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Abstract

In this paper, we propose a new self-calibration tech-
nique for cameras with changing zoom observing only a
planar structure. The method does not need any met-
ric or topologic knowledge about the structure since it is
based on the estimation of the collineations existing be-
tween several views of a plane (thus only image correspon-
dences are needed). The constraints existing between all the
collineations are imposed using a very simple and efficient
technique which does not need the solution of a complex
optimisation problem. Finally, even if the structure of the
plane is unknown it must be the same for all the images and
this provides some constraints which allow the recovering
of the varying focal length.

1. Introduction

Camera self-calibration from views of a generic scene
has been widely investigated and the two main approaches
are based on the properties of absolute conics [14] [11] or
on some algebraic error [8] [4]. Depending on the a pri-
ori information provided the self-calibration algorithms can
be classified as follows. Algorithms that use some knowl-
edge of the observed scene: identifiable targets of known
shape [9], metric structure of planes [12]. Algorithms that
exploit particular camera motions: translating camera or ro-
tating camera [5]. Algorithms that have some knowledge
on the camera parameters: some fixed camera parameters
(i.e. skew zero, unit ratio etc.), varying camera parameters
[11] [10] [1]. In this paper, we propose a self-calibration
technique for zooming cameras observing only an unknown
planar structure. The particular geometry of features lying
on planes is often the reason for the inaccuracy of many
computer vision applications (structure from motion, self-
calibration) if it is not taken explicitly into account in the
algorithms. Introducing some knowledge about the copla-
narity of the features and about their structure (metric or
topological) can improve the quality of the estimates [13].

However, the only prior geometric knowledge on the fea-
tures that will be used here is their coplanarity. Two views
of a plane are related by a collineation. Using multiple
views of a plane we obtain a set of collineations which are
not independent. In order to avoid solving non-linear opti-
misation problems, the constraints existing within a set of
collineation and between sets have often been neglected.
However, these multi-view constraints can be used to im-
prove the estimation of the collineations matrices as in [16],
where multiple planes are supposed to be viewed in the
images. In this papers the constraints are imposed using
a very simple and efficient technique which does not need
the solution of a complex optimisation problem. Imposing
the constraint is useful since it allows the reduction of the
geometric error in the reprojected features and provides a
consistent set of collineations which can be used for cam-
era self-calibration. Camera self-calibration from planar
scenes with known metric structure has been investigated
[12]. However, it is interesting to develop flexible tech-
niques which do not need any a priori knowledge about the
camera motion as in [5] or metric knowledge of the planar
scene. Methods for self-calibrating a camera from views of
planar scenes without knowing their metric structure were
proposed in [15] and [7]. In [7] the internal parameters of
the camera are supposed to remain constant. In this paper
we investigate how to improve the self-calibration from pla-
nar scenes of a camera with varying focal length.

2. The model of the camera

A camera performs a perspective projection of a point������� to an image point � ���
	 measured in pixels: �����
�� ��� � , where
�

and
�

represent the displacement
between the frame � attached to the camera and an absolute
coordinate frame ��� , and

�
is a ��������� matrix containing

the intrinsic parameters of the camera:

� �"!#%$'&�( ) * �) $'&�+-, �) ) .
/0
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where * � and , � are the coordinates of principal point (in
pixels), f is the focal length (in meters), & ( and & + are the
magnifications respectively in the �� * and �� , direction (in
pixels/meters). In this paper we will suppose also that the
skew is zero which is in general a good approximation.

3. Two-view geometry of a plane

Two views of a plane are related by a collineation matrix.
Indeed, the image coordinates ����� of the point

� � in the
image � � can be obtained from the image coordinates �	� �
of the point

� � in the image �
� :� ��� ��� � � �
� � (2)

The collineation matrix is a � ��� ��� matrix defined up to
scalar factor which can be written as:

� � ��� � ����� � ������ (3)

where � � � is the corresponding homography matrix in the
Euclidean space. Homography and collineation are gen-
erally used to indicate the same projective transformation
from ��� to ��� (in our case � ���

). In this paper we will
use the term “homography” to indicate a collineation ex-
pressed in the Euclidean space. The homography matrix
can be written as a function of the camera displacement [2]:

� � � � � � ��� � � ���	��� � (4)

where
� � � and

� � � are respectively the rotation and the
translation between the frames � � and � � , ��� is the normal
to the plane ! expressed in the frame � � and

� � is the dis-
tance of the plane ! from the origin of the frame � � . From
equation (3) the ��� � can be estimated from � � � knowing
the camera internal parameters of the two cameras:

��� � � � ���� � � � � � (5)

However, it should be noticed that the Euclidean homogra-
phy matrix is not defined up to a scale factor since its me-
dian singular value must be equal to 1 (see [7] for details).

From equation (4) it is easy to verify that the homogra-
phy matrix satisfies the constraint " & # ) (where $ � �&%(' is
the skew symmetric matrix associated with vector � � ):

$ � � % � ' � �� � � ��� �)$ � �*% � ' (6)

If & � . , the matrix $ � � %(' ���� � has similar properties to
the essential matrix (i.e. + � $ � %,' � ). Indeed, this ma-
trix has two equal singular values and one equal to zero.
This means each homography places two constraints on the
internal camera parameters [6] which can be used for self-
calibration as in [10]. Another very important relation is the
following:

$ � � %(' � ��� �)$ � �*% ' � �� � (7)

Indeed, since det �.- �/-0$ 1�%('2- � � 
 - � � 1 � ' it means
that the normals to the plane are related by:

� � �43 � � � � (8)

where: 3 � � � det � � � � � � � �� � (9)

These important equations will be extended to the multi-
view geometry in the next section

4 Multi-view geometry

4.1 The super-collineation matrix

If 5 images of an unknown planar structure are avail-
able, it is possible to compute 5 	 collineations. Let us de-
fine the super-collineation matrix as follows:

� � !6# � �,� 78797 � �/:
...

. . .
...

� :;� 78797 � :<:

/
=
0

(10)

with >@?�A��B�%� � � �C5ED �F5�� and rank �G�%� � � . The rank can
not be less than three since �H�I� �KJ �2L �NM . D9OPOIOID,5RQ , and
cannot be more than three since each row of the matrix can
be obtained from a linear combination of three others rows:

� � � � � �I� � � � " L DTSCD & ��M . D � D �UD8OIOPOID,5RQ (11)

The constraints (11) can be summarised by the constraint:

� 	 � 5V� (12)

Then, matrix � has 3 nonzero equal eigenvalues W � 5
and � �X5 � . � null eigenvalues. If we can impose the con-
straint � 	 � 5Y� (with � �I� �ZJ � L � . D8OIOPOID,5 ) then it is
equivalent to imposing the constraints ��� � � �[�I�\�H� � .

In order to impose the constraint (12), we use the algo-
rithm proposed in [7] which treats all the images with the
same priority without using any key image and forces the
rank 3 constraint on � .

4.2 The super-homography matrix

Let us define the super-homography matrix in the Eu-
clidean space as:

� � !6# � �,� 78797 � �(:
...

. . .
...

� :;�]78797 � :<:

/
=
0

(13)

with >@?�A � � � � ���F5^D �C5%� and rank � � � � � . The
super-homography matrix can be obtained from the super-
collineation matrix knowing the parameters of the cameras:

� � � ��� � � (14)



where ( >U?IA%� � � � � �C5ED �F5�� and rank � � � � �F5 ):

� � !6# � �]78787 )...
. . .

...) 78787 � :
/
=
0

(15)

is the matrix containing the internal parameters of the cam-
eras. If the constraint � 	 � 5�� is imposed, then the con-
straint � 	 � 5 � is automatically imposed which means
that the following constraints are satisfied:

� � � � � �I� � � � " L DTSFD & �EM . D � D �@D9OPOIOID,5RQ (16)

The supery-homography matrix is normalised by setting the
median singular value of each homography to one. After
normalisation, the homography matrix is decomposed as:

� � � ����� � (17)

with >@?�A�� � � � ���F5^D �C5%� , rank � � � � � , >@?�A%� � � �� �F5^D,5�� and rank � � � � 5 , >@?�A%� � � � ���F5^D,5�� and
rank � � � � 5 . Matrix

�
is a symmetric matrix,

� � � �
and
� 	 � 5 � . In [2] is presented a method for decompos-

ing the homography matrix, computed from two views of
a planar structure, following equation (4). In general, there
are two possible solutions but the ambiguity can be solved
by adding more images. In [7] we presented a method to
decompose any set of homography matrices.

4.3 Camera self-calibration

In this section we use the properties of the set of ho-
mography matrices to self-calibrate the focal length of the
camera. Each independent homography will provide us two
constraints on the parameters. However two constraints are
fixed by the normals to the plane. Therefore, the total num-
ber of constraints which can be obtained from 5 images is� �X5 � . � . Indeed, if ���� � and ������ � are the two non-zero singu-
lar values of $ � � %(' � �� � our self-calibration method is based
on the minimisation of the following cost function [4][10]:

	 � :

��� �

:

� � �

���� � � ���
�� �
� �� � (18)

Using this cost function we need at least:
� 3 independent homography matrices (4 images) to re-

cover the 4 different focal lengths (supposing the ratio
and the principal point approximatively known);

� 4 independent homography matrices (5 images) to re-
cover the 5 different focal lengths and the fixed ratio
(with the principal point approximatively known);

� 6 independent homography matrices (7 images) to re-
cover the 7 different focal lengths, the ratio and the the
principal point.

5. Experimental results

5.1. Self-calibration of a camera without zooming

In this experiment we took a sequence (10 images) of
a calibration grid (in order to have a ground truth) using a
camera with 7mm focal length. In our sequence the focal
length did not vary but we will suppose it unknown for each
image as if the camera was zooming. Figure 1 shows three
images of the sequence.

Figure 1. Images of the sequence taken with
a camera with fixed focal length

The camera was calibrated (in order to have a ground
truth) with the standard Faugeras-Toscani method [3] and
the obtained focal length was $ �������

. In order to test our
self-calibration technique, the ratio & (�� & + is fixed to one
and the principal point is supposed to be in the center of the
image. Thus, the unknowns are the 10 focal lengths. The
results obtained using the left plane of the calibration grid
(similar results have been obtained using the right plane)
are summarised in Table 1. The starting focal length was$ � � . ) )�) for all the unknown $ � .

f 685 error$ � 685.7 +0.11 %$ 	 674.7 -1.49 %$ � 692.1 +1.04 %$�� 677.1 -1.15 %$�� 697.3 +1.80 %$�� 680.9 -0.60 %$�� 684.4 -0.09 %$�� 688.0 +0.44 %$�� 675.0 -1.46 %$ � � 672.4 -1.843 %

Table 1. Self-calibration of the focal lengths
using a camera without zooming

The results are very good since the maximal error
is . O ��� of the focal length measured with the standard
Faugeras-Toscani method. The mean of all the focal lengths
is
���\� O � (only ) O � � of f) and the standard deviation is

� O �
(only . O � � of f). Even if in this experiment the focal length
did not vary it was recovered from a starting focal length of
1000 pixels (which means an initial error of ! � � ).



5.2. Self-calibration of a zooming camera

In this experiment we took a sequence (10 images) of a
calibration grid using a zooming camera. Figure 2 shows
three images of the sequence.

Figure 2. Images of the sequence taken with
a zooming camera

The results obtained using the left plane of the calibra-
tion grid (similar results have been obtained using the right
plane) are summarised in Table 2. The starting focal length
was again $ � � . )�) ) for all the unknown $ � .

f Faugeras-Toscani proposed method error$ � 1407.3 1491.0 -5.95 %$ 	 1835.0 1950.1 -6.27 %$ � 1195.2 1211.9 -1.39 %$�� 1491.6 1471.8 1.32 %$ � 1337.0 1393.0 -4.18 %$ � 1158.0 1233.1 -6.48 %$�� 985.3 1012.2 -2.72 %$�� 1534.1 1608.9 -4.87 %$�� 1844.9 1929.1 -4.56 %$ � � 1839.0 1904.8 -3.57 %

Table 2. Self-calibration of the focal lengths
with a zooming camera

Considering that in our self-calibration algorithm the
principal point was supposed to be in the center of the im-
age, the results are satisfactory and the 3D reconstruction of
the grid can be done with sufficient accuracy.

6. Conclusions

In this paper we presented a new technique to self-
calibrate cameras with varying focal length. Our method
does not need any a priori knowledge of the metric struc-
ture of the plane. Moreover, we impose the constraints ex-
isting within a set of collineation matrices computed from
multiple views of an unknown planar structure obtaining a
consistent set of collineations. The method was tested using
real images with a ground truth and the obtained results are
very good. The method could be easily improved by using
an error model.
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