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Abstract 

Small movements of a viewer relative to the sur- 
rounding scene induce deformations in the shape and 
detail of the projected image. This paper will con- 
sider the problem of using these deformations to  pro- 
vide visual feedback on the current position of the 
viewer relative to the scene. 

The implementation calculates the transforma- 
tions that occur due to small movements around 
the current position. If a "target" transformation is 
specified, the equivalent motion can be interpolated. 
As a result, it is possible to position the viewer rely- 
ing solely on visual feedback (see figure 1). All the 
calibrations required are performed within the algo- 
rithm, and the system is assumed to work using an 
uncalibrated camera. 

Figure 1: This figure depicts an example of the task to 
be performed by a visual servoing system. The camera 
in the first frame has detected the contour on the surface 
of the metal plate, and using visual cues, has "landed" 
on the surface in the second frame. 

1 Introduction 

Viewing a three dimensional world projected onto 
a two dimensional plane causes the image produced 
by a conventional camera to be both ambiguous and 
difficult to interpret automatically. The ability to 
navigate around obstacles from a single viewpoint 
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is one that most living beings can develop, but is 
difficult to implement into an artificial system. In 
essence, the problem is one of extracting the depth 
information from an image, and using this inforrna- 
tion to navigate within the scene. 

By inducing relative motion between a viewer and 
the scene, the image plane is augmented to  a veloc- 
ity field, and the details of these deformations have 
been shown to encode further informatior1 about the 
structure of the scene which can be useful for visual 
navigation. Many representations of the image ve- 
locity field have been attempted, but the approxi- 
mation of a f ine  transformations has been shown to 
have many advantages [3, 51. 

2 Background 

It has been shown that for a small field of view, 
and smooth change of viewpoint the image veloc- 
ity field is well approximated by a linear trans- 
formation [7] consisting of translations, rotations, 
isotropic expansions, and pule shears. For the pur- 
poses of this paper, we will be constantly tracking 
the deformation of a shape in the image, and the 
camera is fixated on the centroid of this shape. As a 
result, there are no translational comporlents in the 
image velocity field. 

The image velocity field, v(z, y ) ,  in the image can 
therefore be expressed as a simple 2-D affine trans- 
formation (see figure 2): 

where ( x , y )  is t,he image position, and 
(uZ, uy, vZ, vy) are the first order partial derivatives 
(with respect to the subscript) of the image velocity 
field. 

3 Theory 

3.1 Image Field Transformations 

A camera in free-space has six degrees of free- 
dom, but if we place the constraint that the optical 
axis should be fixated towards a fixed position in 



Figure 2: An affine transformation is a linear combi- 
nation of a) rotations (defined by one angle in 2D), b) 
isotropic expansions (defined by one scale factor), and c) 
shears (defined by an axis, and a scale factor). 

the scene, the coordinate system is reduced to four 
dimensions. For the purposes of this paper, we shall 
define the coordinate system as in figure 3. 

Figure 3: The camera coordinate system used in sec- 
tion 3.1 for a camera fixated on a point in the scene spec- 
ifies three angle rotations, w l ,  wz and ws, and a depth 
scale factor, d. 

Any motion of the camera in one of these four 
independent directions induces deformations of the 
image, and therefore an image velocity field can be 
constructed. The requirement that the camera re- 
mains fixated on a point in the scene ensures that 
the velocity field does not contain any translational 
component (as in equation (I)), and therefore has 
four degrees of freedom which correspond to the four 
degrees of freedom of the viewing camera. 

3.2 Transformation Field Calibration 

Following on from the previous section, the cam- 
era can make small movements in each of its four 
axes and record the transformations that take place 
in the image field. As an example, the effect of 
"rolling" about the w3-axis is a rotation in the image 
plane, whilst a change of relative depth, d, induces 
an isotropic expansion. 

Each of these perturbations will induce an image 
plane transformation, and four such transformations 

complete the parameterisation. These transforma- 
tions can be expressed as 2-D matrices as in equation 
(1): T,, , Tw2, TW3 , and T d  where the subscript ref- 
erences the axis in which the motion was made. As 
the movements of the camera are independent, it is 
clear that these matrices are non-singular (moving 
the camera back inverses the transformation) and 
associative (the order of the movements is not im- 
portant, as the axes are independent) under multi- 
plication. 

If we now assume that the transformation field 
is linear for small perturbations of the camera, it 
can be inferred that, for example, three movements 
each causing a transformation T will result in an 
overall transformation T3. Further, a transforma- 
tion in the wl direction followed by a transfor- 
mation in the w2 direction will induce an overall 
transformation of T,, T,, . A general movement of 
the camera given by the four dimensional vector, 
(Awl, Aw2, Awg, Ad), will induce a transformation, 
7, where 

F ( A w 1 .  A w 2 ,  A w 3 ,  A d )  = ( Twl (Tw2) ( T d ) A d  

( 2 )  

3.3 Visual Feedback 

Within the range of validity of equation (2), it 
should be possible to identify the motion in the 
four dimensional space that would have induced any 
affine transformation in the image plane. This is the 
basic requirement of a visual servoing system. 

If the transformation observed is represented by 
matrix S, the motion can be interpolated by solving 

S = F(Aw1, A w ~ ,  Aw3, Ad) . (3) 

Unfortunately there does not appear to be an ana- 
lytical solution to this problem, and therefore the so- 
lution must be found by an iterative solution, which 
in itself requires an "error function" to be defined 
(see section 3.5). 

3.4 Computing the Transformations 

The results obtained with this algorithm depend 
on being able to estimate the linear transformation 
between two images. This in turn requires corre- 
spondences to be tracked as the images change. Two 
methods are now described: 

The centroid of a closed contour is invariant 
as the image deforms according to the affine 
constraints. Therefore each closed contour that 
can be tracked in the image provides one cor- 
respondence over image sequences. It is neces- 
sary to obtain at least two correspondences, and 
therefore this method requires two independent 



closed B-spline snakes [4] to follow two contours 
on the surface of interest. In practice, most real 
surfaces have many suitable contours to track, 
which makes this method viable, but computa- 
tionally expensive. 

A large number of matches can be obtained by 
considering the control points of one B-spline 
snake to provide correspondences between the 
images. The Aperture Problem [l] shows that 
this method should not be accurate, as the 
snake has no way of extracting the component 
of velocity tangential to the curve. However 
the errors can be minimized by ensuring that 
the second differential of the contour position is 
as large as possible (i.e. that the curve does 
not have long smooth regions), and in prac.- 
tice the method has been shown to work well. 
Constraining the snake to deform according to 
the restrictions of affine transformations [6] also 
helps solve this problem. 

Both these methods provide two sets of position 
vectors (one for the starting image, and one for the 
image after the camera has been moved) 

Yn = ( Yn, l  ) and yb = ( Y:" ) (4) 
Yn.2 Yn,2 

where n = 1 . .  . m and m is the number of corre- 
spondences found. The transformation S is required 
which will transform the first image onto the second 
with as little error as possible. We wish, therefore, 
to find the transformation, S, which will minimize 

3.5 Approximating the Position Error 

In section 3.3 we introduced the relationship be- 
tween the overall observed transformation, S ,  and 
the displacements, Awl, Aw2, Aw3 and Ad. Equa- 
tion (5) provides a good cost function, and by adjust- 
ing the variables until a minimum value is identified, 
very good estimates of the overall displacements are 
found. The problem can be expressed as: 

where q = (Awl, Aw2, Aw3, Ad). 
The calibration transformations can be found 

from a least squares fit to equation (5). 
Techniques for solving this optimization are avail- 

able, and bot,h Hooke and Jeeves (see [2] for a de- 
scription of this optimization method) and the stan- 
dard non-linear least squares optimization methods 

have been shown to be suitable. It should be noted 
that equation (2) is only valid for small values of 
Awl, Awz, Aw3 and Ad which reduces the search 
region significantly. 

3.6 Implementation 

3.6.1 Algorithm 

The experiments were performed using an uncali- 
brated CCD camera held in the grippers of the ma- 
nipulating arm of a Scorbot ER-7 robot arm. All 
processing is performed in real-time on a single Sun 
SPARCstation 20. 

The following algorithm outlines one implemen- 
tation of this method of visual servoing: 

1. Initialise a closed B-spline snake around a con- 
tour feature on the surface of interest, and start 
to track the contour. While continually track- 
ing the snake, the camera should be moved to 
the target position. 

2. Record the target image as a set of points on 
the image defined by the position of the control 
points of the B-spline snake. A large number 
of points ensures that small errors due to the 
Aperture Problem will not be significant later 
in the experiment, and 20 points were used in 
our implementation. 

3. Perturb the camera position to a new position, 
ensuring that the contour is continually tracked 
and centered in the image field. 

4. Perform three1 calibrating motions in each of 
the three indepedant dimensions and measure 
the resulting image plane transformation of the 
B-spline snake for each of these motions. 

5. The solution to  equation (6) is found using the 
Hooke and Jeeves search method. The vari- 
ables should be constrained to ensure they re- 
main within the validity of equation (2). This 
part of the algorithm is the most computation- 
ally expensive, but in practice, the optimization 
converged within 1 to  2 seconds. 

6. Use the motion vector obtained from the previ- 
ous step to move the camera towards the tar- 
get. Due to the approximations made in this 
algorithm, the motion vector is not exact, but 
it does ensure that the new camera position 
is closer to the target position. Repeating the 
algorithm allows the target position to be ap- 
proached iteratively. 

'The robot arm used for these experiments only had 5 
degrees of freedom, and therefore the camera position has 
only 3 degrees of freedom if it is fixated on a point in the 
scene. 



3.6.2 Results Acknowledgments 

Starting from a position about 50cm from the target 
position, the camera position converged very quickly 
towards to target. It  was found that 3 iterations 
were necessary to place the camera within 5mm of 
the target position (table 1 and figure 3.6.2). 

Table 1: An example of the convergence rate for the 
affine visual servoing algorithm. The camera is started 
at a distance of 34.5cm from a target position, and over 3 
iterations, it is maneuvered to within lcm of the target. 
Further iterations oscillate within lcm of the target. 

Figure 4: The first image (top) depicts a target im- 
age, and the following three images depict the viewer 
image before the first iteration (bottom left), after the 
first iteration (bottom centre), and after the third iter- 
ation (bottom right). Clearly, the final image exhibits 
almost no transformations from the initial target image. 

4 Conclusion 

Visual feedback provides a robust method of es- 
timating the camera position relative to a "target" 
position. The technique can be used on an uncali- 
brated system, and provides excellent results. Cur- 
rently the calibration matrices must be obtained 
by deliberately moving the camera at  the start of 
each iteration of the feedback loop. However fu- 
ture work will involve inferring these transforma- 
tions from the data gathered during the previous 
iterations-calibrating moves will only be made if 
necessary (due to the lack of data from previous 
moves). 

We would like to warmly thank the Toshiba Cor- 
poration for their financial support. The robot used 
during testing and implementation was financed by 
Olivetti. 
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