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Abstract

Within this paper a new framework for Bayesian tracking is
presented, which approximates the posterior distribution at
multiple resolutions. We propose a tree-based representa-
tion of the distribution, where the leaves define a partition of
the state space with piecewise constant density. The advan-
tage of this representation is that regions with low probabil-
ity mass can be rapidly discarded in a hierarchical search,
and the distribution can be approximated to arbitrary pre-
cision. We demonstrate the effectiveness of the technique by
using it for tracking 3D articulated and non-rigid motion
in front of cluttered background. More specifically, we are
interested in estimating the joint angles, position and orien-
tation of a 3D hand model in order to drive an avatar.

1. Introduction
One of the fundamental problems in vision is that of track-
ing objects through sequences of images. Within this pa-
per we present a generic Bayesian algorithm for tracking
the 3D position and orientation of rigid or non-rigid objects
(in our application hands) in monocular video sequences.
Great strides have been made in the theory and practice of
tracking, e.g. the development of particle filters recognized
that a key aspect in tracking was a better representation of
the posterior distribution of model parameters [?, ?]. Parti-
cle filters go beyond the uni-modal Gaussian assumption of
the Kalman filter by approximating arbitrary distributions
with a set of random samples. The advantage is that the
filter can deal with clutter and ambiguous situations more
effectively, by not placing its bet on just one hypothesis.
However, a major concern is that the number of particles
required increases exponentially with the dimension of the
state space [?, ?]. Worse still, even for low dimensional
spaces there is a tendency for particles to become concen-
trated in a single mode of the distribution [?]. Within this
paper we consider tracking an articulated hand in cluttered
images, without the use of markers, with the aim of driving
an avatar. In general this motion has 27 degrees of free-

dom (DOF), 21 DOF for the joint angles and 6 for orien-
tation and location [?]. However, by reparameterization the
state space can be reduced. Wuet al. [?] show that due to
the correlation of joint angles, the state space for the joints
can be reduced to 7DOF by applyingPCA, with loss of
only 5 percent of information, however tracking is demon-
strated for a fixed view with no clutter and no hand rotation.
We demonstrate 8DOF tracking in clutter with substantial
self-occlusion.

There are several possible strategies for estimation in
high dimensional spaces. One way is to use a sequential
search, in which some parameters are estimated first, and
then others, assuming that the initial set of parameters is
correctly estimated. This strategy may seem suitable for ar-
ticulated objects. For example, Gavrila and Davis [?] sug-
gest, in the context of human body tracking, first locating
the torso and then using this information to search for the
limbs. Unfortunately, this approach is in general not robust
to different view points and self-occlusion. MacCormick
and Isard [?] propose a particle filtering framework for this
type of method in the context of hand tracking, factoring
the posterior into a product of conditionally independent
variables. This assumption is essentially the same as that
of Gavrila and Davis, and tracking has been demonstrated
only for a single view point with no self-occlusion.

The development of particle filters was primarily moti-
vated by the need to overcome ambiguous frames in a video
sequence so that the tracker is able to recover. Another way
to overcome the problem of losing lock is to treat tracking
as object detection at each frame. Thus if the target is lost in
one frame, this does not affect any subsequent frame. Tem-
plate based methods have yielded good results for locating
deformable objects in a scene with no prior knowledge, e.g.
for hands or pedestrians [?, ?, ?]. These methods are made
robust and efficient by the use of distance transforms such
as the chamfer or Hausdorff distance between template and
image [?, ?], and were originally developed for matching a
single template. A key suggestion was that multiple tem-
plates could be dealt with efficiently by building a tree of
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templates [?, ?]. Given the success of these methods, it
is natural to consider whether or not tracking might not be
best effected by template matching using exhaustive search
at each frame. The answer to this question is generally
no, because dynamic information is needed, firstly to re-
solve ambiguous situations, and secondly, to smooth the
motion. One approach to embed template matching in a
probabilistic tracking framework was proposed by Toyama
and Blake [?]. However, it is acknowledged that “one prob-
lem with exemplar sets is that they can grow exponentially
with object complexity. Tree structures appear to be an ef-
fective way to deal with this problem, and we would like
to find effective ways of using them in a probabilistic set-
ting” [?]. Within this paper we address this problem.

The next section reviews work on tree-based detection,
and describes how a tree can be used to partition a state
space. A short review of Bayesian filtering is given in sec-
tion 3. In section 4 we show how the tree-based partition
of the state space can be embedded in a Bayesian filtering
framework. The likelihood and state transition distributions
for the application of hand tracking are derived in section 5.
Section 6 shows tracking results on video sequences.

2. Tree-Based Detection

When matching many similar templates to an image, a sig-
nificant speed-up can be achieved by forming a template
hierarchy and using a coarse to fine search [?, ?]. The idea
is to group similar templates and represent them with a sin-
gle prototype template together with an estimate of the vari-
ance of the error within the cluster, which is used to define
a matching threshold. The prototype is first compared to
the image; only if the error is below the threshold are the
templates within the cluster compared to the image. This
clustering is done at various levels, resulting in a hierar-
chy, with the templates at the leaf level covering the space
of all possible templates. Gavrila [?] suggests forming the
hierarchy by recursive (off-line) clustering, resulting in ef-
ficient on-line evaluation. When the exemplar templates are
clustered using a cost function based on chamfer distance,
the being not to miss objects when pruning sub-trees during
the search. However, it is not straightforward how to give
such guarantees when incorporating a prior for each tem-
plate. In section 4 we show how a tree-based algorithm can
be formulated in a Bayesian setting, using both likelihood
and prior information.

If a parametric object model is available, another option
to build the tree is by partitioning the state space. Let this
tree haveL levels, each levell defines a partitionP l of the
state space intoNl distinct setsl = 1, . . . , L, such that
P l = {Sil : i = 1, . . . , Nl}. The leaves of the tree de-
fine the finest partition of the state spacePL = {SiL :
i = 1, . . . , NL}. Such a tree is depicted schematically in

figure 1(a), for a single rotation parameter. This tree rep-
resentation has the advantage that prior information is en-
coded efficiently, as templates with large distance in param-
eter space are likely to be in different sub-trees. In our
particular case, a parametric three-dimensional hand model
is used, shown in figure 3. The model has 6DOF for rigid
body motion and 21DOF for finger articulation [?].

Detection as Optimal Estimation It is possible, after
reaching the leaf level in a search tree, to use a gradient
descent method to obtain the globally optimal parameters.
This presents a trade-off between the number of function
evaluations required for tree-based estimation and the num-
ber required for gradient descent, i.e. how many levels
should there be in the tree before optimization is started?
Furthermore we would like to guarantee that optimization,
when started from one of the nodes at the leaf level, yields a
global optimum. It may be argued that there is no need for
a parametric model and that an exemplar-based approach
could be followed. However, for models with many degrees
of freedom the storage space for templates becomes exces-
sive. The use of a parametric model allows the combination
of an on-line and off-line approach in the tree-based algo-
rithm. Once the leaf level is reached, it is possible that we
are still not near to the global minimum, and further child
templates can be generated.

Hierarchical detection works well for locating a hand in
images [?] , and yet often there are ambiguous situations
that could be resolved by using temporal information. The
next section describes the Bayesian framework for filtering.
Filtering is the problem of estimating the state (hidden vari-
ables) of a system given a history of observations.

3. Bayesian Filtering

Define, at timet, the state parameter vector asθ t, and the
data (observations) asDt, with D0:t−1, being the set of data
from time 0 to t − 1; and the dataDt are conditionally
independent at each time step given theθ t. In our specific
applicationθ t is the state of the hand (set of joint angles,
location and orientation) andDt is the image at timet (or
some set of features extracted from that image). Thus at
time t the posterior distribution of the state vector is given
by the following recursive relation

Pr(θ t|D0:t) =
Pr(Dt|θ t) Pr(θ t|D0:t−1)

Pr(Dt|D0:t−1)
, (1)

where the normalizing constant is

Pr(Dt|D0:t−1) =
∫

Pr(Dt|θ t) Pr(θ t|D0:t−1)dθ t. (2)
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Figure 1:Tree-based estimation of the posterior density.(a) Associated with the nodes at each level is a non-overlapping
set in the state space, defining a partition of the state space (here rotation angle). The posterior for each node is evaluated
using the center of each set, depicted by a hand rotated by a specific angle. Sub-trees of nodes with low posterior are
not further evaluated. (b) Corresponding posterior density (continuous) and the piecewise constant approximation using
tree-based estimation. The modes of the distribution are approximated with higher precision at each level.

The term Pr(θ t|D0:t−1) in (1) is obtained from the
Chapman-Kolmogorov equation:

Pr(θ t|D0:t−1) =
∫

Pr(θ t|θ t−1) Pr(θ t−1|D0:t−1)dθ t−1

(3)
with the initial prior distribution Pr(θ 0|D0) assumed
known. It can be seen that (1) and (3) both involve inte-
grals. Except for certain simple distributions these integrals
are intractable and so approximation methods must be used.
As has been mentioned, Monte Carlo methods represent one
way of evaluating these integrals. However, as has been
pointed out, there are many problems with particle filters
in high dimensional spaces. In contrast hierarchical detec-
tion provides a very efficient way to sample the likelihood
Pr(Dt|θ t) in a deterministic manner, even when the state
space is high dimensional; as the number of templates in the
tree increases exponentially with the number of levels in the
tree. This leads us to consider the seminal approach of Bucy
and Senne [?], which is to divide up the state space intoNs

non-overlapping sets (a cover),{Si
t : i = 1, . . . , Ns}, just

as the templates in the tree cover the regions of parameter
space. Typically this methodology has been applied using
an evenly spaced grid and is thus exponentially expensive as
the dimension of the state space increases e.g. [?]. Within
this paper we consider combining the tracking process and
the empirically successful process of tree-based detection
as laid out in section 2 resulting in an efficient deterministic
filter.

4. Tree-Based Filtering
Our aim is to design an algorithm that can take advantage of
the efficiency of the tree-based search whilst also yielding
a good approximation to Bayesian filtering. Sorenson [?]
identifies three questions to be answered when designing a
‘grid-based’ filter, the questions (and our answers) are:

1. An initial partition must be defined on the state space.
In our case a natural multi-resolution partition is pro-
vided by the tree as given in Section 2. Thus we will
consider a grid defined by the lowest leaves of the tree,
PL.

2. A procedure must be given for updating the partition
as time progresses.Because the distribution is char-
acterized by being almost zero in large regions of the
state space with some isolated peaks, many of the
grid regions can be discarded as possessing negligi-
ble probability mass. The tree-based search provides
an efficient way to rapidly concentrate computation on
significant regions.

3. Given the partition a method for approximating the dis-
tribution needs to be defined.At the lowest level of the
tree the distribution will be assumed to be piecewise
constant, which will be seen to allow for some reason-
able approximations to be made to the Bayesian filter-
ing equations.

The plan is to encode the posterior distribution using a
piecewise constant distribution over the leaves of the tree.
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This distribution will be mostly zero for many of the leaves.
To formalize this as a discrete problem, defineΘil

t as the pa-
rameter values in the state space integrated over the region
Sil at timet, i.e.

Pr(Θil
t ) =

∫

θ t∈Sil
Pr(θ t)dθ t. (4)

For each layer of the tree we consider the distribution over
theSil and recast the equations of Bayesian filtering, (1)-
(3), to update these distributions. The initial prior distribu-
tion for the discrete statesPr(ΘiL

0 |D0) can be obtained by
integration fromPr(θ 0|D0), as

Pr(ΘiL
0 |D0) =

∫

θ 0∈SiL
Pr(θ 0|D0)dθ 0. (5)

Next the discrete recursive relations are defined, again these
are obtained from the continuous case by integration.

Given the distribution over the leaves of the tree,
Pr(ΘiL

t−1|D0:t−1), at the previous time stept − 1, equa-
tion (3) now becomes a transition between discrete regions
in state space:

Pr(Θjl
t |D0:t−1) =

NL∑

i=1

Pr(Θjl
t |ΘiL

t−1) Pr(ΘiL
t−1|D0:t−1).

(6)
Assuming the conditional distribution,Pr(θ t|θ t−1), is
known, then

Pr(Θjl
t |ΘiL

t−1) =
∫

θ t∈Sjl

∫

θ t−1∈SiL
Pr(θ t|θ t−1)dθ tdθ t−1 .

(7)
Although this is somewhat intractable, it can be approxi-
mated using numerical integration methods and stored in
a look up table ahead of time. (An alternative approach
is to acquire large amounts of training data and learn the
state transition probabilities.) This is not the case for the
posteriorPr(Θjl

t |D0:t). Given that the distribution ofθ t

is piecewise constant within eachSjl, then forθ t ∈ Sjl:
Pr(θ t|D0:t−1) = Pr(Θjl

t |D0:t−1)/γjl, whereγjl is the
volume ofSjl. With this key assumption the posterior (1)
becomes

Pr(Θjl
t |D0:t) =

Pr(Dt|Θjl
t ) Pr(Θjl

t |D0:t−1)
Pr(Dt|D0:t−1) γjl

, (8)

where

Pr(Dt|Θjl
t ) =

∫

θ t∈Sjl
Pr(Dt|θ t) dθ t. (9)

The normalization constant is

Pr(Dt|D0:t−1) =
Nl∑

j=1

Pr(Dt|Θjl
t )

Pr(Θjl
t |D0:t−1)
γjl

.

(10)

The likelihood in (8) and normalizing constant (10) cannot
be computed off-line as they depend on the data,Dt, at time
t. The integral in (9) is often intractable hence the approach
we adopt is to approximate it by using the rectangle rule or
Riemann sum with one subdivision per setSjl, based on the
height (likelihood) estimated atθ jl, the center ofSjl:

Pr(Dt|Θjl
t ) ≈ γjl Pr(Dt|θ jl). (11)

As the number of partitions increases this becomes an in-
creasingly close approximation to the true distribution.

Having laid out Bayesian filtering over discrete states the
question arises how do we combine the theory with the ef-
ficient tree-based algorithm previously described. Using a
breadth first search of the tree, the posterior may be approx-
imated by using (6)-(11) at each each level. At each level
the regions with high posterior are identified and explored
in finer detail in the next level (Figure 1b). Of course it is to
be expected that the higher levels will not yield accurate ap-
proximations to the posterior. However, just as for the case
of detection, the upper levels of the tree are used to discard
inadequate hypotheses, for which the negative log posterior
of the set exceeds a threshold (which is adapted to the level
of the tree), and verily efficiency is assured. The thresholds
at the higher levels of the tree are set conservatively so as to
not discard good hypotheses too soon. An overview of the
algorithm is given in Algorithm 1.

Algorithm 1 Tree-Based Filtering
1. Initialization, t = 0
At the first level of the tree,l = 1
Pr(Θj1

0 |D0) = 1
K Pr(D0|Θj1

0 )

At higher levels of the tree,l > 1

Pr(Θjl
0 |D0)=

{
1
K Pr(D0|Θjl

0 ) if Pr(Θ(k)(l−1)
0 |D0)>ρl−1

Pr(Θ(k)(l−1)
0 |D0) otherwise

2. At time t > 0
At the first level of the tree,l = 1
Pr(Θj1

t |D0:t) = 1
K Pr(Dt|Θj1

t ) Pr(Θj1
t |D0:t−1)

At higher levels of the tree,l > 1

Pr(Θjl
t |D0:t)=





1
K Pr(Dt|Θjl

t ) Pr(Θjl
t |D0:t−1)

if Pr(Θ(k)(l−1)
t |D0:t)>ρl−1

Pr(Θ(k)(l−1)
t |D0:t) otherwise

where

Pr(Θjl
t |D0:t−1) =

∑NL

i=1 Pr(Θjl
t |ΘiL

t−1) Pr(ΘiL
t−1|D0:t−1)

K is the normalization constant in each equation
k is the parent node at the previous level of the tree
ρl is the threshold value at levell of the tree
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5. Formulating Likelihood and Tran-
sition Distribution

This section explains the likelihood and state transition dis-
tribution which are used for tracking a hand.

5.1. Formulating the Likelihood
The likelihood function relates the observationsDt to the
unknown stateθ t. For hand tracking, color and edges fea-
tures have been used frequently in the past [?, ?, ?, ?]. Thus
the data is taken to be composed of two sets of observations,
those from edge dataDedge

t and from color dataDcol
t . The

likelihood function used is

log p(Dt|θ t) = log p(Dedge
t |θ t) + λ log p(Dcol

t |θ t),
(12)

where λ is a weighting parameter. The term for edge
contours,p(Dedge

t |θ t), is based on the chamfer distance
function [?, ?]. Given the set of projected model contour
points,U = {ui}n

i=1, and the set of Canny edge points,
V = {vj}m

j=1, a quadratic chamfer distance function is
given by

d2
cham(U ,V) =

1
n

n∑

i=1

d2(i,V), (13)

whered(i,V) = max(minvj∈V ||ui − vj ||, τ) is the thresh-
olded distance between the point,ui ∈ U , and its closest
point in V. Using a threshold valueτ makes the match-
ing more robust to outliers and missing edges. The chamfer
distance between two shapes can be computed efficiently
using a distance transform, where the template edge points
are correlated with the distance transform of the image edge
map. Edge orientation is included by computing the dis-
tance only for edges with similar orientation, in order to
make the distance function more robust [?]. We also exploit
the fact that part of an edge normal on the interior of the
contour should be skin-colored, and only take those edges
into account [?]. In constructing the color likelihood func-
tion p(Dcol

t |θ t), we seek to explain all the image pixel data
given the proposed state. Given a state, the pixels in the
imageI are partitioned into a set of object pixelsO, and a
set of background pixelsB. Assuming pixel-wise indepen-
dence, the likelihood can be factored as

p(Dcol
t |θ t) =

∏

o∈O
p(It(o)|θ t)

∏

b∈B
p(It(b)|θ t), (14)

whereIt(k) is the intensity normalized rg-color vector at
pixel locationk at time t. The object color distribution is
modeled as a Gaussian distribution in the normalized color
space [?], for background pixels a uniform distribution is
assumed. For efficiency, we evaluate only the edge like-
lihood term while traversing the tree, and incorporate the
color likelihood only at the leaf level.

(a) (b)

Figure 2: Negative Log-Likelihood surface with single
global minimum. (a) Surface described by the negative
log-likelihood function when searching the scale and angle
space, matching a template with the input image shown in
(b). The superimposed template corresponds to the global
minimum in (a), but there are many local minima.

Figure 2 shows a plot of the negative log-likelihood sur-
face, generated by varying two parameters, angle and scale,
around the best matching model for a particular image. The
global minimum is at the correct location, but there are
many local minima.

5.2. Formulating the Transition Distribution
Natural hand articulation is constrained, and Wuet al. [?]
have shown that the vectors of valid joint angles lie on a
lower dimensional manifold, which is approximated as the
union of linear manifolds. We use data from marker-based
motion capture experiments to obtain points in the state
space. Figure 3 shows the projection of points into the space
of the three joint angles of the index finger during its flex-
ion and extension. This non-linear manifold is parameter-
ized by approximating it with a piecewise linear function.
This parameterization is used to generate templates for ar-
ticulated motion, corresponding to a valid set of joint angle
values. The state transition distribution is assumed to be
Gaussian

p(θ t|θ t−1) ∼ N (θ t−1, Σ), (15)

whereΣ is a diagonal covariance matrix. This is a simpli-
fied model, but a dynamical model for hand motion, learned
from training data, can be integrated in this step [?].

One of the advantages of using a parametric 3D model
is that the transition probabilities have an intrinsic physical
meaning, e.g. the rate of change of a joint angle. This is in
contrast to 2D shape-based methods which require a large
amount of training data before they can be fully specified.

6. Results
We demonstrate the effectiveness of our technique by track-
ing both hand motion and finger articulation in cluttered
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Figure 3:Manifold in state space described by joint an-
gles. Three joint angles of index finger during flexion and
extension. Each data point corresponds to one particular
pose of the finger.

scenes using a single camera. The results reveal the abil-
ity of the tree-based filter to handle ambiguity arising from
self-occlusion and 3D motion.

6.1. 3D Hand Tracking Experiments

In the hand tracking experiments templates are generated
by projecting a 3D hand model described in [?]. In two
video sequences we track the global 3D motion of the hand
without finger articulation. The 3D rotations are limited
to a hemisphere. A three-level tree is built which has the
following resolutions at the leaf level: 15 degrees in two
3D rotations, 10 degrees in image rotation and 5 different
scales, resulting in a total of13 × 13 × 19 × 5 = 16055
templates. The resolution of the translation parameters is
20 pixels on the first level, 5 pixels on the second level, and
2 pixels on the leaf level. Figures 4 and 5 show results from
tracking a pointing and an open hand, respectively, through
their global motions.

In the third sequence (figure 6) tracking is demonstrated
for global hand motion together with finger articulation. A
piecewise linear approximation to the manifolds described
in section 5.2 is used to model finger articulation. The ar-
ticulation parameters for the thumb and fingers are approxi-
mated using 7 and 5 subdivisions in the valid range, respec-
tively. For this sequence the range of global hand motion
is restricted to a smaller region, but it still has 6DOF. In
total 35000 templates are used at the leaf level. The resolu-
tion of the translation parameters is the same as in the first
experiments.

The computation takes approximately two seconds per
frame on a 1GHz Pentium IV. Note that in all three cases,
the hand model was automatically initialized by searching
the tree in the first frame of the sequence.

7. Summary and Conclusion
This paper endeavors to narrow the gap between detection
and tracking, in order to enjoy the benefits of both worlds.
Reliable detection helps in dealing with difficult problems
such as self-occlusion. Tracking embeds detection in a fil-
tering framework, making use of dynamic information. It
also makes detection more efficient by eliminating a signif-
icant number of hypotheses.

To make this marriage, we cast the problem in a proba-
bilistic framework. Bayesian methods are attractive as they
provide a principled way of encoding uncertainty and mul-
tiple hypotheses about parameter estimates. This is particu-
larly necessary for the problem of tracking in clutter as there
is much ambiguity, resulting in multi-modal distributions.
One of the key issues in Bayesian filtering is how to rep-
resent these distributions. Previously grid-based methods,
involving partitioning the state space, have proven very suc-
cessful for propagating distributions in tracking. However,
they suffer from the major draw back that they are compu-
tationally infeasible in high dimensional spaces. In order to
cope with this we propose a tree-based representation which
can be used to select grid points (leaves or partitions of the
state space) with high probability mass to represent the dis-
tribution.

We have tested the new tracking method on sequences
involving clutter in the background together with non-rigid
hand motion. Furthermore within these sequences the hand
undergoes large rotations leading to significant topological
changes in the projected contours. The tracker produces
very good results even in these circumstances. Finally we
observe that the method of partitioning the state space and
using a tree-based search to propagate distributions is a
generic method that can be applied to other tracking prob-
lems.
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Figure 4:Tracking a pointing hand in front of clutter . The images are shown with projected contours superimposed (top)
and corresponding 3D avatar models (bottom), which are estimated using the tree-based filter. The hand is translating and
rotating. A 2D deformable template would have problems coping with topological shape changes caused by self-occlusion.

Figure 5:Tracking a flat hand rotating in clutter. In this sequence the hand undergoes rotation and translation. The frames
showing the hand with significant self-occlusion do not provide much data, and template matching becomes unreliable. By
including prior information, these situations can be resolved. The projected contours are superimposed on the images, and
the corresponding 3D avatar model, which is estimated using the tree-based filter, is shown below each frame.
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Figure 6: Tracking a hand opening and closing with rigid body motion in front of a cluttered background. This
sequence is challenging because the hand undergoes translation and rotation while opening and closing the fingers. 6DOF
for rigid body motion plus 2DOF using manifolds for finger flexion and extension are tracked successfully.
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