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Abstract. Level-set methods have been shown to be an effective way
to solve optimisation problems that involve closed curves. They are well
known for their capacity to deal with flexible topology and do not require
manual initialisation. Computational complexity has previously been ad-
dressed by using banded algorithms which restrict computation to the
vicinity of the zero set of the level-set function. So far, such schemes
have used finite difference representations which suffer from limited ac-
curacy and require re-initialisation procedures to stabilise the evolution.

This paper shows how banded computation can be achieved using finite
elements. We give details of the novel representation and show how to
build the signed distance constraint into the presented numerical scheme.
We apply the algorithm to the geodesic contour problem (including the
automatic detection of nested contours) and demonstrate its performance
on a variety of images. The resulting algorithm has several advantages
which are demonstrated in the paper: it is inherently stable and avoids
re-initialisation; it is convergent and more accurate because of the ca-
pabilities of finite elements; it achieves maximum sparsity because with
finite elements the band can be effectively of width 1.

1 Introduction

Level-set methods are generally useful for the analysis of image data in 2D and
3D when one has to solve an optimisation problem with respect to an interface
[1–7]. In this paper, we will present a novel numerical scheme to solve the problem
of minimising a certain geodesic length in two dimensions which was proposed
[8, 9] to achieve the attraction to contours in images. For the geodesic model, the
cost C (Riemannian length) of an interface Γ is the integral of a local density g
(Riemannian metric) over the interface:

C =

∫

Γ

g (1)
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where the standard Lebesgue measure is used to integrate the scalar function g
over the set Γ . Differential minimisation of C leads to a gradient descent scheme.

Level-set methods [1] introduce a level-set function3 φ to represent the inter-
face Γ implicitly as the zero level-set: Γ := φ−1(0). The implicit representation
links φ (as the introduced analytic entity) with the geometric entity Γ : φ 7→ Γ (φ)
and allows for changes in the topology during the evolution. Furthermore, it was
pointed out [10] that this relationship can be made one-to-one by imposing the
signed distance constraint. The conceptual advantage is then that φ is (up to a
sign) uniquely determined by Γ and that one can also write Γ 7→ φ(Γ ). In this
way φ gets the intrinsic geometric meaning as the distance function for Γ .

1.1 Differential minimisation and level-set evolution

For the evolution, one introduces an evolution parameter t ∈ R and φ becomes
time4 dependent. One starts with an initial function φ(0, .) and prescribes an
evolution φ(t, .) that tends towards local minima of the cost C using gradient
descent. In the level-set formulation, the gradient descent is expressed in the
evolution equation, a partial differential equation (PDE):

dφ
dt = β (2)

where, at the interface Γ , β is the differential of the cost5: β|Γ := − δCδφ and is

defined globally as in [10] to maintain the signed distance constraint. The signed
distance constraint is well known for its desirable conceptual and numerical
properties [10]. Where φ is differentiable, we have |∇φ(x)| = 1 and, for x ∈ Γ , one
has particularly simple expressions for the curve’s normal N(x) = ∇φ(x) ∈ S1

and curvature κ(x) = ∇2φ(x) ∈ R.

1.2 Previous numerical problems of evolving level-sets

In the following, u denotes the numerical representation of the level-set function
φ. There are two major issues in the numerical implementation of the PDE (2):
one is efficiency and the other is stability. Potential inefficiency arises from the
need to maintain an entire (2D) function u in order simply to obtain the curve Γ .
“Banded” schemes have been suggested [11, 2, 12] which restrict computations to
the immediate neighbourhood of Γ . Because the interface Γ can leave the band,
those schemes require an the algorithm to extend the sparse representation u as
signed distance map. However, the extension outside the current band is only
consistent if the signed distance property is preserved by the evolution [10].

The implementation of the evolution (2) on a grid of pixels in finite difference
schemes [1, 11, 2, 3] results in a stability problem, illustrated by the bunching of
levels in Figure 1. Although the signed distance constraint used by Gomes and

3 φ is a continuous, real valued function
4 One refers to the parameter t as time although it is not related to physical time.
5 δ
δφ

denotes variational differentiation and β|Γ is detailed in (18) for the cost (1).
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Faugeras [10] maintains the equal spacing of levels in principle, the numeri-
cal implementation (discretisation and finite numerical accuracy) still causes a
drift which eventually destroys the equal spacing. The bunching of levels desta-
bilises the evolution and affects the convergence. Therefore, previous methods
required a separate re-initialisation procedure in order to restore the signed dis-
tance property. One also needs to select a suitable frequency for invoking the
re-initialisation procedure to maintain stability of the evolution.

(a) initialisation (b) Hamilton Jacobi (c) Grid Signed Dist. (d) Sparse FE

Fig. 1. Finite element approach has better stability: The figure compares
three different geodesic contour implementations. The initial shape is a square
(18 × 18 pixels) and the target shape is a discrete circle (shaded pixels). The zero-
level is indicated as a dark line in each case and neighbouring levels are drawn with a
level spacing of 0.5 pixel units. (a) initialisation by a rectangle. The following images
display the propagation of the level sets when a time step of ∆t = 0.1 is used to evolve
the level-set function to t = 20. (b) The Hamilton-Jacobi evolution [2] causes a bunch-
ing of levels which destabilises the evolution and requires a separate re-initialisation
procedure. (c) The signed distance evolution [10] in grid representation improves the
stability but still has a slow drift from the signed distance property which also requires
a re-initialisation procedure. (d) Novel sparse finite element evolution maintains the
signed distance constraint indefinitely, with no need for re-initialisation.

1.3 Novel numerical solution: the sparse finite element approach

In this paper, we solve the problems of efficiency and stability by proposing a
novel scheme that uses finite elements [13, 14] to represent and evolve u. Finite
elements have been used before in the context of level-set methods: in [15] a finite
element scheme is used to represent temperature changes along an interface,
while the interface itself is evolved using a finite difference scheme. Preußer and
Rumpf [16] work with 3D cubical elements (of mixed polynomial degree) and
evolve all levels in the computational domain. Our method introduces a sparse
simplicial element representation and combines a weak form of the geodesic
evolution equation with the inbuilt preservation of the signed distance constraint:

– The band is represented as a simplicial complex, over which simplices are
continually added and deleted, in a fashion which is integrated and harmo-
nious with the differential evolution of u. No mode switching is required to
deal with the interface Γ falling out of the band.
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– The simplicial representation of the band allows it to have minimal width,
resulting in enhanced efficiency. Derivatives are treated by our weak formu-
lation with no need for conditional operators. As a consequence, no second
order derivatives of the level-set function have to be computed explicitly.

– With finite elements, the function u is defined everywhere, not just at grid
locations, and sub-grid accuracy is particularly straightforward.

– The signed distance constraint is maintained actively in a stable, convergent
fashion, even over indefinite periods of time. This results in an algorithm
which is demonstrably more stable (Figure 1) and more accurate (Figure 2)
than previous approaches [2, 10].
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Fig. 2. Superior accuracy: The diagram shows deviations of the detected interface
from the unit disc. The unit disc is used as target shape of the geodesic evolution (see
Figure 1). The diagram shows the deviations (vertical-axis) between the result of the
level-set evolution and the target shape when the pixel resolution is varied (horizontal-
axis). The lines in the diagram correspond to the Hamilton-Jacobi scheme and the novel
method presented in this paper. The new method clearly performs better. The increase
in deviation for the grid method on the right is caused by numerical instabilities that
occur when no re-initialisation is used.

2 Efficient representation with ‘banded’ finite elements

The new numerical representation u consists of a global and a local component:

– The local component inside each element is a polynomial in d = 2 variables
which prescribes the location of the zero level-set inside the element.

– The global component, the ‘band’, is a simplicial complex that consists of
the minimal set of elements that contain the zero level-set (Figure 3). We
refer to elements that are members of the complex as being active. The
representation differs from standard finite element representations in that the
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complex is sparse and in that it has to be changed dynamically to maintain
the containment property for the evolving interface Γ .

2.1 Local representation: element polynomial

Following standard methods found in finite element methods [13, 14], we use the
standard d-simplex to represent u locally as a polynomial of fixed degree p in
d dimensions. The standard simplex T d0 is defined to be the convex hull of the
standard Euclidean basis vectors b1, b2, .., bd ∈ Rd and the origin b0 = 0. In d = 2
dimensions, the standard simplex is simply a triangle as in Figure 3. We adopt

(a) p = 1 (b) p = 2 (c) global representation

Fig. 3. Sparse representation (2D): Inside each simplex, the level-set function u
is defined by the values of the nodes. (a) shows the location of nodes within a first
order element and in (b) for a second order element. (c) For the global representation,
the plane is partitioned into standard simplices (shaded lightly) and computations are
restricted to the active complex A (shaded darker) which consists of the minimal set
of elements that contain the zero level-set (in this example a circle).

the following terminology from finite element methods [13, 14]:

– a node is a location pi ∈ T d0 together with a real value and we position the
nodes as indicated in Figure 3 on the grid 1

p Z
d.

– the nodal basis function ei associated with node i is the unique [13] polyno-
mial of degree p that evaluates at the nodes to: ∀j ei(pj) = δij .

– u is a linear combination of the nodal basis functions: u =
∑
i ui ei.

The fact that integration is a linear operation will enable us to express all occur-
ring integrals (9),(11) as linear combinations of a few integral constants (15),(20).

2.2 Global representation: active simplicial complex

Our global representation of the functional u consists of the active complex A
covering the area Ω. Each d− simplex of the complex is mapped to a standard
element and defines in this way a global functional u on the area Ω. By the
sharing of nodes, we obtain a global functional that is automatically continuous6.

6 This is a significant advantage over representations that do not enforce continuity
(like for instance the surfel representation used in [17]).
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We restrict our current exposition of global representations to the 2-dimensional
case. Note however, that our formulation is equally applicable for hyper-surfaces
of higher dimensions (e.g. in the 3D case, one can partition the space by choosing
the Delaunay tetrahedrisation [18] of the node set Z3 ∪

(
( 1

2 ,
1
2 ,

1
2 )> + Z3

)
where

all tetrahedrons are of the same type). In 2D, a rectangular area (e.g. the image
plane) can be partitioned using standard simplices as illustrated in Figure 3(c).

3 Stable dynamics to evolve the novel representation

Having defined the efficient numerical representation of u, we now show how a
stable evolution can be defined which is at the heart of our method. In order
to avoid re-initialisation procedures, we integrate the signed distance property
into the evolution equations by introducing an error functional r which penalises
deviations from the desired interface motion β|Γ as well as deviations from the
signed distance property. The evolution algorithm then minimises this functional.

3.1 Components of the evolution equations

Firstly, unlike [10], we express the signed distance constraint in the following
form:

(∇x u)2 − 1 = 0 (3)

Secondly, the desire to move the interface at a normal speed β|Γ simply implies

ut|Γ = βΓ (4)

for the update of u by (2). We consider interface motion of the general form [2]

β|Γ (t, x,N, κ) (5)

which involves external forces by the dependence on x ∈ Rd and t ∈ R as well
as the intrinsic quantities orientation N and curvature κ. Note that this means
that β|Γ depends on the 2nd derivative of u and that we have β|Γ (t, x,N, κ) =
β|Γ (t, x,∇u,∇2u) due to the signed distance constraint. In this paper we apply
the general method to the geodesic problem (1) for which β|Γ is given by (18).

3.2 Discrete dynamics

Now the evolution of the level-set function is set-up in discrete space and time,
in terms of the displacement v of the function u over a time-step ∆t:

u(t+∆t, .) = u(t, .) + v(t, .). (6)

Here v is represented over the finite element basis, in the same way as u is, and
represents displacement for a time ∆t at velocity β:

v = ∆t β(u+ v) (7)

where we have chosen to evaluate β at u+v (instead of u in the explicit scheme)
to obtain an implicit scheme [19] which does not limit the magnitude of ∆t.
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3.3 Weak formulation of evolution dynamics

Inspired by the Petrov-Galekin formulation [13, 14] used in finite element meth-
ods, we employ a weak formulation of (3) and (4) with the following advantages:

– It allows us to measure and use the constraint equations for the entire active
area Ω, and not just at discrete, sampled locations [10].

– It allows for curvature dependent interface motion (5) even in the case of
first order elements (p = 1) by the use of Green’s theorem.

– It gives an appropriate regularisation of derivative operators without the
need of switch-operators found in grid representations [2, 10].

In the Petrov-Galekin form, one uses the nodal basis functions ei i ∈ {1, ..., n}
as test functions to measure deviations from the desired evolution properties (3)
and (4). First, the signed distance equation (3) becomes a set of equations:

zi1 = 0, for i = 1, . . . , n (8)

where zi1 :=

∫

Ω

(
(∇u+∇v)2 − 1

)
ei. (9)

Secondly, the velocity law (7) is expressed as

zi2 = 0, for i = 1, . . . , n (10)

where zi2 :=

∫

Ω

(v −∆tβ) ei. (11)

We now introduce7 an optimisation problem to determine the update of the
level-set function which minimises deviations from (8) and (10).

3.4 Level-set update equations as optimisation problem

The two sets of equations (9) and (11) represent an overdetermined system of 2n
equations in n unknowns. We measure the deviations in the following functional:

r2 := |z1|2 + α2|z2|2, (12)

where z1 = (z1
1 , . . . , z

n
1 )> and similarly for z2, and α ∈ R+ is an arbitrary positive

constant that balances the competing terms in the optimisation problem.
The functional can be written compactly by expressing zi1 and zi2 in terms of

the node values v = (v1, . . . , vn)> for the displacement v, and similarly for u:

zi1 = u>Qiu− ki + 2u>Qiv + hi(v) (13)

zi2 = P i v −∆t
∫

Ω

ei β (14)

7 The optimisation problem introduced here is not to be confused with the optimisa-
tion problem (1) that gives rise to the differential evolution β|Γ in the first place.
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where hi(v) := v>Qiv and where constants k, P,Q are defined as:

ki :=
∫
Ω
ei, Pab :=

∫
Ω
ea eb, Qiab :=

∫
Ω
〈∇ea,∇eb〉 ei (15)

The quantities (k, P,Q) can be pre-computed analytically, and stored as con-
stants. Note that the deviation z1 is almost affine in the unknown speed v since
the hi(v) are small, provided u approximates the signed distance property and
if the time step ∆t is sufficiently small. In that case (13) can be linearised, ig-
noring h, by replacing zi1 by z̃i1 = u>Qiu − ki + 2u>Qiv. We solve the linear
least-square problem numerically by using the conjugate gradient method [20].
We exploit the sparsity over the computational grid which allows the linear si-
multaneous equations to be expressed in banded form over the nodal basis. Using
the banded form, we solve for v in O(n) where n denotes the number of nodes
and is proportional to the length of the interface in element units.

3.5 How the global evolution ensures the containment property

For our method to be viable, we require to detect changes in the active complex
A efficiently. The new method is outlined in Algorithm 1. After each local evolu-
tion (lines 2-4 of evolve), we adjust the active complex by adding and removing
elements (lines 5-14 of evolve) to ensure that it contains the current interface
Γ and that it is minimal with that property. The initialisation of neighbouring
elements is well defined; this is the case because although we restrict the nu-
merical representation to the sparse complex, u is indeed defined globally by the
signed distance constraint. This justifies the use of the extrapolation procedure
in activate(). Extrapolation8 is natural since u is represented in full functional
form and does not require any separate interpolation mechanism for evaluation.

The maintenance of A (activation and removal of elements) is performed
efficiently in evolve by looking at the edges of the complex. Note that the level-
set function along an edge is a polynomial of degree p and that it is determined
by the p+ 1 nodes located along the edge [13]. Hence, the problem of deciding
where A needs modification reduces to the problem of finding the roots of the
edge-polynomial which is straightforward for linear and quadratic elements.

4 Geodesic contour detection with sparse finite elements

It has been known for some time [8, 9] that the problem of contour detection
can be cast into the problem of minimising a Riemannian length functional
that is induced by the image. In order to define the cost functional C (1), one
starts by introducing the local measure for edges g, which is normalised so that
g(x) ∈ [0, 1]. The basic construction adopted here uses a positive edge detector
function f . In this paper, we employ the following monotonic function [19]

g := 1− exp
(
− a
|∇fσ |q

)
(16)

8 For 1st order elements the value uc in element (abc) is uc = ua +ub− ūc where ūc is
the known value of the node that is obtained by reflecting node c along the edge ab.
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Algorithm 1 Geodesic level-set algorithm with sparse finite elements

1: detect geodesic contour:
2: smoothen image with Gaussian(σ)
3: compute image metric g {see (16)}
4: initialise level-set u as sparse

finite element complex A
5: repeat
6: evolve(u,g)
7: until converged
8: output interface Γ (u)
9: return

1: activate(T):
2: for all nodes V of element T do
3: if V 6∈ A then
4: initialise V (extrapolate from

active T -adjacent elements)
5: end if
6: end for
7: add element to A
8: return

1: evolve(u,g):
{Update u:}

2: compute A1, A2 and b1,b2 such that
zl = Alv + bl {see (13), (19)}

3: solve the least square equation
A>(Av + b) = 0 (C.G. method)

4: u← u + v {see (6)}
{Now update the active complex A:}

5: for all edges E ∈ A that contain a root do
6: for all E-adjacent elements T 6∈ A do
7: activate(T )
8: end for
9: end for

10: for all T ∈ A do
11: if no edge of T is active then
12: remove T from A
13: end if
14: end for
15: return

where fσ is smoothed with a Gaussian of scale parameter σ and a, q are real
constants that control the scale of sensitivity and the slope as parameters of the
normalising function. For the experiments in this paper, we employ the following
edge detector functions f :

– Colour edges: f(x) = I(x) where the image I has values in rgb-space.
– Gaussian colour edges:

f(x) = exp
(
−γ2 (I(x)− ȳ)

>
Σ−1(I(x) − ȳ)

)
(17)

here, ȳ is a fixed colour, Σ is a covariance matrix, γ a positive constant and
I has values in rgb-space. For our examples, we obtain the covariance matrix
by sampling m pixel-values {yj} in a user-defined region:

ȳ := 1
m

∑

j

yj Σ :=
(

1
m

∑
j yj y

>
j

)
− ȳ ȳ>

4.1 Geodesic evolution equation

The velocity function β which asymptotically minimises C for signed distance
functions can be shown [12, 21] to be:

β|Γ = 〈∇g,∇φ〉+ g
(
∇2φ+ c

)
(18)

where c is the coefficient of the so-called “balloon force” [22, 3, 12] and we refer
to [7] for the connection to parametric snakes [23] that has been discussed in the
literature. The “balloon force” term does not arise from the cost minimisation
but is useful in certain situations [21].
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4.2 Numerical form of the evolution

In order to apply the new numerical method of Section 3, we have to perform
the evaluation of z2 in (14) for the geodesic case. It is well known ([19], implicit
scheme) that the evaluation of β(u+v) instead of β(u) in (14) is preferable since
it does not impose a limit on the time-step ∆t. Note that unlike in the case of
the diffusion on images [19], the implicit scheme is computationally feasible due
to the sparse representation. Using Green’s formula, it can be shown that the
weak form (14) of the velocity equation (18) becomes:

zi2 =
(
Pi −∆t [(Bi −Qi)g]

>
)
v −∆t

(
c Pi g + u>(Bi −Qi) g

)
(19)

where we have also represented g in nodal basis and where we have introduced

Bjik :=

∫

∂Ω

ek ei 〈∇ej ,V〉 (20)

as boundary integral constants with V denoting the outward normal along ∂Ω.

Proof. (Outline) by (18) the interface speed is β|Γ = div(gN) + c g and, by the
signed distance property N = ∇u in the explicit scheme and N = ∇(u+ v) in
the implicit scheme. Inserting β into (14) one obtains the following non-trivial
term in the expression for zi2: −∆t

∫
Ω div(gN) ei. Using Green’s formula, we can

move one differentiation onto the test function ei and hence trade the second
order derivatives for a boundary integral:

∫

Ω

div(gN) ei =

∫

∂Ω

ei g 〈N,V〉 −
∫

Ω

g 〈N,∇ei〉

now (19) follows by writing u =
∑
j uj ej and g =

∑
k gk ek. ut

5 Results

This Section presents experimental results (Figures 4, 5, 6) obtained with our
method using first order elements (p = 1). The smoothing constant σ and the
type of metric are selected manually for each example. In order to complete the
definition of the metric we determine the parameters a and q in (16) automat-
ically such that the average gradient magnitude 〈|∇fσ|〉 over the image results
in g = 1

2 and that the slope of g with respect to the gradient magnitude equals
−1/〈|∇fσ |〉 at this point.

Numerically, we compute the gradient using central difference operators and
define the finite element functional g by introducing one node per pixel. In this
way g is defined over the entire image domain (unlike the sparse functional u).
For the evolution, we choose the balloon force constant c individually and set
α = 1 in (12). In our experiments we also set ∆t = 1. In principle, one could
choose a larger time step in the implicit scheme but we limit ∆t here to ensure
a small value of h in (13) and not to overshoot any details during the evolution.
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(a) (b) (c)

Fig. 4. Nested contour detection: (a) The outline of an image of a wooden Krishna-
figure (266 × 560 pixels) is used to initialise the level-set function and to extract a
Gaussian distribution of the background. (b) Geodesic minimisation (parameters: γ =
0.1, σ = 2, c = 0.4) leads to the detection of the outer contour. Note the faithful capture
of sculptural details such as the pipe which require a stabilised method. (c) Using our
metric inversion method [21] the nested contours (holes) are detected automatically.

(a) (b) (c)

Fig. 5. Cycling fish sculpture: (a) A user-specified circle is placed on the image
(429 × 577 pixels) as initial level-set and to define a Gaussian colour distribution. (b)
Geodesic evolution (parameters: γ = 0.1, σ = 1.5, c = −0.3) with an ‘inflating’ balloon-
force results in the displayed contour. (c) shows the pixels for which u < 0.
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(a) (b) (c)

Fig. 6. Cliff example: The input image (384 × 512 pixels) is displayed in (a) with the
user defined initial level-set superimposed. (b) shows the converged contour and (c) the
obtained segmentation. In order to define the metric g , a Gaussian in rgb-space that
represents the colour distribution inside the circle was defined (σ = 1.5, γ = 10−1.5).
A negative balloon-force (c= -0.3) was employed to ’inflate’ the initial circle towards
the boundaries of the region.

6 Conclusions and future work

We have proposed a new level-set scheme and algorithm for automatically fit-
ting image contours, robustly and efficiently. Even nested contour structures are
detected automatically by applying the metric-inversion method [21] to the al-
gorithm. We exploited the signed distance constraint systematically to obtain
a sparse representation while having a well defined global continuation. For the
numerical representation, we replaced previously used finite difference methods
and use a dynamically changing finite element complex instead. We incorpo-
rated the signed distance constraint into the evolution equations and obtained
an algorithm that avoids the periodic re-initialisations required by others. We
demonstrated the resulting improvements with respect to stability and accuracy.
The efficiency, in common with previous schemes, derives from the banded rep-
resentation, and this is enhanced by the introduction of finite elements which
minimises the band width. Using a weak formulation of the evolution equations,
we were able to accurately implement curvature dependant evolutions without
having to explicitly compute second order derivatives. Various further develop-
ments and investigations are underway:

– Extension to the 3D case with tetrahedral elements. As mentioned in Section
2.2, 3-space can be partitioned using a regular mesh of tetrahedrons with
a single element shape. Applications include medical imaging and surface
reconstruction for model acquisition.

– Implementation of efficient second order finite elements.
– Applications using more sophisticated metrics (e.g. texture segmentation).
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