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Abstract

We describe a method to recover the surface reflectance
and the 3-d shape of a non-Lambertian object as well as
illumination, from a collection of images. It is based on
the so-calledfrontier points, which are extracted from the
outlines of an object. Frontier points provide 3-d locations
on the object surface where the surface normal is known.
This information is exploited to infer the surface reflectance
of the object and the light distribution of the scene both un-
der varying illumination and fixed vantage point, and under
varying vantage point and fixed illumination. We also show
how to apply frontier points for shape recovery in photomet-
ric stereo. The effectiveness of frontier points for recovering
reflectance, illumination and shape is confirmed by a num-
ber of experiments on both real and synthetic data.

1 Introduction
In this paper we consider the problem of recovering re-

flectance and 3-d shape of a non-Lambertian object from a
collection of images. The main challenge is how to establish
correspondence between image regions that are projections
of the same 3-d point in space. While for Lambertian ob-
jects one can solve correspondence by direct matching of
image regions1, in the non-Lambertian case such matching
is not possible as the measured intensity may vary dramat-
ically between images, due, for example, to the unknown
specular component of the reflectance. Hence, in general,
correspondence for non-Lambertian surfaces is established
while recovering the reflectance and the surface of an ob-
ject, together with the illumination distribution, which is a
highly ill-posed and computationally challenging problem
[10, 21, 6].

In our solution, rather than venturing into such a cumber-
some optimization problem, we propose to establish corre-

∗This work was carried out while Paolo Favaro was with Cambridge
University, Dept. of Engineering.

1The intensity measured at points on a Lambertian surface is invariant
to the viewing direction.

Figure 1. Examples of non-Lambertian surfaces
and reconstructed material. Using frontier points
to sample the surface of a target object, the scene’s
illumination and material properties of the object can
be obtained. This information can then be used to ren-
der synthetic ‘example’ objects of the same material
under the same illumination conditions.

spondence by exploiting occlusions, and, more precisely,
frontier points2. We notice that occlusions are more re-
silient than other visual cues to changes in illumination or
reflectance properties, which makes them suitable for non-
Lambertian objects. Rather than matching image intensi-
ties, one can automatically determine correspondence by
extracting the occluding boundary from each image region
and then by searching along the boundary for the 2D points
with tangents lying on the epipolar plane. This procedure
allows not only to recover the 3-d location of a point on the
surface (the frontier point), but also its corresponding nor-
mal vector. Hence, by working at frontier points one can
solve a much easier problem where shape is locally given,
and one is only left with recovering reflectance and illumi-
nation (see Figure1), which we pose as ablind deconvolu-
tion problem in section 4. Furthermore, if an object is made
of the same material, the reflectance and illumination distri-
bution recovered at frontier points can then be used to infer
its full 3-d shape. In this paper, we apply this scheme to the

2Given two images each obtained from a different camera view, a fron-
tier point is the 3-d location where the epipolar plane (defined by the two
cameras) is tangential to the surface of the object. In addition, the normal
to the surface at a frontier point coincides with the normal to the epipolar
plane.
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case of uniform albedo where very little work has been done
in the general scenario where we operate (see next section).

In our current implementation the pose of each camera
is assumed to be known, although such an assumption can
be relaxed by using, for instance, the methods described in
[19, 20].

1.1 Contributions and related work

It has been shown in [14] that given the geometry of an
object, it is possible to infer its reflectance and the illumina-
tion of the scene. Similarly, in our approach, we use frontier
points to recover shape (locally) and infer the remaining un-
knowns as a blind deconvolution problem [1]. This problem
falls within the field ofinverse renderingin the community
of computer graphics [5] and involves the study of the re-
flectance of objects [13, 17, 8, 12, 2].

Once reflectance and illumination are reconstructed, then
one can use them together with frontier points to initialize
and/or constrain a global optimization problem [10, 21, 6,
15], and recover the full shape of the observed object. In
this paper, however, we are interested in presenting the po-
tential of frontier points in the context of photometry, and
hence we revisit a number of previously studied problems
and show how easily our method can be adapted. For exam-
ple, we present a novel solution tophotometric stereo, i.e.
the problem of recovering 3d shape given multiple images
captured from the same viewing point, but under different
unknown illumination conditions. As in [9], we impose that
points in the scene that are subject to the same variations in
their reflectance due to the same changes in viewing posi-
tion, must share the same normal, the so-calledorientation-
consistencycue. This cue allows one to reconstruct first the
normal map of the object and then to recover the depth map
of the object. Notice that the method in [9] is based on the
insertion of an object with known geometry, anexample, of
the same material of the object of interest in the scene.

In some situations, the insertion of such an example
may not be possible. Rather, in our method, we do not
need to insert any additional object in the scene, as fron-
tier points provide information that can be used to recon-
struct avirtual example, i.e. a virtual object with known
geometry and the same reflectance as the object of inter-
est (see Figure1). Similarly, our work also relates to [6];
however, while our method works indistinctly in the case
of both Lambertian and non-Lambertian objects, [6] is re-
stricted to non-Lambertian objects and suffers from the con-
vexity/concavity ambiguity.

The paper is organized as follows: in section2 we intro-
duce our reflectance model of non-Lambertian objects and
the general problem of shape, reflectance and illumination
recovery; then, we show how to use frontier points together
with the reflectance model to recover the properties of the
material and the illumination (section4), and the shape of

the object in the scene (section5).

2 Recovering shape, reflectance and illumi-
nation

In this section, we introduce the general problem of
shape, reflectance and illumination recovery of a non-
Lambertian object. To do so, we need first to introduce the
reflectance model of non-Lambertian objects.

2.1 BRDF of non-Lambertian objects

The reflectance of a large class of objects is well approxi-
mated by the so-called bidirectional reflectance distribution
function (BRDF). This is defined3 at each pointP of a sur-
face as a functionβ(θi, φi; θo, φo) mapping the cartesian
product between the hemisphere of incoming light direc-
tions (θi, φi) and the hemisphere of outgoing light direc-
tions (θo, φo) to nonnegative values. The BRDF predicts
how much light will be reflected at a point on a surface
along a certain direction, due to incoming light.

In the simplest instance of a Lambertian object, the
BRDF is a constant, i.e. light is reflected equally in all di-
rections. In the case of non-Lambertian objects the BRDF
is much more involved. In this case, a number of mod-
els have been proposed for the BRDF, which can be di-
vided into physics-based models and empirical-based mod-
els [17, 8, 13]. We adopt the Ward model [18], since it is a
good tradeoff between accuracy of approximation and com-
putational complexity. The Ward model is defined as:

β(θi, φi; θo, φo) =
ρd

π
+

ρse
− tan2 δ(cos2 γ/α2

x+sin2 γ/α2
y)

4παxαy

√
cos θi cos θo

(1)
whereρd is the diffuse reflectance coefficient andρs is the
specular reflectance coefficient;αx andαy are the standard
deviations of the surface slope at the microscopic level (sur-
face roughness). For simplicity, in our approach we will
assume thatαx = αy = α, i.e. that roughness is isotropic.
Let h be the bisector of the vectors (θi, φi) and (θo, φo); δ
is the angle betweenh andN , whereN is the normal to the
surface atP . γ is the phase angle betweenh and the x-axis
on the tangent plane atP . Then, the irradiance observed at
a pixelp, the projection ofP on the image plane, is given
by

I(p) .= I(θo, φo) =
∫ 2π

0

∫ π/2

0

β(θi, φi; θo, φo)

L(RP (θi, φi)) cos θi sin θidθidφi

(2)

3In this paper, we define the BRDF inlocal coordinates, i.e. we define
a reference system at each pointP on the surface of the object and set the
z-axis parallel to the normal to the surface, while the x and y-axis lie on
the tangent plane.



where the pixelp defines the local direction (θo, φo). L is
the light distribution and since it is defined in global coordi-
nates, we need to introduce the rotationRP that transforms
local coordinates atP to global coordinates.

Notice that eq. (2) depends on the shape of the object
via the normal fieldN , on the BRDFβ at each pointP
and on the global illuminationL, which are, in general, all
unknown. For simplicity, here we focus on objects made
of the same material, i.e. we assume that the BRDFβ is
the same at each point on the surface. In the next section,
we will pose the problem of recovering these unknowns by
matching the model in eq. (2) to measured images.

2.2 Problem statement

Suppose we are given a number of images
I1,1, . . . , IK,M obtained from K different vantage
points andM different illumination conditions, then, as
mentioned in the previous section, one may be interested in
recovering the shapeS of the object in the scene, which we
identify with its normal fieldN and a 3-d point, its BRDF
β and the light distributionL. This problem can be posed
as the following minimization

Ŝ, β̂, L̂1, . . . , L̂M = arg min
S,β,L1,...,LM

K∑

k=1
M∑

m=1

Φ(Ik,m, Ik(S, β, Lm))

(3)
whereIk(S, β, Lm) is a short-hand notation for model (2),
and its dependency on the unknowns has been made ex-
plicit. Φ is a function that accounts for the discrepancy be-
tweenIk,m and I(S, β, Lm). We requireΦ to be zero if
and only ifIk,m = Ik(S, β, Lm), and to be strictly positive
otherwise. In the next sections, we will chooseΦ to be ei-
ther theL2 norm or the extended Kullback-Leibler distance
[16].

Notice that, given one of the unknowns, for instance, the
shapeS of the object, the minimization task (3) is dramat-
ically simplified. Consider the case ofM = 1, i.e. fixed
illumination conditions, then, one can easily show that the
minimization (3) can be cast as a classicblind deconvolu-
tion problem [1] whereβ is the convolving kernel andL
is the input signal. Similarly, ifβ andL were given, then
recovery of the shapeS would be greatly simplified.

In the next section, we will show how to exploitfron-
tier pointsto this purpose. We will show that they provide
some partial shape information that can be used to solve for
β andL, which, in turn, can then be used to infer the com-
plete shapeS. Before presenting our solution we need to
briefly introduce frontier points and how they are automati-
cally extracted from images.

Figure 2. Frontier points. A frontier point is a 3-
d point on the surface of the object where the plane
passing through it and the two camera centers is tan-
gent to the object. It can be retrieved by searching for
the pair of epipolar lines that are both tangent to the
two outlines of the object.

3 Sampling the surface via frontier points
Frontier points have been introduced in [7] in the con-

text of structure from motion. In this paper, we will show
that such points can also be exploited to infer photometric
quantities.

The study of frontier points requires the introduction of
notions ofcontour generatorsandepipolar geometry[11],
which we cannot include here for lack of space. The inter-
ested reader is referred to [3] for an extensive analysis of
frontier points. In this paper, we will only give a sketch of
how frontier points are characterized, and how they can be
obtained. Suppose we are given two images of the same
object from two different vantage points. Afrontier point
is defined as (one of) the point(s) given by the intersection
of the object and theepipolar planeT tangent to the object
(see Figure2). Notice that in this way we simultaneously
define a pointP on the surface and the normalN to the
surface at that point.

An alternative and practical way to obtain frontier points
is to look at the object’s outlines. An outline is defined as
the projection on the image plane of a 3-d curve lying on the
object, such that any line connecting this 3-d curve with the
camera center is tangent to the object. Given two outlines, a
frontier pointP can be defined as the location in space that
simultaneously satisfies the following properties:

• the projectionp of P on each camera lies on both the
outlines

• the tangent vector of each outline at the projection of
the frontier point must lie on thesameepipolar plane.

In our algorithm, we find frontier points by defining a
cost functional that is minimized only when the two prop-
erties above are satisfied. The overall scheme for the auto-



matic extraction of frontier points on the surface of an object
is as follows: (a) Obtain a number of images of the object
(calibrated for pose and internal parameters) (b) Extract the
object’s outlines in those images (c) Compute a number of
frontier points lying on the extracted outlines and satisfying
the properties above.

4 Recovering illumination and BRDF
As mentioned above, frontier points not only define a

pointP on the object, but also a vectorN normal to the ob-
ject atP . Now, suppose that one is given a set of such pairs
(P, N) that have been recovered by following the proce-
dure in the previous section. If we collect intensities at the
selected frontier points into a single vectorI, then we can
think of solving problem (3) in the unknown light distribu-
tion L and BRDFβ, since shape is given. We will consider
this problem in two separate settings, namely whenM = 1
andK > 1, i.e. in the case of fixed illumination and varying
vantage point (section4.1), and whenM > 1 andK = 1,
i.e. in the case of varying illumination and fixed vantage
point (section4.2). Empirical evaluation of these schemes
is presented in section6.1.

4.1 Case I: Fixed illumination
This arises in inverse rendering problems [5] and can

be useful in settings such as augmented reality. As men-
tioned in section2.2, in this case the minimization problem
amounts to solving a blind deconvolution. We choose the
extended Kullback-Leibler pseudo-distance as our discrep-
ancy measure, i.e. we set

Φ(Ik, Jk) .= Ik log
Ik

Jk
− Ik + Jk (4)

so that the optimization problem3 becomes

β̂, L̂ = arg min
β,L

K∑

k=1

Φ(Ik, Jk) (5)

where we did not explicitly write the second summation in
eq. (3) and the respective index sinceM = 1. {Ik}k=1,...,K

are the measured intensities;Jk is directly derived from
eq. (2) as

Jk =
∫ 2π

0

∫ π/2

0

β(θi, φi; θk, φk)L(RPk
(θi, φi)) cos θi sin θidθidφi.

(6)
To adapt our problem to blind deconvolution, we
do a change of coordinates on(θi, φi) so that
(θ′i, φ

′
i) = RPk

(θi, φi), and then seth(θ′i, φ
′
i; θk, φk) .=

β(θ′i, φ
′
i; θk, φk) cos θ′i sin θ′i∆k, where∆k is the Jacobian

of the change of coordinates. As a result, we obtain

Jk =
∫∫

h(θ′i, φ
′
i; θk, φk)L(θ′i, φ

′
i)dθ′idφ′i. (7)

We choose to estimateL and the parameters ofh (i.e. the
parameters of the BRDFβ) by running the alternating min-
imization scheme employed in [4], which is provably mini-
mizing the chosenΦ while preserving the nonnegativity of
L. The scheme consists of the following iterations:

1. Fix the parameters of the BRDF and recoverL by us-
ing the Lucy-Richardson iteration [16, 4]

2. Fix the light distributionL and recover the parameters
of the BRDF inh by gradient descend.

Results obtained using the method presented above are
shown in Figure3.

4.2 Case II: Varying illumination

In this section, we assume thatK = 1 andM > 1. This
typically arises in photometric stereo where the camera van-
tage point is kept fixed while the lighting changes between
image captures. The optimization problem3 becomes

β̂, L̂1, · · · , L̂m = arg min
β,L1,...,Lm

M∑
m=1

Φ(Im, Jm). (8)

To reduce the dimensionality of the problem, we restrict our
representation of the light distribution to a single moving
point light source, i.e. we assume thatL(RP1(θi, φi)) =
λδ(θi−θL)δ(φi−φL) whereδ is the Dirac delta. Then, we
immediately obtain that

Jm = λmβ(θL, φL; θm, φm) cos θL sin θL. (9)

Since in this case the nonnegativity ofL is automatically
guaranteed, we do not need to resort to the Kullback-Leibler
pseudo-distance and the corresponding alternating mini-
mization scheme. For simplicity, we chooseΦ to be simply
the L2 norm of the difference of the measured intensities
and the ones predicted by the model (9), i.e.

Φ(Im, Jm) .= (Im − Jm)2. (10)

To solve problem (8) one can simply run a gradient descent
or a standard nonlinear optimization method, as the space
of the unknowns is very small (in practice,4 parameters for
the BRDFβ and3M parameters for the illumination). We
chose to use the standard implementation oflsqnonlin in
Matlabr. The accuracy of this estimation with respect to
the number of frontier points is evaluated in the experiment
shown in Figure4.

5 Recovering 3-d shape in photometric stereo

Once light distribution and BRDF parameters have been
estimated by collecting the intensities at the frontier points,
one can think of recovering the full shape of the object



again by solving (3). For simplicity, we consider the case of
M > 1 andK = 1 also known asphotometric stereo, but
we would like to point out that our method is by no means
limited to such a case, other possibilities beingM = 1 and
K > 1 (multi-view Shape from Shading) andM > 1 and
K > 1 [22].

In the case of photometric stereo, the reconstruction pro-
cess is particularly simple and straightforward. We assume
that a number of frontier points have been extracted using
the procedure described in section3. Then, we collect im-
ages of the scene from the same vantage point (K = 1) and
for different illumination conditions (M > 1) by moving
a single point light source. We collect the intensitiesIm,
m = 1, . . . , M at the frontier points and use them to re-
cover the light direction and intensity for each illumination
setting together with the parameters of the BRDFβ as de-
scribed in section4.1. Once we have estimatedL1, . . . , LM

and the parameters ofβ, we generate asyntheticexample in
the spirit of [9] (see Figure7 (c) for example). This virtual
example is then employed in the recovery of the shape ex-
actly as it is prescribed in Seitz et al. [9]. Furthermore, to
improve our estimates, we also enforce both the depth map
and the normal map to match the depth and normals of the
selected frontier points.

6 Experiments

6.1 Light recovery evaluation

In this section we describe two experiments performed
in order to empirically evaluate the recovery of illumination
information from a scene, using frontier points on an object.

In the first experiment, we explore the case of fixed il-
lumination and moving vantage point (section4.1). 441
frontier points were defined by extracting silhouettes on a
semi-diffuse plastic sphere. 35 images of the sphere are ob-
tained from 35 different viewpoints. The goal here is to
capture a general light distribution using the frontier points
by solving the optimization problem of equation5. Figure
3 shows the recovered light field mapped on the sphere of
all directions. To qualitatively evaluate the recovered light
field, a view of the light source is included which shows
that the two-peaked light source has correctly produced a
two-peaked light intensity field. As a further assessment we
perform a synthetic rendering of the sphere specularity, us-
ing the estimated light field, as seen from two images not
in the input set. The comparison between rendered and real
images in Figure.3 (c) shows that the complex shape of the
specularity has been correctly captured. A byproduct of the
optimization problem of equation5 is the roughness of the
surface (theα parameter of the Ward model) which is 0.24.

In the second experiment we evaluate the scheme laid
out in section4.2. The same plastic sphere is illuminated
by a complex fixed light source. A set of 9 images were

(a)

(b)

(c)

Figure 3. General light distribution recovery with
frontier points. (a) the plastic sphere with 80 fron-
tier points defined on it. (b) Left: the recovered light
field for the scene mapped onto a sphere. Right: a
view of the light source (two bright spots) - note how
the two light distribution peaks are preserved in the
estimated field. (c) Two close-up views of the spec-
ularity on the sphere. For each view, the specularity
in the real image is followed by a synthetic render-
ing of the same view using the estimated light-field
and BRDF. The structure of the specularity has been
captured correctly.



obtained from the same viewpoint, each with a single direc-
tional light source illuminating the scene from a different
but unknown direction. The goal of the experiment is to es-
timate these light directions using the frontier points on the
object. To provide ‘ground truth’ light directions, a mirror
ball is also placed on the scene (fig.4). The estimation,
described in equation8, is repeatedly performed with ran-
domly selected subsets of a number of frontier points. The
error of each estimation is measured by the maximum angle
between true and estimated directions. The graph in Figure
4 shows the decrease in estimation error with an increasing
number of frontier points. It demonstrates the feasibility
of accurate recovery of light direction using as few as 100
frontier points. The surface roughness parameter obtained
from the solution of equation8 is found to be equal to0.27
with a standard deviation of0.03, matching the estimate ob-
tained in the previous experiment.
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Figure 4. Light direction recovery with frontier
points. Left: The setup with the diffuse and mirror
balls for the evaluation experiment. Right: The max-
imum angle between estimated light directions and
true directions vs the number of selected FPs. The
error bars show the +/- 3 std. dev. intervals

Figure 5. Quantitative evaluation of reconstruc-
tion method. Input images and resulting 3-d surfaces.
Mean depth error is 4.6% and 10.1%.

6.2 Photometric stereo evaluation

In this section we describe a set of experiments that ex-
plore the feasibility of using frontier points to perform pho-
tometric stereo on non-Lambertian objects.

The first experiment is performed on synthetic 256x256
images of the ‘Mozart’ and ‘Penny’ scenes for which

(a)

(b)

Figure 6. Bottle reconstruction. (a) Two sets of
images of the bottle (right), real example ball (bottom
left) and synthetic ball (top left) generated from 100
sample points. (b) Views of the 3-d reconstruction of
the bottle

ground truth is provided [23], to quantitatively measure the
accuracy of the reconstruction method described in section
5, in isolation from the accuracy of frontier point placement.
The frontier points here are simulated by randomly pick-
ing points on the true surface. Input images and results are
shown in Figure5. Using 80 random sample points (with
their surface normals) on the true surface, the mean depth
error for ‘Penny’ is 4.6% and 10.1% for ‘Mozart’ where the
percentages are taken with respect to the size of the depth
range (Zmax − Zmin) for each scene.

The second experiment illustrates the feasibility of re-
placing the ‘example’ object, required by the method of [9]
by a sparse sampling of the reflectance function and by fit-
ting an appropriate parametric model. The setup consists
of 8 images of a bottle from the same viewpoint under 8
different single light source illuminations. Additionally we
are given 8 images of an ‘example’ sphere of the same ma-
terial as the bottle, under the same light conditions. In [9],
the entire example sphere images are used to recover a nor-
mal direction for every pixel location on the bottle. Figure6
demonstrates that similar results can be obtained with just a
sparse sample of 100 points randomly selected on the exam-
ple sphere. The figure shows the bottle and example sphere
images, synthetically rendered example spheres using the



100 sample points as well as views of the 3-d reconstruc-
tion using these synthetic example spheres.

The third experiment uses frontier points to perform a
photometric stereo reconstruction of a real, highly specular
porcelain figurine. Contours of the figurine were extracted
in a set of 20 images two of which are shown in Figure7
(b). From these contours 100 frontier points were defined
on a small convex region on the figurine. Subsequently, 14
images of the figurine were obtained from a single view-
point under 14 different single light sources. The directions
and intensities of the lights as well as BRDF parameters of
the porcelain surface were estimated by solving equation
9. Figure7 (c) shows the synthetic example porcelain balls
next to the porcelain figurine. Each example ball is rendered
with the same BRDF parameters and under the same light
conditions as the corresponding real image. The photomet-
ric information thus obtained was then used to reconstruct
the figurine and images of the reconstruction are presented
in Figure7 (d).

The final experiment is a photometric stereo reconstruc-
tion of a shiny stone statue. As before, 20 images were used
for contours which resulted in 100 frontier points, which
are shown in Figure8 (a). Example balls made of the same
material are shown in8 (c) with images of the 3-d recon-
struction shown in Figure8 (d).

7 Discussion
This paper advocates the use of frontier points for the ex-

traction of photometric information from images. We have
presented a practical, robust and efficient solution for the
recovery of illumination, surface reflectance and 3-d shape
of a non-Lambertian uniform object from a number of im-
ages. The accuracy of the method has been evaluated em-
pirically on synthetic scenes and the feasibility of shape
and reflectance reconstruction using frontier points has been
demonstrated on challenging real objects.

Frontier points have so far mainly been used for struc-
ture and motion recovery. However, the high degree of ro-
bustness with which they can be extracted as well as their
relative independence from scene lighting and reflectance
makes them ideal for extracting photometric information.
While this paper has focused on a few test cases, the overall
aim is to highlight the potential of using frontier points for
photometry, either on their own, as a starting point, or as
extra constraints to most photometric calculations.
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