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Abstract. This paper describes an automatic 3D surface modelling sys-
tem that extracts dense 3D surfaces from uncalibrated video sequences.
In order to extract this 3D model the scene is represented as a collec-
tion of layers and a new method for layer extraction is described. The
new segmentation method differs from previous methods in that it uses
a specific prior model for layer shape. A probabilistic hierarchical model
of layer shape is constructed, which assigns a density function to the
shape and spatial relationships between layers. This allows accurate and
efficient algorithms to be used when finding the best segmentation. Here
this framework is applied to architectural scenes, in which layers com-
monly correspond to windows or doors and hence belong to a tightly
constrained family of shapes.
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1 Introduction

The aim of this work is to obtain dense 3D structure and texture maps from
an image sequence, the camera matrices (calibration and location) having been
recovered using previously developed methods [3,4,12,15]. The computed struc-
ture can then be used as the basis for building 3D graphical models. This repre-
sentation can be used as a basis for compression, new view rendering, and video
editing. A typical example sequence is shown in Figure 1 and the computed
model in Figure 9.

Although extracting scene structure using stereo has been actively researched,
the accurate recovery of the depth for each pixel remains only partially solved.
For instance, one approach to the dense stereo problem is the voxel based ap-
proach [14] in which the scene volume is first discretized into voxels, and then
a space carving scheme applied to find the voxels that lie on the surfaces of
the objects in the scene. The disadvantage of the voxel carving method is that
the surfaces produced from homogeneous regions are “fattened” out to a shape
known as the Photo Hull [14]. Rather than generate voxels in 3D some algo-
rithms operate in the image by testing different disparities for each pixel e.g.



Koch et al [9]. The problem with these approaches are that they do not treat all
the images equally and work well only for small baselines.

Generally dense stereo algorithms work well in highly textured regions, but
perform poorly around occlusion boundaries and in untextured regions. This is
because there is simply not enough information in these untextured regions to
recover the shape. In this paper we propose a general framework for overcoming
this by the utilization of prior knowledge.

A vehicle for encoding this prior knowledge is the decomposition of the im-
age into layers [1,2,8,17-19]. Each layer corresponds to a surface in the scene,
hence the decomposition of the scene into layers acknowledges the conditional
dependence of the depths for adjacent pixels in an image. Detecting the different
surfaces (layers) within the scene offers a compact and physically likely represen-
tation for the image sequence. The main problem is that such a decomposition
is difficult to achieve in general. This is because the parametrization of the layer
itself is problematic. For each layer the parametrization is composed of three
parts: (a) the parameteric form of the 3D surface giving rise to the layer, (b) its
spatial extent within the image and (c) its texture map. Generally it is easy to
construct the former e.g. in [1,8,18] it is assumed that the surfaces are planar,
in [2,17] the surfaces are encoded by a plane together with a per pixel parallax,
in [19] only smoothness of depth is assumed. The latter two however are more
difficult to parametrize. One approach is to ignore the spatial cohesion altogether
and simply model the whole image as a mixture model of the layers [1,8,19].
Whilst this simplifies the problem of estimating the layers affording the use of
iterative algorithms like EM, it is not a realistic model of layer generation e.g.
a homogeneous region which contains little depth or motion information could
be broken up in any way and assigned to different layers with no increase in the
mixture model’s likelihood.

A now classical method for modelling the spatial dependence of layer mem-
berships of adjacent pixels is by use of Markov Random Fields (MRFs) [7].
There are several disadvantages with this approach: first is that using an MRF
model leads to very difficult optimization problems that are notoriously slow to
converge. Second, sampling from an MRF distribution does not produce things
that look like images of the real world, which might lead one to think that using
this as a prior is a bad idea. Third, the MRF is pixel based which can lead
to artefacts. The MRF only implicitly defines the prior probability distribution
in that the normalization factor cannot be readily computed. What would be
preferable would be an explicit prior for the segmentation, which would allow
more direct minimization of the error function, for instance by gradient descent.

Within this paper a prior for the shape of the layers is constructed and illus-
trated for architectural scenes. Architectural scenes are particularly amenable to
the construction of priors, as layers will typically correspond to such things as
windows or doors which for which an informative prior distribution can be con-
structed (e.g. they are often planar with regular outline). Although architectural
scenes are chosen to illustrate the basic principles the method proposed is rep-
resentative of a general approach to segmentation. Taking inspiration from [6],



rather than using an implicit model for the prior probability of a segmentation
an explicit model is defined and used. A solution to the final problem (c), that
of finding the texture map, is also found by considering the texture as a set of
hidden variables.

The layout of the paper is as follows. The parameters used to represent the
shape and texture of a scene are defined in Section 2. A posterior probability
measure is also introduced here for estimating the optimal parameter values for
a scene from a set of images and prior information. As shape is now represented
parametrically, layer extraction becomes a problem of model selection, i.e. deter-
mining the number and type of these parameters required to model the scene. In
Section 3 a method is developed for choosing automatically which model is most
appropriate for the current scene, based on goodness of fit to the images and the
idea of model simplicity. Section 4 then deals with the details of implementing
this method. In Section 5 it is demonstrated that this technique can decide which
individual shape model is appropriate for each layer, which overall model best
fits the collection of layers in the scene, and how many layers are present in the
scene, given a coarse initialisation. Concluding remarks are given in Section 6.

2 Problem formulation

A scene is modelled as a collection of layers. A scene model has a set of parame-
ters represented by a vector 8, which can be decomposed into shape parameters
65 and texture parameters @1 such that @ = Og|JOr. Each layer is defined
as a deformable template in three space; the shape parameters s comprise the
location and orientation of each template together with the boundary (a variable
number of parameters for each layer depending on which model M is selected).
A grid is defined on the bounded surface of each layer, and each point on this
grid is assigned an intensity value forming a texture map on the 3D layer. The
intensity at each grid point is a variable of @1. The projection matrix to a given
image, a noise process, and @ provide a complete generative model for that im-
age. Each point in the model can be projected into the image and the projected
intensity compared with that observed, from which the likelihood of the model
can be computed. If priors are assigned to the parameters then the posterior
likelihood can be computed.

Within this paper a dominant plane is assumed to fill most of the scene (such
as a wall of the building), with several offset objects (such as windows, doors and
pillars). An example of such a scene is given in Figure 1. The background plane
Lo is modelled as the plane z = 0 with infinite extent (thus having no shape
parameters). The other layers £; ... ~L,, are modelled as deformable templates
as now described.

2.1 The shape parameters

At present there are four types of layer model M available, which allow the
modelling of a wide variety of architectural scenes. These are M; a rectangle (6



Fig.1. Three images of the type of scene considered. A gateway and two indentations
are offset from the background plane of the wall.

parameters), M an arch (7 parameters), M3 a rectangle with bevelled (sloped)
edges (7 parameters), and M, an arch with bevelled edges (8 parameters). The
8 parameter model M, has position coordinates (z,y), scale parameters a and
b, orientation w, an arch height ¢, depth from the background plane d and bevel
width r. The arch in My and My is completely specified by ¢ as it is modelled
using a semi-ellipse. The other layer models are constrained versions of this
model, as shown in Figure 2.

¢ . Background
Plane
~w b 5 ! L d
(xy) | -
Ly Offset Plane
X ) L
a |
Frontal View | Overhead view

Fig.2. Top and cross-sectional views of the most general shape primitive. The other
primitives are special cases of this one—the non-bevelled arch has r = 0, the bevelled
rectangle has ¢ = 0 and the non-bevelled rectangle has r = 0,c = 0. The coordinate
azes shown for each view are translated versions of the 3D world coordinate system.

Layers in architectural scenes are highly constrained not only in their indi-
vidual shape, but also in their spatial relationship to each other. Hence a single
parameter can often be used to represent a feature common to several primi-
tives, such as the common y position of layers belonging to a single row. These
global parameters are known as hyperparameters [5], as the entities that they
model are themselves parameters. The introduction of hyperparameters makes



the model hierarchical as illustrated in the directed acyclic graph (DAG) Figure
3. The hyperparameters defined in Table 1 are later used to represent our belief
that primitives occur in rows, but there are many other possibilities.

Hyperparameters dx y a b d w c r
Individual Shape Parameters YooY &8s bbg didg ww ccoor.
Data Image pixel intensities

Fig. 3. The hierarchical shape model. Hyperparameters model functions of the individ-
ual shape parameters. The camera projection matrices, and lighting conditions, could
also be modelled as hyperparameters based on the data and shape parameters, but in
this paper they are given as prior information.

To sum up, architectural scenes containing a background layer £y, together
with a set of offset layers £;,7 = 1...m are to be modelled. Each offset layer has
an associated model M;, j =1...4. The individual shape parameters and the
hyperparameters together define the shape of the model, and can be represented
as a parameter vector @g; next the texture paramters 67 are defined.

2.2 Texture Parameters

The set of layers defined above define a surface. Next this surface is discretized
and a two dimensional coordinate system defined on it. At each point X on this
surface an unknown brightness parameter i(X) (between 0 and 255) is defined.
These brightness parameters form the texture parameter vector 0.

2.3 Evaluating the Likelihood

The shape parameters (number of layers and their associated parameters) and
the texture parameters give the total parameter vector 6. In order to estimate
this its posterior probability must be maximized:

p(6|DI) = p(D|61)p(6]T) (1)

where I is the prior information (such as the camera matrices etc.) and D is the
set of input images. This is a product of the likelihood and prior. To perform
the optimization gradient descent is used. This would prove prohibitive if all



Table 1. Example set of hyperparameters. Knowledge about overall scene structure can
be imposed by assigning a probability distribution to each hyperparameter.

dx|The spacing of z-axis position of the primitives
The y-axis position of the primitives

The horizontal scale of the primitives

The vertical scale of the primitives

The depth of the primitives

The orientation of the primitives

The arch height of the primitives

The bevel width of the primitives

T =P « ol I

the paramaters had to be searched simultaneously. Fortunately the task can be
decomposed into several easier optimizations: first the shape parameters of each
layer can be optimized independently, second only the shape parameters need
to be optimized explicitly. It is now shown how to estimate the optimal set of
texture parameters given these shape parameters.

Given the shape parameters and projection matrices, it is now assumed
that the projected intensity of X is observed with noise i(X) + €, where €
has a Gaussian distribution mean zero and standard deviation o.. The pa-
rameter i(X) can then be found such that it minimizes the sum of squares
mingx) Y777 (4(x7) — i(X))2 where i(x7) is the intensity at x’, and x/ is the
projection of X into the jth image. The likelihood for a given value of i(X) is

1 (i(xj) —i(X)>2

p(D1i(X) = [] o= —3 (o 2)

Using Equation (2) under the assumption that the errors € in all the pixels
are independent, the likelihood over all pixels can then be written:

J

O¢

where x] is the projection of the ith scene point into the jth image. This sum-

mation is over all the discretized scene points (lying on the surfaces of the layers)
X;.

2.4 Evaluating the priors

Prior knowledge of parameter values is encoded in the prior probability term of
Equation (1), p(6|I) = p(650r|I) = p(6s|I), as the value of the texture parame-
ters is determined by the shape parameters and the images. The shape parameter
vector 8s = (a,3) contains both individual shape parameters o and hyperpa-
rameters . Hence the prior probability p(8s|I) = p(aB|I) = p(a|BI)p(B|I).



Table 2. Hyperpriors encoding a row of identical primitives. Ula,b] is the uniform
distribution over the interval [a,b]. N(a,b) is the normal distribution with mean a
and standard deviation b. A column of primitives is similarly constrained, by imposing
a hyperprior on x and dy. The model typically has a spatial extent of [-0.5, 0.5] in
the x and y azes of the world coordinate system; hence a standard deviation of 0.005
corresponds to 2 or 3 pizels in a typical image of the scene.

5[ 200 | 2@

dx| U[0.2,0.4] |N(dx, 0.005)
y |U[-0.4,0.4]| N(y,0.005)
a | U[0.1,0.2] | N(a,0.005)
b | U[0.1,0.2] | N(b,0.005)
d [U[-0.1,0.1]| N(d, 0.005)
w| N(0,7/12] | N(w,n/12)
¢ |U[0.01,0.2] | N(c,0.005)
r |U[0.01,0.1] | N(r,0.005)

The term p(B|I), known as a hyperprior, expresses a belief in the overall struc-
ture of the scene, while p(a|8I) determines how individual shapes in the scene
are expected to vary within the overall structure. To express complete prior
ignorance about the scene structure, each prior probability may be assigned a
uniform distribution bounded by the range of the cameras’ fields of view. The
correct distribution for each hyperparameter should ideally be learnt automati-
cally from previous data sets; however at present they are manually initialised.
An example of a set of hyperpriors for a row of identical shapes is given in Table
2. Samples from this distribution are given in Figure 4.

Fig.4. Samples drawn from the hyperprior distribution for a row of identical primi-
tives given in table 2, using two and three primitives. The intensity at each point is
proportional to the depth offset from the background layer.



3 Model selection

In Section 2 a set of parameters was defined, and the posterior probability (Equa-
tion (1)) was introduced as a means of estimating the optimal parameter values
for a given model. However a more fundamental problem remains: how to decide
which model (i.e. which set of parameters) best represents a scene? This is the
problem of model selection, described in this section.

The goal of model selection is to choose the most probable of a finite set of
models M;,j = 1..n, given data D and prior information I. Using Bayes rule
the probability of each model can be expressed as

p(DM;T)p(M;[T)
p(DT)

The denominator p(D|I) is constant for all models and hence is used only as a
normalisation constant to ensure that 2;21 p(M;|DI) = 1. The prior probabil-
ity p(M;|I) can be used to encode any prior preference one has for each model.
In the absence of any such prejudice this is uniform, and model selection depends
primarily on the evidence

p(M;|DI) =

(4)

p(D[M,T) = / p(D|6;M,T)p(6,|M,T)d6, (5)

where 0; is the set of parameters belonging to model M.

For this problem, the data D is simply a set of images of the scene. The prior
information I is the projection matrix for each camera, and a noise model for
projection into each image (Section 2.3). The parameter vector ; contains shape
and texture parameters, as described in Section 2. Considering these separately,
the evidence becomes

p(DIM;I) = / / p(Dla; B;07;M;T)p(; B;07; M;I)da;dp; (6)
= / / p(D|a; M;I)p(e;|8;M;1)p(B8;|M;1)der; dB; - (7)

The §; term is dropped from the first factor of this equation, the likelihood of
the data, as the probability of the data D is dependent only on the individual
shape parameters a;. The texture parameters are not considered here as they
are completely determined by the shape parameters and the images.

3.1 Evaluation of the evidence

It is impractical to perform the integration of Equation (6) for any but the
simplest models. However previous work (e.g. [13,16,10]) has shown that an
approximation to the evidence is sufficient for model selection. Five possible
approximations are briefly described here. Consider first the inner integral,

/ p(Dle;; M;T)p(ey;|8;M;T)p(8;M;T)dey; . (8)



In any useful inference problem the likelihood fuction obtained from the data
will be much more informative than the prior probabilities—if not, there is lit-
tle to be gained by using the data. Hence the likelihood function has a sharp
peak (relative to the prior distribution) around its maximum value, as shown in
Figure 5(a). The entire integral is therefore well approximated by integrating a
neighbourhood of the maximum likelihood estimate of ;. For convenience the
log likelihood, log L(«;), which is a monotonic function of the likelihood and
hence is maximised at the same value, is considered rather than the likelihood
itself. A second order approximation of log L(c;) about its mode a;arz is

1
log L(a;) = log L(ajpr) + E(aj —ajmr) H(oymr) (o — ajur),  (9)

where H(aj ML) is the hessian of log L evaluated at its mode. This corresponds
to approximating the likelihood in this region by a multivariate Gaussian with
covariance matrix ¥, = —H *(ajm1):

L(aj) = L(ajmr) exp [—%(aj —ajmr)" B oy — aymr) (10)

Assuming that p(o;|8;M;I) = p(a;mr|B;M;I) in this region, the integrand of
Equation (8) reduces to

/eXP [—%(aj —ajnr)" E oy - ajML)] daj = (2m)*/?\/det(Za)  (11)

where k, is the number of shape parameters, as a Gaussian must integrate to 1.
Hence the integral of Equation (8) is approximately

L(ajarr ) (27)*e/2/det X op(anr |8;M;T)p(8;]M;T) (12)

and the evidence is approximated as

p(D'M]I) gL(O{jML)(z’?T)ka/z\/ det Z’a/p(aJMLwJMJI)p(BJ|M]I)dﬂ] (13)

The remaining integral can be similarly approximated; now the parameter values
ojmr are the “data” being used to estimate the hyperparameters 3;. The final
expression for the evidence is therefore

p(DIM;T) = L(ajnmr)p(anmr|8im s MyDp(Binr [MI)(2m)*/? /det 2, det (Zﬁj

14
where k is the total number of parameters, 33 is the covariance matrix of the
hyperparameters with respect to the shape parameters and §;ar is the set of
hyperparameters which maximise p(a;amr|8;M;I). The terms to the right of
the likelihood approximate the fraction of the volume of prior probability space
enclosed by the maximum likelihood peak, and are known collectively as an
Occam factor [10,16].



3.2 Occam factors

An Occam factor encodes the idea of Occam’s Razor for model selection: a sim-
pler model (usually one with fewer parameters) should be preferred to a more
complex one, unless the more complex one explains or fits the data significantly
better. Information theoretic techniques such as Minimum Description Length
(MDL) encoding [1] enforce this preference by penalising models according to the
information required to encode them. The Bayesian approach to model selection
naturally incorporates an identical penalty in the evaluation of the evidence as
the product of a likelihood and an Occam factor. As extra parameters are intro-

p(Dla,, M) N
; i Likelihood
ol a1 Up(abimy
I Occam Factor

p(aMi

‘ Prior ‘

Up(a]MI) Prior probetility volume

(2) (b)

Fig.5. Occam factor for (a) one and (b) two independent parameters with uniform in-
dependent priors. For a single variable, the likelihood is approzimated as p(D|aaz MI)
and the Occam factor is w/p(a|MI). In the case of two variables the likelihood is
p(D|armrbyMI) and the Occam factor is wewe/p(ab|MI). In each case the Occam
factor approzimates the fraction of the volume of prior probability (the shaded volume)
occupied by the mazimum likelihood probability peak.

duced into the model, the fraction of the volume of parameter space occupied by
the peak surrounding the maximum likelihood estimate inevitably decreases, as
illustrated in Figure 5 for the simple case of 1 and 2 parameter models. Because
the volume of prior probability over the entire parameter space must always be
1, this decrease in occupied volume translates to a decrease in prior probability,
assuming that prior probability is reasonably uniform over the parameter space.

3.3 Other approximations to the evidence

The Occam factor is one of many possible model selection criteria. By disre-
garding it completely, evidence evaluation reduces to a maximum likelihood
(ML) estimation. This includes no preference for model parsimony and hence
will always select the best fitting model regardless of its complexity. If the prior



terms p(o;mr|BjmrM;I) and p(Bjmr|M,I) are known to be almost uniform,
Schwarz[13] suggests approximating them with diffuse normal distributions, and
approximating /det ¥, det ¥3 by N _Tk, where N is the number of observa-
tions and k is the number of parameters in the model. This forms the Bayesian
Information Criterion (BIC) measure of evidence

k
log(p(D|M;I)) = log L(ajmrL) — 5 log N. (15)
A non Bayesian penalty term, the AIC has the form
log(p(D|M;I)) = log L(ajmz) — 2k (16)

and hence penalises models according to the number of parameters they include.
Finally if the posterior distribution is very peaked, the MAP estimate of each
model may be the same order of magnitude as the evidence, in which case one
would expect it to perform just as well for model selection. Each of these criteria
is compared in section 5.

4 Implementation issues

4.1 Initialisation

The purpose of the initialisation stage is to provide a rough estimate of the
number of planes to be modelled, and their position, scale, depth and orientation.
First, each image is warped by a transformation A; so that the layer L, is
aligned. Approximate projection matrices are found by estimating each camera
pose from A, as in [15]. A dense parallax field is obtained by applying a wavelet
transform to each warped image, and performing multiresolution matching in the
phase domain [11]. The correspondences obtained from each pair of images are
fused robustly to obtain depth estimates for each point, from which initial layer
estimates can be hypothesised [4].

Initial parameter estimates are obtained by fitting the simplest model, a 6
parameter rectangle, to each region (see Figure 6). The centre of the rectangle
is positioned at the centroid of the region. The horizontal and vertical scales
are set to the average distance of each of the extrema of the region from the
centroid, the depth is given by the depth of the centroid and the orientation is
assumed to be vertical (i.e. w = 0). The projection matrices generated by this
system have a typical reprojection error of order 1 pixel.

4.2 Search for the maximum likelihood parameters

A multiresolution gradient descent search is used to locate the maximum likeli-
hood parameters a1, for each possible shape model. The image is recursively
convolved with a Gaussian filter and downsampled by a factor of 2 horizontally
and vertically to obtain a multiresolution representation. The search is initialised



a)

Fig. 6. (a) A poor initial reconstruction (compare with Figure 9) based only on stereo
between two images, and (b) initial layer estimates based on three images. The layers
are bounded by the black lines and meet the zero layer at the white lines. Each major
offset layer is detected, but their shape and size are estimated poorly.

at the coarsest level, and the estimate found is used to seed the search at a finer
level. At each level the model is sampled more densely to maintain a constant
sample rate of approximately one point per image pixel. Experience shows that
two or three levels of resolution are sufficient, and the search typically converges
in less than 100 iterations.

5 Results

5.1 Model selection for the shape parameters

Initially the model selection algorithm is assessed by trying to identify the correct
shape for a single layer. Starting from the parameters found during initialisation
(section 4), the gradient descent method described in Section 4.2 is used to find
the model M; maximum likelihood shape parameters apsr1 for that layer. This
parameter set is then used to initialise the search for the set apsr for each of
the models M3, M3 and M, in turn. Model selection is then performed using 5
measures: Occam Factors (OF), maximum likelihood (ML), Bayesian Informa-
tion Criterion (BIC), Akaike Information Criterion (AIC) and MAP likelihood
evaluation. Results are given in Figure 7.

Model M;: Rectangle

Because the layer of the door is well represented by the rectangle model with 6
parameters, the maximum likelihood parameters for more complex models are
the same, and the ML measure is not altered for different models. Each other
measure selects M; because it includes the fewest parameters.

Model Ms: Arch

Models M; and M3, which do not contain arches, are clearly inadequate for
this layer. The maximum likelihood of models M2 and My is very similar, so
again the maximum likelihood measure is ambiguous while the other measures
all select the simpler model M.



Model M3: Bevelled Rectangle

Models M; and M2, which do not incorporate bevelling, fit the indentation
poorly at its sloped edges. Models M3 and My have similar likelihoods, so M3
is chosen by all measures except ML.

Model M,: Bevelled Arch

In this case only the most complex model adequately describes the data. It is
chosen by all measures depsite its complexity, as the likelihood of the data for
this model is significantly higher than for other models.

For each model, each model selection measure is clearly dominated the like-
lihood term. The OF, BIC, AIC and MAP measures all give similar results and
appear adequate for preventing model overfitting. However the Occam factor is
more theoretically sound than the other measures and incurs little extra com-
putational expense, and is therefore preferred.

5.2 Model selection for the hyperparameters

Having selected a shape model for each layer in the scene, it is possible to discern
not only between individual shapes, but also between configurations of shapes.
As a simple test case, the evidence for a set of layers having no geometric align-
ment (p(8) uniform, and p(a|B) uniform) is compared with the evidence for their
belonging to a row of primitives, with priors given in Table 2. In this section,
evidence is measured only using the Occam factor.

Gateway scene:

Figure 8(a) gives the layer models selected for each layer in the scene. In Fig-
ure 8(b) the evidence for each combination of two or more layers belonging to a
row of identical primitives (black bars) is compared to the evidence for their be-
ing a uniformly distributed collection of shapes (white bars). No prior preference
is expressed for either of these models. Clearly any combination of layers which
includes the gateway is more likely to be part of a random scene, as the gateway
is quite dissimilar in size and shape to the indentations. However the evidence
for the two indentations taken by themselves belonging to a row is much higher
than for their belonging to a general structure. Having detected this regularity,
the indentations can be represented using 8 parameters (7 for one indentation,
and the z position of the other) rather than 14. If such regularity can be detected
in several collections of shapes, it can in turn be used to form hypotheses about
higher level structure, such as the architectural style of the building as a whole.
Gothic church scene:

Figure 8(d) gives the evidence for several combinations of layers from the seg-
mentation in Figure 8(c) belonging to a row as opposed to an arbitrary structure.
There is a clear preference for a model with no regularity when the layers chosen
include both windows and columns. However when only the windows are tested,
the row model is clearly preferred, depsite the window parameters being slightly
different due to some fitting errors caused by ambiguity near the boundary of
each layer. Similarly the row model was preferred for the three columns, again
allowing both a compact representation of the scene and the possibility of higher
level inference about the scene strucure.



Model M;: Rectangle

Measure Model

(x10%) | M M2 M3 My
OF |1.4781|1.4787 | 1.4785|1.4797
ML |1.4731(1.4731|1.4731|1.4731
BIC |1.4764|1.4775|1.4775 |1.4786
AIC |1.4743|1.4745|1.4745 |1.4747
MAP (1.4750|1.4753 |1.4753 | 1.4757

Model M3: Arch

Measure Model
(><104) Ml Mz Ma M4
OF (2.5870|2.5678(2.5872| 2.5691
ML |2.5817|2.5618(2.5807|2.5618
BIC (2.5850(2.5657(2.5842| 2.5662
AIC (2.5829|2.5632|2.5821| 2.5634
MAP (2.5837|2.5641(|2.5829| 2.5643

Model M3: Bevelled Rectangle

Measure Model

(x10°) | My | Ma | Ms | My
OF |8.2704|8.2789|8.1750| 8.1785
ML |8.2201(8.2169(|8.1139(8.1139
BIC |8.2536|8.2453(8.1524| 8.1582
AIC (8.2213|8.2183(8.1153|8.1155
MAP (8.2385|8.2378|8.1353|8.1376

Model M4: Bevelled Arch

Measure Model

(x10%) [ My | M2 | M3 | My
OF |2.3682(2.3623|2.3588(2.3512
ML |2.3628|2.3561|2.3528|2.3444
BIC |2.3661(2.3599(2.3566(2.3488
AIC ]2.3640|2.3575|2.3542(2.3460
MAP (2.3649|2.3586(2.3552|2.3472

Fig. 7. Evidence evaluation for single shapes. From left to right in each row: negative
log evidence for this shape being an instance of each shape model, worst fit shape, best fit
shape. Occam factor (OF), Mazimum likelihood (ML), Bayesian Information Criterion
(BIC), Akaike Information Criterion (AIC) and MAP probability measures are given.
The model selected by each measure is in bold face.
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Fig. 8. Testing for rows of similar shapes. The black bar is the (negative log) evidence
for the shapes belonging to the row model; the white bar is the evidence for shapes
having no regularity (see Section 5.2). Evidence has been normalised by subtracting out
common factors.

Fig. 9. Recovered 3D surface of the Caius gateway scene.



5.3 Selecting the number of layers

Comparison of the evidence can determine the number of layers present in a
scene as well as their shape. Figure 10 gives the evidence for the gateway scene
being modelled by 3, 2 and 1 primitives, which is clearly maximised for the 3
primitive case. The subsequent addition of a spurious primitive such as a depth
0 rectangle decreases the Occam factor while the likelihood remains constant,
and hence is not selected.

518 Gate only

517 Gate, 1 indent

Gate, 2 indents,
extra rectangle

Gate, 2 indents

(negative log) evidence

Fig. 10. Negative log evidence for different numbers of layers in the gateway scene.
From left to right: evidence for 3 detected layers, evidence for the gateway and only one
indentation, evidence for the gateway only, evidence for all layers including spurious
rectangle (shown above). The 3 and 4 layer models are clearly preferred to those with
1 and 2 layers; the 3 layer model is selected as it has a higher Occam factor.

6 Conclusion

This paper presents a novel approach to layer extraction with the aim of creat-
ing a 3D model of the images that accurately reflects prior belief. This has been
effected by a Bayesian approach with explicit, rather than implicit modelling
of the distribution over segmentations. Given a hypothesised segmentation it is
shown how to evaluate its likelihood and how to compare it with other hypothe-
ses. A variety of model selection measures are considered, all but the most basic
of which prove adequate to prevent model overfitting for the architectural scenes
on which this approach is demonstrated. The Occam factor is recommended as
is more accurate and theoretically sound while incurring minimal extra compu-
tational cost.

The hierarchical nature of the shape model means that it is easily extended
to more complex scenes than those presented here. Future work will extend the
number and type of shape primitives modelled, and the number of levels in
the hierarchical shape model. For example, it should be possible to infer both



the minimal parametrisation and the architectural style (e.g. Gothic, Georgian,
modern bungalow) of the scene. A fully automatic initialisation scheme will use
these hierarchical models to constrain an initial search for primitives in each
image.
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