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Abstract

This paper presents a novel formulation for the multi-
view scene reconstruction problem. While this formula-
tion benefits from a volumetric scene representation, it is
amenable to a computationally tractable global optimisa-
tion using Graph-cuts. The algorithm proposed uses the
visual hull of the scene to infer occlusions and as a con-
straint on the topology of the scene. A photo consistency-
based surface cost functional is defined and discretised with
a weighted graph. The optimal surface under this discre-
tised functional is obtained as the minimum cut solution of
the weighted graph. Our method provides a viewpoint in-
dependent surface regularisation, approximate handling of
occlusions and a tractable optimisation scheme. Promising
experimental results on real scenes as well as a quantitative
evaluation on a synthetic scene are presented.

1 Introduction

This paper considers the problem of reconstructing the
dense geometry of a 3D scene from a number of images,
calibrated for pose and intrinsic parameters. This is a
computer vision problem that has been extensively studied.
Work on the field can be categorised according to the math-
ematical representation of the scene geometry. There are
two main classes of techniques according to this categori-
sation: (1) techniques that recover depth-maps with respect
to an image plane and (2) volumetric methods that repre-
sent the volume directly, without any reference to an image
plane.

In the first class of methods, a reference image is se-
lected and a disparity or depth value is assigned to each of
its pixels using a combination of image correlation and reg-
ularisation. An excellent review for image based methods
can be found in Scharstein and Szeliski [13]. These prob-
lems are often formulated as minimisations of Markov Ran-
dom Field (MRF) energy functions providing a clean and
computationally-tractable formulation, for which good ap-

proximate solutions exist using Graph cuts [2, 7, 12, 6] or
Loopy Belief Propagation [16]. They can also be formu-
lated as continuous PDE evolutions on the depth maps [15].
However, a key limitation of these solutions is that they can
only represent depth maps with a unique disparity per pixel,
i.e. depth is a function of image point. Capturing complete
objects in this manner requires further processing to merge
multiple depth maps [10] which is a complicated and error-
prone procedure. A second limitation is that the smoothness
term imposed by theMRF is defined on image disparities
or depths and hence is viewpoint dependent– if a different
view is chosen as the reference image the results may be
different.

The second class comprises of methods that use avol-
umetric representationof shape. This is a more natural
framework in which multiple viewpoints can be easily in-
tegrated and surface smoothness can be enforced indepen-
dent of viewpoint. In this class are well-known techniques
like Space Carving [9] and level set stereo [5]. While these
methods are known to produce high quality reconstructions
their convergence properties in the presence of noise are not
well understood and are susceptible to instabilities or local
minima. For Space Carving in particular, there is also no
simple way to impose surface smoothness.

The approach described in this paper combines the ad-
vantages of both classes described above. We adopt a vol-
umetric scene representation but pose the reconstruction
problem as finding the minimum cut of a weighted graph.
This computation is exact and can be performed in poly-
nomial time. Our method requires an approximate base
surface, obtained from the visual hull. This is used as the
source of occlusion information and as a hard constraint on
the topology of the scene surface. The benefits of our ap-
proach are the following:

1. General surfaces and objects can be fully represented
and computed as a single surface.

2. The representation and smoothness constraint is image
and viewpoint independent.



3. Multiple views of the scene can be used with occlu-
sions approximately modelled.

4. Optimisation is computationally tractable, using exist-
ing max-flow algorithms.

1.1 Related work

The inspiration for the approach presented in this paper
is the recent work of Boykov and Kolmogorov [1] which
establishes a theoretical link between maximum flow prob-
lems in discrete graphs and minimal surfaces in an arbitrary
Riemannian metric. In particular the authors show how a
continuous Riemannian metric can be approximated by a
discrete weighted graph so that the max-flow/min-cut solu-
tion for the graph corresponds to a local geodesic or min-
imal surface in the continuous case. The application pre-
sented in that paper is interactive 2D or 3D image segmen-
tation where the user is asked to approximately specify the
object and background regions in an image which then be-
come thesourceandsink sets of the graph. The segmen-
tation is then obtained by computing the minimum cut be-
tween the two sets. The work presented here extends these
ideas to multi-view stereo reconstruction, offering solutions
to some of the difficulties that occur within this domain,
namely the determination of the source and sink sets as well
as occlusion reasoning.

Another related approach is the use of level sets [5] for
stereo reconstruction. In that work a 3D surface, repre-
sented as the zero level set of a 3D scalar field, is evolved us-
ing continuous PDE techniques, until it is photo-consistent
with a number of images. While level sets can represent ar-
bitrary surface topologies, the resulting optimisation meth-
ods give local minima of the energy function, which can
be sensitive to initialisation. This work poses the recon-
struction problem as a computation of maximum flow in a
discrete graph, for which global optimisation methods exist.

Space carving [9] is a technique that starts from a volume
containing the scene and greedily carves out non photo-
consistent voxels from that volume until all remaining visi-
ble voxels are consistent. It uses a discrete representation of
the surface but does not enforce any smoothness constraint
on the surface which often results in quite noisy reconstruc-
tions. Furthermore, as all voxel removal decisions affect
subsequent ones, it is very conservative in carving out vox-
els which implies that reconstructed surfaces tend to befat-
ter than the true scene. Also using a discrete quantisation
of space, Snowet al [14] showed how visual hull extraction
from silhouettes can be cast as a binaryMRF problem which
can solved exactly with a minimum cut computation. Un-
fortunately, even though it seems similar, the type of graph
used in that work cannot be applied to the problem of shape
from stereo because of the problem of occlusion which is
not present when dealing with silhouettes.

Finally, recent work by Pariset al [11], proposes the use
of a global Graph cut optimisation to minimise a discretised
version of a continuous functional for surface reconstruc-
tion. While we also use Graph cuts to discretise a similar
continuous problem, their technique differs in two aspects:
(i) it assumes that a plane separates the cameras from the
scene and (ii) represents the scene as multiple depth-maps.
This means that a full circumnavigation of an object, such
as the sequence of the third experiment shown in section 4,
which does not satisfy either of these requirements, cannot
be reconstructed.

In previous work [17] we argued for the use of the
base surface for occlusion reasoning and placing topolog-
ical constraints on the true surface. In that work, a discrete
height map above the base surface is optimised with a Be-
lief Propagation algorithm, and while promising results are
presented, the height map representation is weak in regions
of high curvature or corners in the base surface. In this work
we provide a new method that alleviates this problem.

The rest of the paper is laid out as follows: Section 2
describes in detail how the scene surface is represented as
an interface between two boundary surfaces. In section 3
we describe the cost functional associated with any candi-
date surface, as well as how this functional is approximated
with a discrete flow graph. Section 4 presents experimen-
tal results on synthetic and real scenes, section 5 compares
of our method with level-sets and section 6 concludes with
discussion of the paper’s main contributions.

2 Graph-cuts for volumetric stereo

This paper extends the Riemannian minimal surface idea
of [1] for multi-view volumetric stereo. In that work points
in space are successfully labelled as foreground and back-
ground while also regularising the interface between the two
volumes. In the multi-view volumetric stereo domain the
corresponding labelling problem is to decide if points in
space are inside or outside the scene that is being recon-
structed. Two main difficulties immediately arise. Firstly,
the problem of occlusion, i.e. the fact that distant points
in space might occlude each other, implies that the state of
each point in space (inside/outside the scene) is affected by
potentially distant points. This does not naturally fit into
the Graph-cut minimisation framework. Secondly, it is not
obvious how to define connections to the source and sink,
which corresponds to defining a likelihood for each point
being inside or outside the scene.

To overcome both these difficulties, abase surface[17]
is used. This is a surface that captures the approximate ge-
ometry of the scene andcontainsthe scene. The visual hull,
which is the intersection of the cones generated by the sil-
houettes of the scene is an ideal example of such an approx-
imate surface. In situations where this cannot be obtained



� � � �
� � � �
� � � �
� � � �

S

base


S

in


C


S

min


x

i


x

j


w

ij


SOURCE


w

b


w

b


h


Figure 1. Surface geometry and flow graph construc-
tion. On the left: a 2D slice of space showing the base
surfaceSbase and the inside boundary surfaceSin. The
shaded region is the volumeC of voxels that become nodes
in the flow graph. The thick line is the true surface of the
sceneSmin that is represented as the minimum cut in the
flow graph. On the right: the correspondence of voxels in
C with nodes in the graph. Each voxel is connected to its
neighbours as well as to the source.

(e.g. the scene cannot be circumnavigated) then it may be
sufficient to estimate a small number of sparse image corre-
spondences and triangulate them to obtain an approximate
mesh (we include such a scene in the results section).

Let the base surface be denoted bySbase and define for
all x ∈ R3 the signed distance functiond(x) as the distance
from x to the closest point onSbase, positive if x lies in
the direction of the surface normal at the closest point and
negative otherwise. The inner boundary surface for some
positive constantDin can be defined as:

Sin =
{
x ∈ R3 : d(x) = −Din

}
(1)

and the volume between the two is just

C =
{
x ∈ R3 : −Din ≤ d(x) < 0

}
. (2)

The surface model used in this work will require the min-
imal surfaceSmin to lie betweenSin and Sbase so that
Smin ⊆ C. The geometric configuration of the base, inner
and minimal surfaces is shown in figure 1 (left). The next
subsection introduces the cost functional associated with a
candidate surface, which will subsequently be minimised.

3 Surface cost functional

The input to our method is a sequence of images
I1, ..., IN calibrated for camera pose and intrinsic param-
eters. The photo-consistency of a potential scene pointx
can be evaluated by comparing its projections in the images
where it is visible. If the point is on the true surface, these
projections should be conforming with some surface model
assumptions. Determining the visibility of a point is there-
fore a central part of this calculation, since, if a point is oc-
cluded in an image, its projection would violate any model

assumptions. Using the base surface for obtaining visibility
information is one of the contributions of this work.

The visibility of a pointx on surfaceS is represented by
V(x, S), the set of images from whichx would be visible if
the scene consisted of a surfaceS.

In [9] it was shown that ifSbase contains a surfaceS
andx is onSbase thenV(x, S) is a superset ofV(x, Sbase).
It was also shown that ifx is found inconsistent with
V(x, Sbase), it is also inconsistent with any superset of
V(x, Sbase). This implies the visibility induced bySbase

can be used to detect inconsistent 3D points that lieon
Sbase. For a point that lies in the volumeC, i.e. not on
Sbase, this corollary is no longer valid. Lets(x) be the point
onSbase closest tox. For a small distanceDin, s(x) andx
will in general be quite close to each other, so one can hope
thatV(x, S) will be the same asV(s(x), Sbase). This visi-
bility reasoning even though approximate, has been justified
by experiments.

The photo-consistency measureρ(x) used to deter-
mine the degree of consistency of a pointx with the
images is computed as follows: For all pairs of im-
ages inV(s(x), Sbase), we compute the normalised cross-
correlation score between patches centred on the projec-
tions of x. For each NCC score, letV1 and V2 be the
viewing directions froms(x) to the two cameras andN
the surface normal ofSbase at s(x). The NCC scores are
more likely to be unreliable (a) due to projective warping
for very big baselines and (b) due to violations of the occlu-
sion approximation for viewing angles close to 90 degrees.
To avoid these situations we simply exclude an NCC score
if arccos(V1 ·V2) > 45◦ or arccos(N ·V1)) > 60◦ or
arccos(N ·V2)) > 60◦. The rest are averaged to produce
an average scorec(x), lying between−1 and1. This aver-
age is then mapped to the nonnegative interval[0, 1] using

ρ(x) = 1− exp
(
− tan

(π

4
(c(x)− 1)

)2

/σ2

)
. (3)

This is only one of the possible ways to smoothly mapc(x)
to nonnegative values, parameterising byσ the fidelity of
the surface to the data. Determining the optimal such map-
ping however remains unclear and should be further investi-
gated. Nevertheless the definition of (3) has proved to work
well in practice. The cost functional associated with the
photo-consistency of a candidate surfaceS is the integral of
ρ(x) on the surface

Esurf [S] =
∫∫

S

ρ(x)dA. (4)

Surface smoothness is implicitly enforced in (4) since min-
imising Esurf [S] corresponds to finding the minimal sur-
face with respect to a Riemannian metric. Larger values
of the parameterσ in (3) lead to a surface that is less
smooth but which passes through photo-consistent points
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Figure 2. Slice of Riemannian metric. Left: 2D
slice of the Riemannian metric corresponding to the photo-
consistency costρ(.) (with low values being darker) show-
ing intersections ofSin, Sbase andSmin for the synthetic
face experiment. Right: A slice of a synthetic Riemannian
metric. The two lines represent two possible surfaces, the
actual surface of the scene (dotted line) and the minimal sur-
face (continuous line) returned asSmin by our algorithm.
In the real surface the cost per unit area is smaller but the
total surface integral of the cost is higher and hence the er-
roneous but actually lower cost surface is selected.

while smaller values ofσ lead to a smoother surface with
smaller Euclidean surface area. The performance of the al-
gorithm is quite stable with respect to the value ofσ which
was kept constant at 0.05 for all experiments presented in
this paper.

A side-effect of minimising Riemannian surface area is
that it may result in removing protrusions present in the
scene. This is because, while cost per unit area is lower
along the protrusion, the total surface integral of the cost
may be quite large. At the same time a surface with the pro-
trusion flattened out, may have lower total cost, despite the
fact that it passes through high cost regions. Figure 2 (right)
shows an example of how this occurs. The phenomenon
is also illustrated in one of the experiments (fig. 7). It is
worth noting that methods based on geodesic active con-
tours or level sets would face the same difficulty if used to
retrieve the global minimum instead of just stopping at the
first strong local minimum which is how they are typically
used. To counterbalance the protrusion flattening problem,
an inflationary (ballooning) term is added. The motivation
for this type of term in the active contour domain is given in
[3], but intuitively, it can be thought of as a shape prior that
favours objects that fill the space of the visual hull more,
everything else being equal. LetV (S) ⊂ C be the volume
betweenSbase and a candidate surfaceS. The ballooning
term is proportional to the magnitude of the volumeV (S):

Evol[S] = λ

∫∫∫

V (S)

dV (5)

whereλ is a weight parameter. MinimisingEvol maximises
the magnitude of the volume enclosed byS. The effect of

the Evol term is to inflate the surface, competing with the
effect of Esurf which is the minimisation of Riemannian
surface area. The weight of the ballooning term at the mo-
ment has to be selected by hand which implies that care has
to be taken to avoid over-inflation. In practice the correct
parameter is obtained with just a few trial runs but an au-
tomatic mechanism for determiningλ is a future research
goal. Figure 2 (left) shows a 2D slice of a scalar cost field
ρ(.) with dark intensities corresponding to lower costs (i.e.
photo-consistent points). The two boundary surfacesSin

andSbase are shown, as well asSmin, the minimal surface
separating them.

The reconstructed surface is obtained by solving the op-
timisation

Smin = arg min
S⊆C

Esurf [S] + Evol[S] (6)

which is achieved by embedding the functional in a flow
graph that will be described in the next sub-section.

3.1 Graph structure

To obtain a discrete solution to (6) 3D space is quantised
into voxels of sizeh × h × h. The graph nodes consist
of all voxels whose centres are inC, i.e. between the in-
ner boundary and base surfaces. For the results presented
in this paper these nodes were connected with a regular 6-
neighbourhood grid, but at the expense of using more mem-
ory to store the graph, bigger neighbourhood systems can
be used which provide a better approximation to the contin-
uous functional (6). Now assume two voxels centred atxi

andxj are neighbours. Then the weight of the edge joining
the two corresponding nodes on the graph will be

wij =
4πh2

3
ρ

(
xi + xj

2

)
(7)

whereρ is the matching cost function defined in equation
(3). See [1] for the derivation of the weightwij in the case
of a 6-neighbour regular grid. In addition to these weights
between neighbouring voxels there is also the ballooning
force edge connecting every voxel to the source node with
a constant weight ofwb = λh3. Finally, the voxels that
are part ofSin andSbase are connected with the source and
sink respectively with edges of infinite weight. The config-
uration of the graph is shown in figure 1 (right).

It is worth pointing out that the graph structure described
above is a simple binaryMRF. Variables correspond to vox-
els and can be labelled as beinginsideor outsidethe scene.
The singleton clique potential is just0 if the voxel is outside
andwb if it is inside the scene while the pairwise poten-
tial between two neighbour voxelsi andj is a Potts energy
equal towij if the voxels have opposite labels and0 other-
wise. As a binary MRF with aregularenergy function [8] it
can be solved exactly in polynomial time using Graph-cuts.



Method MSE (pixels) % of correct disparities
Space Carving [9] 1.913 69.7%

2-view BP [16] 1.626 74.3%
Relief-surf [17] 0.829 78.6%
Volumetric GC 0.780 79.1%

Table 1. Quantitative comparison for synthetic scene.
Comparison of our method, 2-view belief propagation and
[17] against ground truth data. Both methods that use the
base surface prior on shape significantly outperform belief
propagation and our method marginally outperforms both.

4 Experiments

To quantitatively analyse the performance of the volu-
metric Graph-cuts algorithm presented here with ground
truth, an experiment on a synthetic scene was performed
(fig. 3). A textured model of a human face was rendered
from 8 view points. For these 8 images the silhouettes of the
face were obtained and the visual hull reconstructed. The
performance of volumetric Graph-cuts was tested against an
implementation of a 2-view stereo algorithm using Loopy
Belief Propagation (LBP) similar to [16] and Space Carv-
ing [9]. To compare against a method that also assumes a
base surface, the Relief-surface method of [17] was run on
the same sequence. The quality of the results of all four
methods was estimated in terms of the 7 disparity maps,
corresponding to the 7 pairs of consecutive views in the 8
images. Specifically, five sets of the 7 disparity maps were
obtained from (i) Space Carving (ii) the 2-view LBP algo-
rithm (iii) Relief-surfaces (iv) Volumetric Graph-cuts and
(v) the ground truth. The results shown on Table 1 show
the measured mean square error of the four stereo meth-
ods against the ground truth, expressed in pixels, as well as
the percentage of correct disparities (rounded to one pixel).
They indicate that the existence of a base surface as well as
the combination of multiple images in a single volumetric
framework greatly improves the accuracy of the reconstruc-
tion. They also show a slight improvement of the accuracy
in the case of the present method against Relief surfaces.
However by visually inspecting the results of both these
methods (fig. 3) it becomes apparent that the Volumetric
Graph-cuts technique is far less dependent on the base sur-
face. A slight misalignment of the real nose of the face with
respect to the ‘nose’ of the visual hull (shown in the cost
volume slice of figure 1) results in a ‘seam’ artifact in the
Relief-surface reconstruction, which is not present in the
Volumetric Graph-cut surface.

The second experiment (figure 4) involves three images
of a real scene of a stone carving and illustrates one possi-
ble source of a base surface in cases where the visual hull
cannot be obtained. This usually occurs when, as in this ex-

(a) (b) (c)

(d) (e)

(f) (g)

Figure 3. Face (synthetic scene).(a)-(c) Three images of
the synthetic face sequence where a 3D face model has been
rendered from 8 viewpoints. (d) The visual hull generated
from silhouettes of the face. (e) The result of space carving.
(f) The result of the Relief Surface reconstruction from [17]
in which the ‘seam’ artifacts across the face are present. (g)
The reconstructed face model using our method, with the
concavities of eyes and mouth correctly recovered.



(a) (b) (c)

(d) (e)

Figure 4. Stone carving (real scene). (a)-(c) The
three images used for the reconstruction. (d) The base
surface obtained by triangulating a sparse set of cor-
respondences. (e) The reconstructed model using our
method with details of the face recovered.

ample, the scene cannot be circumnavigated. In this scene a
number of feature correspondences are obtained across the
three images and Delaunay triangulated in the middle image
to obtain a 3D triangular mesh.Sbase andSin are defined at
constant offsets at either side of this mesh. Figure 4 shows
the triangular mesh as well as the Volumetric Graph-cuts re-
construction which retrieves the surface details of the scene.

For the third experiment a larger sequence was used, of
36 images circumnavigating a toy house (figures 5 and 6).
The silhouettes of the house in all images were obtained
using a graph-cut based, interactive segmentation technique
similar to the one described in [1]. Figure 5 shows the visual
hull, Sbase, obtained by intersecting the cones generated by
the silhouettes. Space is quantised to a560 × 460 × 360
grid of cubical voxels, 0.4mm in length. ParameterDin is
set to 15mm. The reconstructed scene is computed using
the method described here in approximately 40 minutes, on
a Pentium IV 2.8GHz with 2Gb of RAM. The results are
compared against Space Carving [9] operating on a voxel
grid of the same quantisation. The result of Space Carv-
ing is very noisy because of the lack of regularisation by a
surface model. There are also holes which are caused by
the accidental carving of a number of voxels which leads

Figure 5. House (real scene). Left: the visual hull
(Sbase) generated from silhouettes extracted from the im-
ages. Right: the very noisy result of Space Carving [9].

to a cascade-effect of carving out large parts of the volume.
In contrast, the surface obtained by Volumetric Graph-cuts
captures the correct scene geometry.

Figure 7 gives highlights the significance of the balloon-
ing term. It shows the surface returned by the method when
λ, the weight of the term is0. The result is the flattening
of the protrusion corresponding to the house’s roof. Even
though the cost per unit surface area is smaller along the
roof than along the flat surface, the cost saved in total sur-
face area when taking the ‘shortcut’ and flattening the roof
is bigger. Ifλ is set to0.8 this tips the balance in favour of
the correct surface.

For the fourth and final experiment a sequence of was
used, of 41 images circumnavigating a small clay horse (fig-
ure 8). In spite of the homogeneous texture of this object our
algorithm is still able to recover most of the surface detail.

5 Relation to level set stereo

The cost functional optimised in this paper bears strong
resemblance to the functional optimised in level set stereo
[4]:

Elevel[S] =
∫∫

S

ρlevel(x,N(x), S)dA. (8)

whereS is the surface,N(x) denotes the surface normal
at a pointx on the surface andρlevel is the matching cost.
This cost uses normalised cross-correlation where the im-
age patches are appropriately warped between viewpoints
using the surface normalN(x). Similarly to our approach,
level sets stereo relies on the idea of Riemannian minimal
surfaces for regularisation. The differences from our ap-
proach are (a) thatρlevel depends on the normal to the sur-
face and (b) that the matching cost depends upon the en-
tire surfaceS. This is necessary to deal with occlusions in
the level set framework, because the matching cost depends
only on images whose cameras are unoccluded fromx by
the current surfaceS.



Figure 6. House (real scene).Left column: Images of
the toy house sequence. Right column: Similar viewpoints
of the reconstructed model using our method.

Figure 7. The effect of the ‘ballooning’ term. Left:
view of the reconstructed house model without the ‘balloon-
ing’ term (λ = 0). Even though the photo-consistency cost
ρ(.) is higher per unit surface area along the collapsed roof,
the fact that euclidean surface area is considerably smaller
means that it is the optimal solution. Right: introducing
the ballooning term (λ = 0.8) counterbalances this effect,
forcing the optimal surface to be the real roof.

Figure 8. Clay horse (real scene).Left column: Images
of the clay horse sequence. Right column: Similar view-
points of the reconstructed model using our method.



Point (a) does not seem to be crucial for the success of
level sets. In fact, in [4] the authors examine the case of
viewpoints with baseline small enough that patch warping
can be ignored as in our method. Point (b) however is a
significant point of departure between the two models. Our
method has no concept of a current surface during the op-
timisation phase, and therefore has to make the visibility
assumption of section 3.

6 Conclusion

This paper has presented a new volumetric formulation
of multi-view stereo. A continuous photo-consistency func-
tional is defined on surfaces, and a discrete approximation
is formulated as a flow graph. The minimal surface under
this functional is obtained by computing the minimum cut
solution of the graph. The method uses an approximate base
surface obtained from the visual hull of the scene which can
be thought of as a coarse prior on shape. This prior is used
in two different ways: (i) as a hard constraint, by assum-
ing that the true surface will be between the base surface
and a parallel inner boundary surface and (ii) as the source
of occlusion information, by assuming that each voxel has
the same visibility as the nearest point on the base surface,
if that surface was the volume causing occlusions. Further-
more, a prior on the total volume of the reconstructed object
is applied which, all else being equal, will put preference
on objects that fill the space of the visual hull. This is nec-
essary to counterbalance the effect of the minimisation of
Euclidean surface area, which is implicit in the Riemannian
minimal surface framework.

The experimental results presented, demonstrate the ben-
efits of combining a volumetric surface representation with
a powerful discrete optimisation algorithm such as Graph-
cuts, so far only used in depth-map stereo. The resulting
method can represent general scene surfaces and provides
regularised and globally optimal solutions.
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