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Abstract
The problem considered in this paper is that of estimat-

ing the projective transformation between two images in
situations where the image motion is large and feature-
matching is not aided by a proximity heuristic. The overall
algorithm designed is based on a multiresolution, multi-
hypothesis scheme, and similarities between tracking and
matching through multiple resolution levels are exploited.
Two major tools are developed in this paper: (i) a Bayesian
framework for incorporating similarity measures of feature
correspondences in regression to specify the different levels
of confidence in the correspondences; and (ii) a Bayesian
version of RANSAC, which is able to utilise prior esti-
mates and matching probabilities. The algorithm is tested
on a number of real images with large image motion and
promising results were obtained.

1 Introduction
Most of the present work on image mosaicing has been

based on the assumption of small image motions, which
significantly helps the recovery of good correspondences.
For example the work carried out by Sawhney et al. [8] and
Szeliski[9] are based on motion estimation from video se-
quences. The exceptions which do not require small image
motion are Dani and Chaudhuri’s paper[2] which is lim-
ited to separate cases of translational and rotational mo-
saicing, and the use of corner models for projective match-
ing by Zoghlami et al. [13]. In the latter case, the match-
ing is based on extracting a very small number of evenly-
distributed corner points and computing the transformation
hypotheses from pairs of correspondences. However the
corners are often extracted from regions which have weak
features (to maintain an even distribution) and are very sus-
ceptible to small non-linear changes in image intensities.
Furthermore the transformation estimation is only based on
two features without incorporating other matched features.

∗Author’s current affiliation is Cambridge Research Lab, Digital
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The problem which is to be addressed is that of con-
structing a mosaic of images which are related by the class
of projective transformations (eg. taken from an uncali-
brated rotating projective camera). Some examples of the
images used are shown at the end of the paper.

The large differences in the viewing directions of the
images indicate that a feature-based approach is preferred.
However, most stereo or mosaicing algorithms (eg. [11, 10,
6, 9]) require the proximity criterion because of its strong
advantages in matching.

• Proximity is a very powerful criterion in eliminating
mismatches when there are a large number of fea-
tures. Without this criterion, it is wrong to assume
that at least half of the candidate correspondences are
true. These are assumptions made in least-squares and
least-median-squares[5] methods.

• The proximity criterion significantly reduces search
time. Without this criterion, a feature selected from
one image must be tested against all other features
in the second image. This results in a very intensive
search operation in order to recover good correspon-
dence candidates.

However, the proximity criterion cannot be applied when
image motion is large, as in the case in the type of images
we want to be able to cope with. In this paper, we adopt
a number of strategies to cope with long-range feature
matching:

• A Multiresolution, Multi-Hypothesis Approach. A
multiresolution scheme is desirable from the point of
view of recovering the globally optimal solution[12]
as well as in terms of search efficiency. While a
large number of papers make use of a multiresolution
scheme (eg. [11]), a rudimentary, blanket approach is
usually adopted without further analysis. In this pa-
per we consider similarities between multiresolution
estimation and tracking — the former involves com-
puting over a number of resolution levels and the latter
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involves computing across a number of image frame
sequences.

• Robust Regression. The use of similarity measures
without a proximity criterion for determining matches
often leads to a considerable proportion of corre-
spondences being false matches. Hence the estima-
tion method used must be robust to outliers. The
RANSAC[3] paradigm is typically proposed, but in its
original form is only suited for non-iterative estima-
tion. A Bayesian extension to the RANSAC to cater
for multiresolution, iterative schemes is described in
section 2.4.

• Incorporating Similarity Measures in Regression.
In most previous applications, similarity measures
such as the cross-correlation values were simply com-
pared against a preset threshold to decide if the can-
didate match can be admitted, and thereafter ignored.
However since the similarity measures also indicate
the amount of trust in the correspondences admitted,
we show how they can be incorporated into a statis-
tical framework for estimating the transformation in
section 2.3.

2 Theory
2.1 Iterative Estimation through Multiple Reso-

lution Levels
One of the key problems in mosaicing two images I l

and Ir obtained from a rotating uncalibrated camera is that
of accurately determining the unknown projective transfor-
mation mapping Ir to Il. The transformation, specified by
some parameter vector A, may be expressed in vector form
via xl = T (A, xr) where xl and xr are vector coordinates
of corresponding image points in I l and Ir, and T is a ma-
trix function of xr and A which maps xr to xl.

A multiresolution approach to the estimation of trans-
formation parameter vector A involves using data obtained
from a low resolution level to compute a weak hypothesis
for A and refining the hypothesis by working through in-
creasing levels of resolution. Unlike estimation carried out
at a single resolution level, the data is utilised in a sequen-
tial manner, which is similar to the scenario encountered in
tracking.

Suppose the resolution levels are r = 1, . . . , R with in-
creasing resolution. Let the data obtained at resolution r
be denoted by a vector zr, and the cumulative data ob-
tained from resolution levels 1 to r be denoted by vector
Zr = [ zr Zr−1 ]T . When more data becomes available,
we would expect the range of probable solutions to become
smaller, ie. that the posterior probability density p(A|Z r)
becomes more concentrated in a number of peaks.

Consider a peak in p(A|Zr) representing the most
probable hypothesis. When advancing from one resolution

level to the next, three possible types of transitions may
occur at the peak in p(A|Z r+1) (see figure 1), for which
different estimators are suited for determining the form of
p(A|Zr+1):

1. The peak becomes more pronounced.
In this case the initial estimation is accurate, and there
is only one dominant hypothesis. The correspon-
dences obtained at the lower resolution level is suf-
ficient to localise the initial estimate in the vicinity of
the correct solution, and a method based on iterative
(ie. sequential) least-squares may be used to refine the
estimate at the higher resolution level.

Preferred estimator: Kalman filter.

2. The peak diminishes, together with the formation of
other new peaks.
In this case the initial estimation is erroneous, due to
a lack of good correspondences at the lower resolu-
tion level. The estimation process must be re-applied
to correspondences obtained at the higher resolution
level. Since there may be a number of probable alter-
nate solutions, a method capable of handling multiple
hypotheses is desired.

Preferred estimator: standard RANSAC.

3. The peak divides into a number of sub-peaks.
The initial estimate is accurate as to the region of the
correct solution, but is insufficient to distinguish be-
tween separate hypotheses within the region. In this
case, a Kalman filter will fail to distinguish between
the separate hypotheses, while a traditional RANSAC
method operating on the data from the higher resolu-
tion level will be computationally inefficient in having
to test a large number of improbable solutions as well.
The answer is to incorporate Bayesian analysis into
RANSAC to improve hypothesis testing (section 2.4).

Preferred estimator: Bayesian RANSAC.

2.1.1 Multiple-Hypothesis Search Tree

The difficulty lies in deciding which of the three cases best
fits the current state of an estimation process, and therefore
which estimator to use. Selecting standard RANSAC is the
most non-committal decision, but which is also the most
computationally intensive. On the other hand, the Kalman
filter is highly efficient but may result in an incorrect solu-
tion.

In our case, a multiple-hypothesis approach is adopted.
We select the estimator according to computational ef-
ficiency (ie. Kalman filter, Bayesian RANSAC, standard
RANSAC in that order), but retain a hypothesis tree of dif-
ferent states reached in the estimation process. Each leave
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(a) =⇒

(b) =⇒

(c) =⇒

Figure 1: The figures show the 3 categories of transitions to
a probability peak which can occur in the posterior probability
density function p(�|�r) (assumed 2D in the examples) when
advancing from a lower resolution level to a higher level. In (a),
a Kalman filter is preferred for estimating the optimal solution;
in (b), standard RANSAC is recommended; in (c) we propose
the use of Bayesian RANSAC. See the text for more details.

of the hypothesis tree contains the following information:
(1) the current p(A|Z r); (2) the last estimator attempted, if
any; (3) the transformation model (either similarity, affine
or projective); (4) the resolution level r; and (5) a measure
ρ quantifying the similarity between the images I l and a
A-warped version of Ir. A best-first search[7] based on
ρ is then carried out until an acceptable final solution is
reached.

2.2 The Standard Bayesian Framework
The standard Bayesian approach to stereo feature

matching normally establishes Bayes relation between pos-
terior and prior probabilities of the model parameters. We
express this in recursive form for a multiresolution frame-
work:

p(A|Zr) = k p(zr|A) p(A|Zr−1) (1)

where A represent the model parameters and k is a normal-
isation constant. Zr and zr are as defined in the previous
section. This is also widely used in tracking which involves
sequential data.

In the case of stereo matching, this is usually imple-
mented by (i) recovering features in the stereo images, (ii)
using the prior probability p(A|Z r−1) to establish search
regions for matching features in the different images, fol-
lowed by (iii) evaluating the posterior probability p(A|Z r)
using the likelihoods p(zr|A) computed from any new fea-
tures found within the search regions.

The usual forms of implementation suffers from a num-
ber of problems:

1. The likelihood functions used are usually solely de-
pendent on the distances between the observed posi-
tions of the features and the positions predicted from
the model parameters. Measures such as neighbour-
hood intensity correlation values are not taken into
account in the likelihood estimation. An exception
to this is the similarity weighting scheme described
in [4], where the similarity measure is based on esti-
mated image noise.

2. Once features are found in the search regions (and
which perhaps exceed some correlation threshold),
they are usually treated as having been correctly
matched.

2.3 Extending the Bayesian Framework
Suppose a number of features are extracted from two

images and paired as (fli, fri), i = 1, . . . , N , where the
pairing need not necessarily be a one-to-one mapping. The
features may also be of various classes (eg. corners, lines,
regions), and/or obtained from different resolution levels
of the images. We further define a number of functions
based on these pairings:

1. X i represents the augmented vector containing the
true (noiseless) image coordinates of the features f li

and fri, given by (xli, yli), (xri, yri):

Xi = [ xli yli xri yri ]T (2)

Due to noise, X i cannot be perfectly recovered, only
estimated. The corresponding estimation of X i is de-
noted by X̂i.

2. mi is a boolean flag indicating the truth of the cor-
respondence hypothesis between the features f li and
fri:

mi =
{

1 if fli, fri linked to the same 3D feature;

0 otherwise.

(3)
mi can only be recovered if the parameter vector A is
known exactly.

2.3.1 Incorporating Similarity Measures

Consider the simple case where there is only a single pair
of features forming a candidate correspondence. Using the
above functions, (1) can be expanded in the following way:

p(A|X̂1) = k p(X̂1|A) p(A)

= k
{

p(X̂1|A, m1=1) p(m1=1|A)+

p(X̂1|A, m1=0)p(m1=0|A)
}

p(A)(4)
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By expressing the equation in this form, the likelihood
function p(X̂1|A) is separated into distinct components:

• The component p(X̂1|A, m1 = 1) represents the
case where the features fl1 and fr1 have been cor-
rectly matched (ie. they arise from the same 3D fea-
ture). This is normally assumed when Kalman filters
are employed. The variance of p(X̂1|A, m1 = 1)
only arises from positional uncertainty.

• The component p(X̂1|A, m1 = 0) represents the
case where the features fl1 and fr1 have been wrongly
matched. We would generally expect this to be a uni-
form function.

• The above above two components are mixed accord-
ing to the probabilities of either case being true,
p(m1 = 1|A) and p(m1 = 0|A).

The advantage in the form of (4) is that the probabilities
of matching p(m1 = 1|A) can be specified. For example
in many algorithms, the cross-correlation of image inten-
sity is normally used as a similarity measure for making
binary decisions on accepting or rejecting the correspon-
dence. This implicitly assumes that the the probability
p(m1 = 1|A) is a step function of the cross-correlation
measure, with the step occurring at a predefined thresh-
old. We can instead estimate p(m1 = 1|A) as a smooth
function dependent on the similarity measure. Hence we
continue to distinguish between correspondences with dif-
ferent probabilities throughout the estimation process.

In our case, we define the similarity measure S between
image patches Ψl and Ψr in the sense of a signal-to-noise
ratio

S =

√
Var(Ψl) Var(Ψr)∑

[Ψl(x) − Ψr(T (A, x))]2
(5)

and assign the probability p(m1 = 1|A) as

p(m1 = 1|A) ≈
{

1 − St

S if S ≥ St

0 if S < St
(6)

where St is a conservative predefined cutoff threshold for
the similarity measure such that the candidate match will
not be included in the regression process if S < S t. If A
is unknown, Ψr is rotated such that the dominant image
gradient coincides in direction with that of Ψ l.

Figure 2 shows the variation of p(X̂1|A) for a 1-
parameter A when different p(m1 = 1|A) are used, as-
suming that p(X̂1|A, m1 = 1) is Gaussian. Alternatively,
it is also possible to approximate p(X̂1|A) with a Gaus-
sian N(Mc, Sc) if required. If we define the Gaussian pa-
rameters of p(X̂1|A, m1 = 1) according to N(Md, Sd),
then an approximation of Sc = Sd/p(m1 = 1|A) may be
used in the vicinity of the mean value Md.
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(a) (b) (c)

Figure 2: The shape of the likelihood function p(�̂1|�) is a
mixture of a Gaussian representing p(�̂1|�, m1 = 1) and a
uniform function representing p(�̂1|�, m1 = 0). The shape
varies according to the matching probability p(m1 = 1|�),
which is 1 in (a), 0.5 in (b), and 0.25 in (c).

Consider the example shown in figure 3. The correspon-
dences drawn with darker shades in figure 3(b1),(b2) are
treated as more probable. If similarity measures were ig-
nored, the two false matches in figure 3 will be allocated
the same significance as the correct matches — figure 3(c)
shows the poor mosaicing result of applying least-squares
estimation to all the correspondences without regard to the
matching probabilities. The estimation can be improved if
correspondences with higher probability will be allocated
greater significance, the result of which is shown in fig-
ure 3(d).
2.4 Bayesian RANSAC

The RANSAC paradigm[3] bears resemblance to the
multi-hypothesis methods[1] used in tracking, in that dif-
ferent hypotheses are tested in order that false matches may
be effectively excluded, which is not possible with Kalman
filter methods. However, one of the shortcomings of the
standard RANSAC paradigm is that the estimation is based
solely on data present, since the transformation hypotheses
generated from the bases do not take into account apriori
information on the transformation to be estimated. Gen-
erally noise in the feature positions can have a significant
effect on the hypothesized transformation if a minimal set
of correspondences are used, particularly if the feature con-
figurations are poor or degenerate. This may be so even if
all the correspondences are inliers. As a result, more basis
sampling may have to be carried out for successful robust
regression.

On the other hand if a Bayesian approach is established,
the accuracy of the generated hypotheses can be improved
through the use of the apriori probability p(A) by making
the following modifications:

• Instead of randomly sampling the dataset with equal
probability, each feature pair (f li, fri) is assigned a
probability p(mi = 1) of being sampled. Hence the
pairs of features which are more likely to be correctly
matched will be selected with greater frequency.

• The transformation parameters A for a single basis
are normally computed without taking into account
the apriori probability density p(A). If p(A) has a
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(a1) (a2)

(b1) (b2)

(c) (d)

Figure 3: (a1),(a2) show the correspondences initially ob-
tained between the two images. (b1),(b2) represent the match-
ing probability of the correspondence according to the dark-
ness of the shade. (c) shows the inaccurate registration com-
puted while assuming all the correspondences are equiproba-
ble, while (d) shows the more accurate registration computed if
correspondences are assigned significances according to their
matching probabilities.

strong bias, it is better to choose the MAP estimate
for A:

p(A|{X̂i, i = 1, .., N}) =
k p({X̂i, i = 1, .., N}|A) p(A)

(7)

where N is the number of features in the basis, and the
likelihood p({X̂i, i = 1, .., N}|A) may be estimated
from the observed positions of the features.

In our experiments, we make the assumption that in the
vicinity of each probable hypothesis, both the likelihood
p({X̂i, i = 1, .., N}|A) and probability density p(A)
may be approximated by Gaussians, and have means M l,
MA and covariances Sl, SA respectively. The likelihood
mean Ml is the transformation parameters computed di-
rectly from the basis features, while the likelihood variance
Sl may be estimated from image gradients and estimated
noise variances ([4] provides detail on the computation).

Similarly the posterior probability density
p(A|{X̂i, i = 1, .., N}) is also Gaussian, with
a mean of Mp and covariance Sp which can

be calculated from Sp
−1 = Sl

−1 + SA
−1 and

Mp = Sp (Sl
−1Ml + SA

−1MA) In Bayesian
RANSAC, Mp is used as the transformation hypothesis,
as opposed to the use of Ml as in standard RANSAC.

3 Experimental Results
We tested the algorithm on a number of images which

are taken both with a digital camera (indoor scenes) and a
disposable camera. In the latter case as we do not model
the radial distortion, the image registration is not totally
precise, although gross registration is achieved. Computa-
tion was carried on a multi-user Sun UltraSparc 1 worksta-
tion using the matrix manipulation package Octave.

Figures 4,5 and 6 show mosaics constructed from the
original images (top). The mosaics shown in figures 4
and 5 took approximately 12 and 10 minutes each, because
the RANSAC algorithms were almost always activated be-
cause the lack of radial distortion adjustment (we were us-
ing a disposable camera after all!) and uneven film devel-
opment (resulting in nonlinear changes in image intensity)
meant that the average similarity measures computed were
small. In comparison, the mosaic of 9 images taken from
a digital camera in figure 6 took approximately 6 minutes
running time. This is faster as the Kalman filter mode was
used most of the time because the projective approximation
is better, and the image intensities of corresponding pixels
in the images did not differ much.

Figure 4: Result 1: A mosaic of 6 images taken with a dis-
posable camera. The original images are shown at the top row.

4 Conclusions
In this paper, we designed an algorithm based on a

multiresolution, multiple-hypothesis scheme to cope with
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Figure 5: Result 2: The top row shows the original images
which are taken with a disposable camera. The bottom row
shows the mosaic. The mosaic is difficult because of the con-
siderable independent motion taking place.

Figure 6: Result 3: A mosaic of 8 images taken with a digital
camera. The original images are shown in the top 2 rows.

long-range feature matching. Central to the algorithm is
a Bayesian framework for incorporating similarity mea-
sures of feature correspondences in regression. This is re-
quired because correspondences which are admitted into
the estimation process have different levels of probability
of being correct. If this is ignored, all admitted correspon-
dences will be considered equiprobable, and the erroneous
matches may skew the computed estimate from the true
solution. Additionally, a Bayesian approach to RANSAC
was developed to utilise prior and matching probabili-
ties, as would become available as the estimation iterates
through multiple resolution levels. Application of the al-
gorithm to the real test images show that these methods
perform satisfactorily.
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