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Abstract tracking is formulated as a classification task. Colénsal.
proposed a method for on-line feature selection which se-

We propose a novel approach to designing algorithms for lects the most discriminative features from a pool of color-
object tracking based on fusing multiple observation mod- based features]. Discrimination was evaluated as either
els. As the space of possible observation models is too largehe two-class variance ratio or the difference of the first
for exhaustive on-line search, this work aims to select mod-two likelihood peaks. Avidan introduced ensemble track-
els that are suitable for a particular tracking task at hand. ing, where multiple (3-5) weak classifiers are combined
During an off-line training stage observation models from via AdaBoost []. At each frame a new weak classifier is
various off-the-shelf trackers are evaluated. From thitada learned and the ensemble is updated by replacing the least
different methods of fusing the observers on-line are inves reliable classifiers in each time step. A variation on this
tigated, including parallel and cascaded evaluation. Bxpe theme is the on-line boosting tracking algorithm by Grab-
iments on test sequences show that this evaluation is usefuher and Bischof, where a larger pool of 250 weak classifiers
for automatically designing and assessing algorithms for a is evaluated and updated at each time step and a smaller
particular tracking task. Results are shown for face track- number of 50 selectors chooses the ones that are combined
ing with a handheld camera and hand tracking for gesture into a strong classifier9].
interaction. We show that for these cases combining a small
number of observers in a sequential cascade results in effi-
cient algorithms that are both robust and precise.

In practice, an issue with on-line adaptation is the adapt-
ability vs. drift trade-off. Allowing the tracker to adap t
rapid changes of the object’s appearance brings the risk of
incorrectly adapting to the background. Ideally one would
. like to have an object model available that includes all
1. Introduction possible variations. Such a fixed object model could then

be used as an ‘anchor’ for the tracker. Obtaining such
a model is challenging and different representations have
been used, including the color distributio?j,[a represen-
tation learned from a short initial sequendéjj[or an off-
éine trained detector[3, 25]. Detectors have been included

It is well known that combining multiple observation
models can significantly improve the performance of a vi-
sual object tracker. The literature on multi-cue trackisg e
sentially demonstrates the concept of different cues cempl
menting each other and thus overcoming the failure case . : X ) )
of individual cues J, 3, 8, 11, 15, 18, 20, 21, 23. A typi- into tracking syste_ms by glther S|mplly r.unnmg them'm tan-
cal example might be a hand being tracked while it moves dem [_ , 25] or by integrating them yv|th|n the trackers f)b'
in front of the face. The hand may still be tracked based S€rvation model]t, 1¢]. Indeed, a viable tracking solution
on shape features while color features become less reliable!S 1© US€ @ detect-and-connect strategy, shown for example
The most common approach to multi-cue tracking is to eval- I [17]. However in many cases this approach is notyet suf-
uate several observers in parallel and subsequently cembin ficiently fast for real-time tracking and the detectors aile s
their output, by either switching between therj pr by ~ notsufficiently flexible.
probabilistically merging therm] 15, 18, 20]. The main is- In this paper we address the question of how to design
sue when merging tracking results is how to obtain a good a tracker using multiple observation models. The idea is to
confidence measure for each cue. This is a tricky questionlearn which of these are suitable as components and how
since the performance of one cue may only be assessed bthey should be arranged for efficient evaluation. We con-
using a different cue or different representation of thgaar  sider particular tracking scenarios, e.g. tracking a faitle w
object. One answer is the discriminability between fore- a handheld camera, and collect representative sequences
ground object and background region. This is the basisthat are ground-truth labeled by hand. We learn error distri
of recent work ordiscriminativetracking [L, 4, 9], where butions on the training set that are then used to efficiently



1 ues measure the performance of combinations of observers.

osl e The observers we consider are those used previously in
tracking algorithms, see Tabldor a list of observers evalu-
< %81 1 ated. They can be classified into four types: single template
% 07t ~ 1 matching, motion consensus of local featurgsi[3, 17],
§ 0.6} histogram-based region matching] gnd on-line classifi-
3 cation [, 9, 16]. Note that the individual observers are not
gos ‘ 1 restricted to using a single cue.
;g 04 : Given an image sequendgt = 1,..., 7T, at every time
5 0s stept each observaD”, k = 1, ..., K computes an estimate
2 of the target locatiork! as well as an errarf = d(x¥, x9")
02 1 as distance to the labeled ground truth locatigh
o1l | The estimatek; is represented by a center location and
‘ scale estimate and typical distance measures are either
400 500 bounding box overlap or a scale-normalized distance be-

tween the centerss[. Every observer also outputs a con-
fidence value’*, which is computed depending on the type
of observer. Following previous work, this can be a his-
togram distance for region trackerg,[a measure of mo-
tion consensus for local feature trackerk ¢r the classifi-
cation margin for on-line classifiers]] Confidence values
have regularly been used to compare and integrate the re-
#75 #129 #201 #500 sults of multiple observers. However, most observers have
a relatively simple object representation thus the confiden
value itself cannot be expected to be perfectly reliable. Fo

low) of two stand-alone trackers with different observatimod- example an observer_may haye a hlgh confidence valug at
els: maximum correlation (NCC), and randomized templaiekr an |.ncorrect Iocat|on. if there is an object close-by that is
ing (RT). In this example NCC is more accurate but fails early ~ Similar to the target in the observer’s feature space. Here

while RT is able to track over a longer period with less prigsis the confidence value is simply regarded as a single feature
computed by the observer. Loss of track occurs when the er-

ror e¥ is above a threshold value In this case the tracker
evaluate combinations of observers on the test set. Thepytputsr as error value and is re-initialized at the next suc-
tracking algorithm therefore only needs to include a small cessful detection. Detections are pre-computed by running
number of components at run-time. The observation mod-an off-line detector over all sequences. The performance of

els are components from different stand-alone tracking al- 5 tracking algorithm is estimated as the expected error over
gorithms such as single template matching, optical flow and 5)| frames

on-line classification. We also include an off-line trained
detection c_omponentthat is used to initialize the trackelr a Elek] = 1 Z k=1, K. (1)
prevent drift. T4

The following section introduces a method for evaluat-
ing individual observers, introducing notions of trackeep  However, this function does not allow the comparison of
cision and robustness. SectiBrexplains how these mea- observers when track is lost because the error is meaning-
surements can be used for evaluating the performance ofess in this case. In practice we are therefore interested in
combinations of observers. Schemes for parallel as well asboth the tracking error while the tracker is following the-ta
cascaded computation of the observers are compared. Exget as well as the probability of losing track. This motigate
periments in sectiod show results on two scenarios, face the distinction into two performance criteria, precisioma
tracking with a handheld camera and hand tracking with a robustness. Precision is related to the expected errangluri
static camera. successful tracking by

Figure 1.Example of precision vs. robustness of trackersThe
plot shows the tracking error on a hand tracking test seqaedhe-

2. Evaluation of Observation Models 1— E[e*|e* < 7]. ()

The goal is to find, for a given tracking scenario, the best The robustness is the probability of successful tracking as
observer or combination of observers. The approach is to
first evaluate each observer individually and from these val plef < 7lef , < 7). (3)



The measurements for the individual observ@rson a

[N

traiﬂing sequence are thus given by === NCC (norm. cross—correlation)
0.9 RT (randomized templates)
ZF={xF el Y t=1,...T. (4) 08l
This allows the evaluation of single observers on the < 0'7\
complete sequence, not just on the first successfully ttacke & *°[ "~ _
segment. Note that loss of track can occur at any time £ 95 R
during the sequence when an observer’s particular assump ~ § oar RENR R
tions, e.g. slow motion or small pose change, do not hold. E 0l S
The number of tracked frames when running the tracker 0al s —
only once is dependent on when this event occurs: if it is RN
near the beginning of a sequence the measured robustnes il -l
is worse than when it is near the end. The advantages of the 8 o7 o7 o8  oss o5 oo 1
proposed measure are the following: (i) it is independent of confidence value c*

the position in time of failure cases. (ii) all frames in the Figure 2.Expected error as function of confidence. This data
labeled sequences are considered in the evaluation. Frames obtained from training sequences and allows the direntzar-

during tracking failure are discarded, so the underlying as ison of observers given their confidence values. Shown here a
sumption is that the time until the next detectionisrell§iv  the results for observers NCC (norm. cross-correlationdl &ir
short. (randomized templates).

It is also interesting to consider the relationship between
precision and robustness. Observers with a fixed spatial

mod_el tend to be more precise .than observers where _theobservers are available at each time step and the output of
spatial a_rrangement IS more ﬂ?X'ble’ see _fgr_exqmple FI9-the most reliable observer is selected. Alternativelyeoth
ure 1 which shows tracking (without re-initialization) us- fusion methods could also be used, for example by weight-
ing single template matching and local fe.at!”e _matching ing the observer estimates or voting schemes that give a
on one of the test sequences. Nofce that S|n_1|_lar _|dea_s hath:onsensus-based estimate. In sequential or cascaded eval-
recently emerged in the \_/lsua! Ob](.aCt cIas&ﬂc_an_q !rtera uation observers are evaluated in sequence: if the first ob-
ture, where a representatlonfsr invariance vs. discrinveat server returns a high confidence, then no other observer is
power trade-_off was explore@{]. . evaluated. Otherwise the evaluation continues with thé nex
It IS possml_e to use_each o_bserver asa smgle_ COMPOypserver. The advantage of sequential observation is that
nent in a tracking algorithm. Without using a stopping cri- ,, 5 erage significantly less computation is required. How-
terion, the tracker will continue tracking and eventuallyd oo the order of evaluation as well as the thresholds on the

the target. For unseen data a threshold on the confidence ,fijence values clearly are critical for good performance
value is commonly used to terminate tracking. If ground

truth is available, the trade-off between precision and ro- ~ Given the individual measuremen#’ of observers we
bustness can be explored by changing the threshold value evaluate the method of switching observers based on their
(in equationsz and3). When the tracking error exceeds confidence*. Ideally we would like to select the observer
tracking is stopped and the tracker re-initialized. Sgttin ~ With the lowest error at each time step. This information
to a small value enforces high precision but low robustnessis not available at test stage, so instead the observers con
and vice versa. In our experiments for eva|uating individ- fidence value is used. However, these values of different
ual observers the threshold valuen the error is setto 1,  observers cannot be compared directly, since they are com-
corresponding to the case of having clearly lost track. Pre-puted in differentways (see last column in Tab)eln order
cision and robustness are then computed from the measurelo make these values comparable we estimate the distribu-
ments ¢) as in equationg and3, taking expectations over  tionsp(e*|c*) from the training data, i.e. the error distribu-

all frames of the test sequences. tion given the confidence value of obser. To use the
finite data set we discretize the range of thevalues and
3. Evaluating Multiple Observers computep(e¥|c¥) in each partition. For the evaluation we

represent it by the mean of each distributiéii¢®|c*]. Fig-
This section deals with the question of how to evalu- ure?2 shows two of these functions for observers NCC (nor-
ate the performance gain that can be achieved by combinimalized cross-correlation) and RT (randomized templates)
ing multiple observers. We distinguish two different ap- on hand tracking data. As an example, if both observers re-
proaches of combining observers: parallel and sequentialturned a confidence value 619, the expected error of NCC
respectively. In parallel evaluation the estimates of ipldt is lower than that of RT and NCC should be chosen.



Method Observation Estimate Confidence value

NCC Normalized cross correlation max correlation corietascore

SAD Sum of absolute differences min distance distance score

BOF Block-based optical flow of & 3 templates mean motion mean NCC score

KLT [17] Kanade-Lucas-Tomasi sparse optical flow using 50 features centroid of good features  fraction of good features

FF[13] Flocks of features: Tracking 50 local features with higthoco centroid of good features  fraction of good features
probability and ‘flocking’ constraints

RT [2] Randomized templates: NCC track of eight subwindows, witbentroid of good features  fraction of good features
motion consensus and resampling

MS [6] Mean shift: Color histogram-based mean shift trackinghwitmin histogram distance histogram distance
background weighting

C[27 Color probability map, blob detection scale space maximum probability score

M[27] Motion probability map, blob detection scale space maximu probability score

CM [14] Color and motion probability map scale space maximum podiascore

OBD [9] On-line boosted detector: Classifier boosted from pookeof-r max classifier output classifier margin
angle features updated on-line

LDA[16] LDA classifier computed from five rectangle features in the-p max classifier output classifier margin
vious frame (Observer 1 in.f])

BLDA[16] Boosted LDA classifier using 50 LDA classifiers from a pool ofnax classifier output classifier margin
150, trained on the previous five frames (Obs. 2lif]{

OFS [] On-line feature selection of 3 out of 49 color-based feagur centroid of top features mean variance ratio of se-
based on fg/bg variance ratio lected features

Table 1.0Observers in the evaluation.A diverse range of observers are tested in the experimehey dan roughly be grouped into four
types: single template matching, local feature matchiigtogram-based region matching, and on-line classifieetw®en them they use
a variety of cues, including image intensity, color and motieatures. Some observers maintain a fixed representatide others are
updated over time.

3.1. Parallel evaluation Detection global detection
_ , 1 M
The parallel evaluation scheme selects the observer with

the lowest expected error given its confidence value at eact

Parallel 3
time step, i.ek*= argmin, E[e*|c*], see top of Figuré. evaluation @
e 1 1

(=]

If this error is above a certain threshold, then a detector is x; x; X
used to re-initialize. The output of the individual obsesve |, local
is used to evaluate the performance over different combina- @ Xy 0 detection

tions of observers.
The running of tests consisting of all possible combina-
tions of all trackers on all test sequences would take a pro- Detection  global detecgion f J

hibitive amount of time to complete. We therefore run all !
the observers individually on the test sequences and recor¢ 0 0 0 .

. Cascaded @ @ @ local detection
the results for each frame. These results are then used it el ‘ . ) )
the combination tests as the result from each componen 2 e

observer. In order to test the validity of such a setup, we :

performed tests using the complete tracking framework for
selected combinations of observers. Figure 3.Evaluation schemes(top) In the parallel evaluation the

output from the observer with the lowest expected error éseh.

(bottom) In the cascaded evaluation the next observer is@rdl-

uated if the expected error is above a threshold. An offiliamed
Although the combined estimate is expected to be bet- detector is used to re-initialize. The binary tests in tlubesmatic

ter than individual estimates, the main disadvantage is the'®Present threshold tests on the expected error.

increased execution time. In cascaded evaluation observer

are evaluated in sequence, starting with the first observerno observer returns a sufficiently low expected error, the al

and continuing with the next observer only if the expected gorithm attempts to jump to the top of the cascade using

error is above a threshold value, see Figareottom. If local detection. For evaluation, the output of the individ-

1
-1
L®

3.2. Cascaded evaluation
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Figure 4.Example sequencesThe algorithms are tested on (top)
hand tracking on sequences taken indoors with a static caeued
(bottom) face tracking on footage taken outdoors with a el
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ual observers is used to assess the performance of differer
combinations of observers and threshold values for switch- %%
ing observers. g 0ol
§ 0.85F : FE

3.3. Dynamic model discussion 2 ogf ON;(;D

A dynamic model is an integral component in every é 007? RT o8 "
tracking algorithm as it can enable tracking through short ? ' BoA KT
periods of occlusion or weight the observations accordingt 2 **f - o
the most likely target motion. However, for our evaluation 5 08 ®BOF OFs
we do not want to be dependent on the dynamics which are 0851
difficult to model in the case of rapid hand motion or cam- 0893 Yy 008 006 007 058 059 .

era shake. Instead we sample the observation space dense._, robustness [prob successful track]
at each pixel location in a neighborhood around the previ- Figure 5.Evaluating individual observers. These plots show pre-
ous estimate and rely only on the observations without anycision and robustness on the test data for (top) hand data(lot
prediction. This methodology is consistent with the obser- tom) face data. NCC is the most precise observe_r on the hand
vation made in the particle filtering literature that thefper ~ dataset and the flocks-of-feature (FF) the most precise efette
mance largely depends on the proposal distributign§o data. In terms of robustness, the color-motion observer Y@M

. : . . . _best on the hand data while the FF observer performs best®n th
dynamlc_modell is gsed in our experiments, correspondmgface data.
to a maximum likelihood location estimate.

4. Experimental Results pected errors for each observer and the other half is used

. for performance evaluation.
We evaluated the method on two datasets, featuring

hands and faces,.respef:tively._ The hapd dataset coptains 13.1_ Individual observers

sequences (10 with rapid motion, 2 with slower motion) of

500 frames each of size 32@40, recorded at 30 fpg1]. We evaluated the observers in Tableon the two

The sequences are taken indoors with a static camera on topatasets. Figurgshows precision and robustness measure-
of a screen showing different people pointing their fist to- ments on the unseen test sequences. For the hand data, NCC
wards the camera in order to control a screen pointer. Theshows the highest precision while the color-motion (CM)
face sequences each show a runner approaching the cansbserver is the most robust. On the face data the flocks-
era during an outdoor relay. The dataset contains 42 se-of-features (FF) observer, which models the target using a
guences of 100 frames each of size 8480, recorded at 30  number of local features together with a color probability,
fps with a handheld camera. Example frames of these twois the most precise and robust observer. Single template ob-
datasets are shown in Figute The hand dataset contains servers such as NCC and SAD show lower robustness on the
motion blur, hand pose changes, other skin-colored objectsace data than on the hand data due to larger pose changes.
and occasionally people moving in the background. Track- Among the on-line classifiers on-line boosting (OB) shows
ing challenges for the face sequences include head pose antthe highest precision on both datasets. The LDA-based clas-
expression changes, camera shake, cast shadows and mefiers show relatively low precision on both datasets. The
tion blur. Half of the sequences are used to learn the ex-robustness values of LDA and motion (M) observers on the
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Figure 6.Evaluation of observer combinations. These plots show the precision and robustness measurecedeghsequences: (top
row) hand data, (bottom row) face data. (left) pairs, paghlévaluation, (middle) pairs, cascaded evaluation, (tjghiplets, cascaded
evaluation. Only a small subset of data points near the upigét frontier with both high robustness and precision anown here.

face data are both below 0.93 and are not shown in the plot.observer C-RT has higher precision and robustness than ei-
ther of the components alone.
4.2. Parallel evaluation

. . 4.3. Cascaded evaluation
We evaluated all pairs of observers using a threshold

value ofr = 1, giving a total of 91 combinations. Sub- We compared all ordered combinations of pairs at five
sets of the results are shown in the left two plots of Fig- different threshold levels (0.1, 0.2, 0.3, 0.4, 1.0) resglin
ure6. Only combinations are plotted that are near the uppera total of 912 evaluations. Subsets of the results are shown
right frontier of high robustness and high precision. On the in the two plots in Figur&, middle. On the hand data most
hand data the combination of NCC with one of the color- of the results with the highest precision employ NCC at the
based observers CM, C and MS shows good performancebeginning of the cascade. High robustness is achieved when
In the videos the hand occasionally moves rapidly, result- at least one of the observers uses the color cue, e.g. C or
ing in significant motion blur. These cases tend to be failure CM. The combination of NCC and CM that was proposed
modes for intensity or gradient based methods. On the otheiin [27] performs well in terms of precision, losing slightly
hand, the color distribution is less affected by motion blur in terms of robustness compared to the parallel evaluation.
The robustness of these color-based observers is increase@n the face data, the combination NCC-FF has the highest
by most of the other observers that can help to bridge theprecision while FF-NCC is the most robust. The results also
frames where the color cue is unreliable. On the face datasuggest that arranging the observers in the order of their
combinations of NCC with the local feature based observerindividual precision leads to good performance. The idea
FF is the most precise, while combinations of FF with many is to estimate using the most precise observer at each time
other observers are most robust. The analysis also showstep. If the expected error falls below the threshold, the
how observers using different cues complement each othernext observer essentially acts as a fallback method. Note
For example on the hand data, the NCC-C combination hasthat in some cases the cascaded tracker may have switched
robustness-precision values of (0.997, 0.892), betteréiha  to an observer that is less precise during a difficult part of
ther NCC (0.992, 0.869) or C (0.991, 0.839) alone. Another the sequence. It is therefore worth checking regularly if it
example, which is not shown in the plot, is the combination is possible to jump to the top of the cascade again via local
of color (C) and local features (RT) on the face data, the detection in order to increase tracking precision.

same combination that was proposedih [The combined We also evaluated all triplets of observers at five different
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Figure 7.Comparison with real tracking results. These plots show the precision and robustness measuredlémtesd combinations of
observers. It compares the results by theoretical comhingfas in Fig.6) and real tracking results obtained for selected combioradi
of observers, shown here with grey background. The left tats ghow the results on pairs and the right two plots on &iplon the two
datasets. The agreement is reasonable, although ther&ésantly some variation between the results. Note thaetpésts only show a
small range of the complete data, thus the variation contgb&mehe global values is small.

threshold levels, a total of 4468 combinations. Subsets of
the results are shown in the two plots in Figéreight. As

a general observation, for both datasets the results are fur
ther improved. Successful combinations frequently inelud
different types of observers, typically a single template,
color-based observer and either motion or local featufes. |
one componentis reliable over a long time period, the over-
all performance changes only little. This can be seen for {8
example for the face dataset, where combinations of flocks- |
of-features (FF) as first component are consistently robust

Figure 8.Hand tracking using NCC-CM-M observers in par-

allel. The NCC-observer (blue) is used initially. During motion

blur the tracker switches to the CM-observer (red). For amleu
Given that the above analysis of observer combinationsof frames the M-observer (purple) is used while the lightiséd

is based on the analysis of individual observers, an obviousoff before switching back to CM.

guestion is how this result varies when the full combination

is tested in a tracking framework. They are not expected to

give identical results because in this case the output of ob-given application. The measurements of individual compo-
servers are dependent on each other. Testing all combinanents were used to exhaustively evaluate combinations of
tions of observers becomes prohibitively expensive, theisw components. We have shown results on observer pairs and
use the results on independent observations as a method tgiplets only, but the analysis can be applied to larger num-
select promising combinations to evaluate. Figushows bers of components.
results on pairs and triplets using cascaded evaluation on
both datasets. The precision in the real tracking result is
smaller than or equal to the results obtained with the sim-
plified analysis. With few exceptions, e.g. the NCC-FF-4
cascade in the second plot of Fig.the robustness values
are very similar to the result.

Figures8 and 9 show particular examples of observer
switching on hand tracking. Figuré® and11 show exam-
ples on the face dataset.

4 .4. Tracker evaluation on selected combinations

The observers that were used in this paper have been
used in stand-alone trackers. Some of these trackers them-
selves employ on-line feature selection. Here, instead of
switching between relatively simple features from a finite
pool, we propose switching on-line between observers that
may use different cues and estimation schemes. Our eval-
uation framework allows combining arbitrary components
that output an estimate and a confidence value. Direct com-
parison is possible because we estimate the observers’ erro

distribution given their confidence.

5. Summary and Conclusion _ o .
In our experiments cascaded evaluation gives similar

This paper has presented a method for selecting suitablgperformance to parallel evaluation at much higher effi-
component observers for particular tracking tasks. To this ciency. One suggested strategy is to use the most pre-
end a comprehensive set of 14 observers has been evalicise tracker if possible and use more robust ones as a fall-
ated on two challenging datasets. A new framework was back mechanism, with an off-line trained detector for re-
proposed that evaluates the robustness and precision of obinitialization. This architecture allows for long term ape
servers, allowing the user to choose a profile suitable for ation, which is required in many applications.



Figure 9.Hand tracking using NCC-CM-FF observers in a cas-
cade. The NCC-observer (blue) is used initially, switching to the

CM-observer (red) during motion blur.

Figure 10.Face tracking using an NCC-FF-MS cascadelni-
tially the accurate NCC-observer (blue) is used, switchimghe
more flexible FF-observer (yellow) as NCC can no longer handl
the pose change. Note that there is local occlusion by therbat
In the end the included background area causes problemsFor F
and the tracker switches to color-based mean-shift (white)

Figure 11.Face tracking using an NCC-FF-MS cascadeNCC
(blue) is used initially, switching to FF (yellow) when asig
shadow is cast on the face. Subsequently the tracker switche

mean-shift (white).
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