third moment of
f(y)) will be affected. Thus, we can compute all affine components, that is change in scale,
rotation and deformation, from the zeroth, first, second and third moments of orientation of
the texture elements. This linear moments method was proposed in [30].

The linear moments, however, suffer from an aliasing problem, arising from the fact that
the distribution of orientation is not continuous at 0 and 7 radians (see Fig.2). Because we
use the changes in distribution for computation of an affine transformation, the translation
of the distribution over 0 or 7 radians can cause a serious error in computation of the affine
components.

Fortunately, this problem can be avoided by using circular moments, which are continuous.
As described in the previous section, second circular moments are not sufficient to recover all
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Figure 2: Aliasing problem of linear moments of orientation. If the distribution translate
over 0 or 7 radians by an affine transformation, the change in moments (e.g. change in mean
value) are no longer consistent with the change in distribution itself.

four components of an affine transformation, because the second circular moments include just
two individual segments. Although we can solve the problem using higher circular moments,
these are sensitive to noise and are not always reliable.

On the other hand, research in scale-space theory [31, 32, 33, 34] shows we can exploit dif-
ferent image features in an image by choosing different scales. Further more, recent work has
developed diffusion processes for multi-scale representation which preserve an affine trans-
formation, that is an affine invariant scale-space [35, 36]. If the diffusion process is affine
invariant, image features extracted at different scales in an image distorted by an affine trans-
formation belong to physically different image structures, but are distorted by the same affine
transformation. This means we can obtain different information about the same affine trans-
formation by choosing different scales in a diffusion process. This is demonstrated in Fig.3
which shows the original and distorted images at different scales derived by an affine invariant
diffusion process [35].

In the next section, we describe how we can compute all four components of the affine
transformation reliably, without any correspondence, using two or more scale-space represen-
tations.

3 Theoretical Framework

In this section, we formalize the method of computing the parameters of an affine transforma-
tion from the moments of multi-scale representation. To do this, we first show that the affine
transformation can be computed using differential invariants of the image velocity field. Next,
we describe how the change in orientation of the image detail is related to the parameters
of an affine transformation. This observation is then used to derive the relationship between
these parameters and the moments of the orientation of image detail. Unfortunately, this
relationship provides only two equations, but there are four unknown parameters of the affine
transformation. To compute the affine parameters uniquely, we combine this relationship with
multi-scale-space representation, and formalize the method to compute all four parameters of
an affine transformation from the moments of the orientation of image detail in closed form.

3.1 Differential Invariants of the Image Velocity Field

Generally, an affine transformation, A, which represents the image distortion, can be described
by the 2x2 identity matrix, I, and a 2x2 differential component, @), as follows:

A = I+Q (1)
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Figure 3: Original and distorted multi-scale images and their edges. The images in column
(a) are the original images represented at three different scales. Column (b) shows the same
images distorted by an affine transformation. The affine transformation is equivalent to the
transformation in viewing a fronto-parallel textured surface which has been rotated to have a
slant of 45 degrees and a tilt of -45 degrees. The images in the second and third row of columns
(a) and (b) are derived from the images in the top row by an affine invariant diffusion process
developed by Lopez and Morel [35] with scales (variances) of ¢ = 70 and ¢ = 240 respectively.
The images in columns (c¢) and (d) show edges derived from the images in columns (a) and
(b) respectively. We find that different information about the same affine transformation can
be obtained by choosing different scale-space representations.



If the image distortion is small, the differential component, @, of the affine transformation
can be approximated by the first order partial derivatives of the image velocity field:

| U Uy
@ = [Ur Vy ]
where uy, uy, vy and vy are the partial derivatives of the image velocity, v = [u(z, y), v(z, y)].
It is well known that the matrix @ can be decomposed into the first order differential invariants
of the image velocity field, i.e. divergence, curl and deformation [16]:

0 - divv [1 0 curlv [0 -1 defv [cos2u  sin2pu
o 0 1 2 1 0 2 |sin2p —cos2pu

(2)

where p is the orientation of the axis of maximum expansion. divv, curlv and defv are the
divergence, curl and deformation components of the image velocity field, v, and defined by:

2

divy = uz 4y

curlv. = —uy + v,
defvcos2u = uy —vy
defvsin2pu = uy+ v,

The advantage of representing an affine transformation using the first order differential in-
variants 1s not only its simplicity, but also its direct relationship to the three dimensional
configuration. In structure from motion the relationship between the viewer motion and
the surface orientation can be described using these differential invariants as shown in [16].
Therefore, once the differential invariants of the image velocity field have been computed, we
can partially solve the motion of the observer and the structure of the scene. These solu-
tions are not complete, but are enough for some applications such as time-to-contact in visual
navigation.

3.2 Changes in Image Orientation and the Affine Transformation

In this section, we investigate the effect of the first order differential invariants on the ori-
entation of image detail. In the next section, we use this results to derive the relationship
between texture moments and an affine transformation.

Consider an element of texture represented by a unit vector, v, with orientation, ¢. As
shown in Fig.4, the affine transformation, A, transforms the vector, v, into v/ with orientation
¢'. Therefore, the z and y component of the transformed vector, v/, is described as follows:

L'(p)cose’ | _

[L’(gp)singp’ = Av
1+s+d; dy — ¢ cos 3)
doy+e 14+s—d; sin ¢

where L’(¢p) is the length of v/ (note that the transformed vector is no longer a unit vector)
and is computed by (see Appendix A):

L'(¢) ~ 1+ djcos2p +dysin2p + s (4)

and for simplification we changed the expression of the differential invariants as follows:

s = =divv
c = §curlv
1
dp = §defv cos 2p
1
dy = §defv sin 2
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Figure 4: Change in orientation and length of a texture element under an affine transforma-
tion. A unit vector, v, with orientation ¢, is changed to vector v/, with orientation ¢’ and
length L'(¢), by an affine transformation, A.

We now compute cos 2¢’ and sin2¢’, because we will use second circular moments in
the next stage. (Note that first circular moments are always zero, because we reflect each
orientation, ¢, of the image detail to ¢+ 7 before computing the moments to avoid an aliasing
problem. This is described in the next section and Appendix B.) From (3), cos 2¢’ and sin 2¢’
are computed by:

cos2¢’ = cos?y —sin?¢’
1 .
= W (k11 cos 2¢ + kiasin 2¢ + ki3) (5)
sin2p’ = 2siny’ cosy’
1 .
= W (ka1 sin 2¢ + koo cos 2¢ + kas) (6)
where:
kin = 14d—d5+s*4+2s5—¢?
k12 = 2(d1d2 — C — CS)
k13 = 2(d1 + dls — dzC)
kyn = 1—di4+d5+5s>4+2s—¢?
k’gz = 2(d1d2 —|—C—|—CS)
k'23 = 2(d2 + d28 + dlc)

If the image distortion is small, that is s € 1, ¢ € 1, d; € 1 and dy < 1, the second order
products of these differential invariants can be neglected. Then, (5) and (6) are approximated
to first order by:

1

cos2p’ o~ T (g)? (cos 2¢ + 2s cos 2¢ — 2esin 2¢ + 2d) (7)
1

sin2¢’  ~ L (sin2¢ + 2ssin 2¢ + 2c cos 2¢ + 2ds) (8)

3.3 Texture Moments under Affine Transformation

In this section, we formalize the relationship between the circular moments of the orientation
of the texture and the four components of the affine transformation. This allows us to compute
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Figure 5: Change in distribution of orientation of texture elements under an affine transfor-
mation. The small interval, (¢, ¢ +dep), of the original distribution, f(¢), moves to the small
interval, (¢, ¢’ + d¢'), of the distorted distribution, f'(¢’), by an affine transformation, A.

an affine transformation without any correspondence of spatial image features. In previous
work on shape from texture, the texture was often assumed either to be spatially homogeneous
or isotropic in orientation, though such textures are limited in the real world. Here, we
consider any visual pattern in the real world as a texture, and consider the change in the
statistics of the visual texture under an affine transformation.

Consider the texture to have oriented elements with distribution, f(¢), which will be
changed to f'(¢’) by an affine transformation. As shown in Fig.5, the unit texture elements
whose orientations lie in the small interval (¢, ¢ +dyp) move to the small interval (¢, ¢’ +dy’)
by the affine transformation, and the length of the each element is changed to L'(¢). Then,
the number of unit elements, g(¢’) which lie in the interval (¢’, ¢’ 4+ d¢’) is described as
follows:

Because f'(¢’) and f(p) are defined per unit area, the transformed distribution f’(¢’) is
described as follows:

T
e’ = a(e)de’
T
= gl f(p)de (9)
where T and T” are the total length of the texture elements in the original and deformed
area. The moment , Ip(,r), of an arbitrary function, F(y'), of the deformed texture with
distribution, f'(¢'), can therefore be described as follows:

N
= 5 ARG ETE (10)

This is a general expression of the moment of the texture deformed by an affine transformation.
By definition, nth order circular moments, Isnne, lcosny, of the orientation, ¢, of the



texture element are described as follows [37]:
27
Isinn(p = / sin nSOf(SO)dSO (11)
0

2n
Leosng = /0 cos np f(p)de (12)

where, f(y) is the distribution function of orientation of the texture element. In practice,
because ¢ and ¢ + 7 cannot be distinguished, odd order circular moments (e.g. 1st, 3rd
circular moments) are always zero (see Appendix B). Therefore, even order moments (e.g.
2nd, 4th circular moments) are necessary to compute the affine transformation.

Second circular moments of the deformed texture, Ina, and g2, can be described
from (11), (12) and (10) as follows:

s = [ sin2g (e
i
= 7, sin 2¢'L' () f(p)dp (13)
2
Icos 20! = / COS 2§0/f/(§0/)d4,0/
7(1 2m
= 7, cos 20'L' () f(p)dp (14)

Substituting (7) and (8) into (13) and (14):

2w

1

Linopr = 7 ), (sin 2¢ + 2ssin 2¢ + 2¢ cos 2¢ + 2ds) mf(go)dgo (15)
T 27 1

Tosopr = T | (cos 2¢ + 2scos 2¢ — 2esin 2¢ + 2d;) mf(go)dgo (16)

Because L’ (¢) ~ 1 under small image distortion, 1/L’(¢) of (15) and (16) can be approximated
to first order by:

1
L'(¢)
Substituting (4) and (17) into (15) and (16), and approximating to first order by neglecting the

second order products of the differential invariants, second circular moments of the deformed
texture are described by second and fourth circular moments of the original texture as follows:

~ 1-(L(p)—1) (17)

T d d

Lsin 20! = F(Isin 2¢ + slsin 2¢ + 2¢lcos 2¢ — Ellsin 4 + ?2(3 + ICOS4LP)) (18)
T d d

Icoqu:’ = F(Icosmp + Slcos&p - 2CISin2<p + ?1(3 - Icos4(p) - ?leinéhp) (19)

where Isin 2, leos2p, Isinae and Icgsa, denote second and fourth circular moments of the
original texture respectively. Note that the moments of the deformed texture are described
by simple linear combination of the moments of the original texture.

3.4 Multi-Scale Texture Moments

In the previous section, we derived the relationship between the moments of the texture and
the components of the affine transformation. We have only two equations, and there are four
unknown parameters in these equations, i.e. four components of the affine transformation.



Due to this lack of constraints, we cannot compute the affine components uniquely from the
moments of the texture. In this section, we propose an efficient method to compute four com-
ponents of the affine transformation reliably, using the moments of scale-space representations
of the image.

As shown in the literature [31, 33], we can observe the different image structures in one
image using scale-space representation: a certain scale extracts a certain structure in the im-
age and a different scale extracts a different structure. Image features extracted by different
scales in an image distorted by an affine transformation belong to physically different image
structures, but are distorted by the same affine transformation. This means we can auto-
matically obtain moments which are derived from different image features but are affected by
the same affine transformation by choosing different scale-space representations. Combining
two or more scale-space representations with derived equations of moments and the affine
transformation, we can compute all four components of the affine transformation directly and
reliably without any correspondence.

Consider two different scale-space representations, whose scales are ¢; and %5, to have
different texture moments defined by (13), (14), that is Lin 2, and Ieosay, for 1 and Isn 24,
and leos20, for t2, and these moments are changed to Igy 201y Leos 2!y Lsin 24, and I 20, by
the affine transformation. Then, from (18) and (19), the relationship between these texture
moments and the components of the affine transformation can be described as follows:

T

§11’Ic0524,/1 Icos2<P1 Icos2tp1 _2]sin24p1 %(3 1_ Icos4tp1) 1 _%Isinélapl B}
’jTlllsian'1 — dsin 2¢, _ IsinZLpl 2Icos2ap1 . _EIsinlhpl 5(3 1"[(:054@/:1) c
% cos 2!, Ioos 2¢2 Leos 2¢2 —2/sin 2¢2 5(3 1_ Leos 4#/’2) 1 _EISiH 42 dy
7;2’1 ) LT, Isin 2¢2 QIcos 292 - §Isin 4pa 5(3 + Icos 4Lp2) d2
T, 1sin 2¢;, sin 22

where 7} and T3 are the total length of the original texture elements in the scale ¢; and ¢,
and 7] and 77 are those of the deformed texture elements. We can compute four differential
components, s, ¢, dy, ds, of the affine transformation as a solution to this matrix equation.
The absolute components of the affine transformation are computed using the derived differ-
ential components and (1). This method requires minimal information to compute an affine
transformation using two different scales. We can also use more than two scales and raise the
accuracy and robustness of this method.
The properties of the proposed method are:

1. Tt does not require correspondence of individual image features.
2. This allows much greater interframe motions than spatio-temporal techniques.

3. The method relies on the comparison of statistics of the image patches. This will
only be meaningful if the two patches are projections of “world” textures with
similar properties. This therefore requires that corresponding areas of interest are

1dentified.

4. This method does not suffer from an aliasing problem which occurs when linear
moments are used.

4 Theoretical Accuracy and Noise Sensitivity

In this section we compare the systematic error and sensitivity to noise of this method with
those of the linear moments method [30] and another circular moment method, Kanatani’s
Buffon transform method [26]. Kanatani’s method uses the relationship between the coeffi-
cients of the Fourier series of the inverse Buffon transform and the Fourier coefficients of the
distribution of orientation of image features, and is used to compute slant, tilt and rotation
of a surface.

10



Figure 6: Texture elements used in the error and noise sensitivity analysis. (a) shows the
original data used in the experiments with 100 texture elements whose orientations are from
a Gaussian distribution with a mean of 0 degrees and a standard deviation of 30 degrees. (b)
shows a typical data set of the distorted texture elements. In this example, texture elements
are distorted by an affine transformation with a magnitude of deformation of 30 degrees and
an axis of deformation of 45 degrees.

4.1 Comparison of Systematic Error

All three methods use approximations to solve the problem in closed form, and these approx-
imations cause systematic errors in the estimated orientation of the surface. We compare
the systematic errors of the proposed method, linear moments method, and Buffon transform
method using artificial data of orientation. As shown in Fig.6, the original data of orien-
tation used in this experiment is made of 100 texture elements whose orientations are from
a Gaussian distribution with a mean of 0 degrees and a standard deviation of 30 degrees.
The proposed method requires two sets of data derived from the two different scales. In this
experiment we randomly divided the original orientation data into two, and used them for
the computation of the proposed method. First, we investigate the systematic error in slant
angle changing the slant angle from 0 to 40 degrees with constant tilt angle of 45 degrees.
Next, we investigate the systematic error in tilt angle changing the tilt angle from 0 to 90
degrees with a constant slant angle of 30 degrees.

Fig.7 (a) and (b) show the systematic error in the slant and tilt angles of the proposed
method (solid lines), linear moments method (dashed lines) and Buffon transform method
(dash-dot lines). The proposed method exhibits the best accuracy in slant angle and good
accuracy in tilt angles, independent of the slant and tilt angles, although the accuracy of
Buffon transform method degrades rapidly with slant and tilt angles.

4.2 Comparison of Noise Sensitivity

Next we compare the noise sensitivities of these three methods. Random Gaussian noise with
a standard deviation of 1.0 degree was added to the orientation data of the texture elements
used in the above experiments. The errors in slant and tilt angle caused by the random
Gaussian noise are shown in Fig.8 (a) and (b).

Although all methods are sensitive to noise in the case of small slant, the slant estimated
by the proposed method is less affected by noise than that of the other methods. As shown
in Fig.8 (b), all methods have similar noise sensitivity with respect to the tilt angle.

Although the accuracy and noise sensitivity change in terms of the type of texture, the
proposed method is more accurate and less sensitive to noise in most of the cases. Further
more, it makes the advantage of the proposed method clear that the linear moments method
suffers from an aliasing problem as explained before, and Buffon transform method cannot
compute one of the four components of an affine transformation, the change in scale.

11
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Figure 7: Results of systematic error analysis. (a) and (b) show the errors in the estimation of
the slant and tilt angles of the surface. The solid line, dashed line and dash-dot line show the
error of the proposed method, linear moments method [30] and Buffon transform method [26]
respectively. This systematic error arises from the small deformation approximation required
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Figure 8: Results of noise sensitivity analysis. (a) and (b) show errors in slant and tilt angle
of the surface caused by additive Gaussian noise with standard deviation of 1.0 degree. The
solid line, dashed line and dash-dot line show the noise sensitivity of the proposed method,
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5 Experiments

In this section, we present results which show that this method does not need any assumptions
like directional isotropy or spatial homogeneity to estimate the four components of the affine
transformation. To demonstrate the accuracy of the extracted affine transform, we have
chosen to assume that the original images are of textures on a fronto-parallel plane, and we
use the affine transformation to estimate the motion of the plane, that is change in orientation
and distance of the plane, assuming it is viewed under weak perspective. The relationship
between the plane motion and the differential invariants of the image velocity field can be
described as follows (see Appendix C for derivation):

1
r =
L+s+/di+d3
0 = ¢
d
tan27 = f

cosoc = 1—2\/d%—|—d§

In practice, we have used isotropic diffusion to derive multi-scale images. Although
isotropic diffusion does not in general preserve an affine transformation and may cause sys-
tematic error in the orientation of the texture elements, we have found experimentally that the
distortion of the texture elements caused by an isotropic diffusion is small and the systematic
error in orientation is negligible (see Fig.9).

In the first experiment, the original image of artificial texture elements is deformed by an
affine transformation which is equivalent to the three dimensional motion of a fronto-parallel
surface with a slant angle of 30 degrees, a tilt angle of 60 degrees and a relative change in
distance of 1.1. Two sets of original and deformed scale-space images shown in the top row
of Fig.10 are made using isotropic diffusion with scales (variances) of ¢ = 0 and o? = 30
respectively. The four images in the second row of Fig.10 show edges obtained by the edge
detector from the images in the top row. The moments of the original and deformed texture
elements are computed from the orientation of the image feature at each edge point. The
affine transformation is computed from the proposed method and used to compute the three
dimensional motion of the textured surface. The center and right ellipses in Fig.10 show the
calibrated and estimated orientation and the change in distance of the textured surface using
distortion of the shape from the original circle shown in the left. Fig.11 shows the results from
this method tested on a stained glass image, which is distorted by an affine transformation
equivalent to a three dimensional rotation with slant and tilt angle of 30 and 120 degrees.
Fig.12 shows the results from a Big Ben image, which is distorted by an affine transformation
equivalent to a three dimensional rotation with slant and tilt angle of 30 and 45 degrees. The
ellipses in Fig.10, Fig.11 and Fig.12 show that the estimated orientations and the change in
distance are qualitatively good even with non-uniform and anisotropic textures.

Tablel compares the accuracy of this method quantitatively for each sample image with the
known fiducial orientation. The errors seen in the case of the stained glass image and the Big
Ben image are mainly caused by: (1) The difference of the sampling points between the original
and deformed images, that is the sampling error and the difference of the area of interest
between the two images. (2) In this experiment, we used isotropic diffusion for simplicity.
Isotropic diffusion, however, does not always preserve an affine transformation and may cause
systematic error in the orientation of the texture elements. This problem can be avoided by
using an affine invariant scale-space which preserves an affine transformation [35, 36].

In this experiment, we chose the scales of multi-scale representation manually. In practice,
however, selection of scales affects the accuracy of computation of an affine transformation.
The sensitivities to selection of scales have to be analyzed in future work.
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a? = 160

(c) (d)

Figure 9: Original and distorted multi-scale images and their edges. The images in the
second and third row of columns (a) and (b) are derived from the images in the top row
by isotropic diffusion with scales (variances) of ¢? = 40 and ¢? = 160 respectively. The
images in columns (c) and (d) show edges derived from the images in columns (a) and (b)
respectively. Comparing with Fig.3, we find that the distortion of the texture elements caused
by an isotropic diffusion is small and negligible.
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Figure 10: Results of preliminary experiments (artificial texture image). Examples of the
images distorted by an affine transformation equivalent to a three dimensional motion with
a slant angle of 30 degrees, a tilt angle of 60 degrees and a change in distance of 1.1, were
processed by our affine transform from texture moments algorithm. Images in the top row are
the original and distorted images of scale (variance) ¢? = 0, and the original and distorted
images of scale 2 = 30. Images in the second row show the edges detected from the images
in the top row. These images show that different scale-space representations have different
image structures. The center and right ellipses in the third row show the real and estimated
orientation and the change in distance using normal vectors and oriented circles whose size
and shape correspond to the scale change and distortion from the original fronto-parallel circle
shown in the left.
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Figure 11: Results of preliminary experiments (stained glass image). Examples of the images
distorted by an affine transformations equivalent to a three dimensional rotation with a slant
angle of 30 degrees and a tilt angle of 120 degrees, were processed by our affine transform from
texture moments algorithm. Images in the top row are the original and distorted images of
scale (variance) o2 = 30, and the original and distorted images of scale ¢? = 200. Images in
the second row show the edges detected from the images in the top row. The center and right
ellipses in the third row show the real and estimated orientation and the change in distance.
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Figure 12: Results of preliminary experiments (Big Ben image). Examples of the images
distorted by an affine transformations equivalent to a three dimensional rotation with a slant
angle of 30 degrees and a tilt angle of 45 degrees, were processed by our affine transform from
texture moments algorithm. Images in the top row are the original and distorted images of
scale (variance) o2 = 30, and the original and distorted images of scale ¢? = 100. Images in
the second row show the edges detected from the images in the top row. The center and right
ellipses in the third row show the real and estimated orientation and the change in scale.
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Table 1: Accuracy of the estimated surface motion: changes in distance, r, rotation, 8, tilt,
7, and slant, o which are computed from the differential invariants, s, ¢, di, ds.

Images r o 0(°) (°) o(°)

True 1.10 0.0 60.0 30.0

(a) artificial texture Estimated 1.12 0.3 61.1 31.9
True 1.00 0.0 120.0 30.0

(b) stained glass Estimated 0.97 0.6 1235 324
True 1.00 0.0 45.0 30.0

(c) Big Ben Estimated 0.94 -0.2 484 334

6 Conclusion

In this paper we have proposed a novel method to compute the four components of an affine
transformation from the changes in circular moments of edge orientation. A method to
combine the moments of the texture image and the scale-space representation is described.
This method does not require any point, edge or contour correspondences to be established,
and is simple and efficient. The estimated affine transformation is accurate enough to be
useful in shape from texture and visual navigation. We hope to exploit the information
derived from the proposed method in computing surface orientation and time-to-contact for
the visual navigation of a mobile robot [16]. The remaining problems are:

1. The proposed method relies on the comparison of statistics of the image patches.
This will only be meaningful if the two patches are projections of “world” textures
with similar properties. This therefore requires that corresponding areas of interest
are identified.

2. Although we can choose any two different scales from the scale-space representation
to compute an affine transformation in the proposed method, the selection of scale
affects the accuracy of the estimated affine transformation. How to choose the
best scales to raise the accuracy and robustness of the proposed method remains
a problem.

3. In this paper we described a method which requires minimal information, that is
two different scales. However, we can of course use more than two scales to raise
the accuracy and robustness of the method.

Appendix A
From (3) the length L'(¢) can be described by:
L'(¢)* = ((1+s+di)cose+ (da—c)sing)® +
((dz + ¢)cos o+ (1 4+ s — dy) sin )?

= 2(dy + d1s+ dac) cos 2¢ + 2(dy + das — dy¢) sin2¢p +
L+d?+d3+c*+5%+2s (20)

If the image distortion is small, the differential invariants, s, ¢, dy, ds are small enough to
neglect the second order products of these differential invariants. Then, (20) is approximated
to first order by:

L'(g)? ~ 142
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where:
A = 2djcos2p+ 2dysin 2¢ + 2s

Because A < 1 under small image distortion, the length, L'(¢), can be approximated by:

1
14 A
T3

1+ djcos2p+dysin2p+ s

L'(y)

12

12

Appendix B
From (11), odd order ((2k+1)-th) circular moments, I (2x+1)y, are described as follows:
027
Isin (2k+1)e — / sin ((Qk + 1)90)f(§0)d§0
0

Dividing the interval into (0, 7) and (m, 27):

2

Linohstye = /Oﬂsin((2k+1)so)f(so)dso+ [ sin(@k+ D) (o)
/ " sin (2% + 1)¢) f(e)dg +

[ sin@2k+ 1)+ m) (e + m)dp (21)

Because ¢ and ¢ + 7 cannot be distinguished, f(¢) and f(¢ + 7) are exactly the same.
Therefore, from (21):

Lnarne = | sin (2% + 1)) f(o)dip + / "sin (2% + 1) (o + 7)) F(9)dg

-/ " sin (2K + 1)) (9)dip / sin (2% + 1)) f(o)dg
= 0

Similarly, leos(2k41)p are also zero. On the other hand, even order (2k-th) circular moments,
Lsin 2k, can be described as follows:

27
Lsin 2k — / sin (QkSD)f(SO)dSO
0

m 27
= /s1n(2kgo dg0+/ sin (2ke) f(p)dp

= / sin (2ko) f(p)de + sin (2k(e + 7)) f(e + m)de

0

= sin (2ko) f(p)de +
0

= 2/ sin (2ke) f(p)de

sin (2ke) f(p)dp

S oA

Similarly, Icos 2k, are:

Loos 2kp = 2/ cos (2k90)f(§0)d§0
0
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Appendix C

If the original images are of textures on a fronto-parallel plane under weak perspective, the
affine transformation which describes the image distortion caused by the three dimensional
motion of the plane can be decomposed into each component of the plane motion, that is
the change in distance, S, rotation, R, with axis perpendicular to the image, and shear, D,
caused by a rotation with axis parallel to the image [24]:

A=SRD

where, S is specified by a relative change in distance, 7, R is specified by a rotation angle, 0,
D is specified by a tilt angle, 7, and a slant angle, o:

g
so) =[5 9]
[cosf —sind
R() = | sin 0 cos@]
D(r,0) = [cost —sinT] [coso 0 cosT sinT
’ - | sinT  cosT 0 1 —sinT CcosT

If the image distortion is small, the affine transformation, A, can be approximated to first
order as follows:

A = (I+AS)((I+AR)(I+AD)
~ I+AS+AR+AD (22)
where:
[L—1 0
as = |7 1_1]
[cosf—1 —sinf
AR = | sind cosB—l]
AD — CQST —sinT cosc—1 0 CO.ST sin 7
|sinT  cosT 0 0 —8INT COST

Further more, if the rotation, 6, is small, AR is approximated to first order as follows:

0 —0
AR~ [6 0]

Comparing (22) with (1), we can derive the relationship between the first order deferential
invariants and the plane motion parameters as follows:

1
r =
L+s+/di+d3
f = ¢
d
tan 27 = f

cosoc = 1—2\/d:f—|—d§
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