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ABSTRACT
This paper presents a system for interaction with a display
via hand pointing, where a single CCD camera on top of
the screen is directed towards the viewers. An attention
mechanism based on face and hand detection allows one user
to take control of the interface. Face recognition is used
for identification and customisation. The system allows the
user to control the screen pointer by tracking their fist. On-
screen items can be selected using one of four activation
mechanisms. Current sample applications include browsing
image and video collections as well as viewing a gallery of 3D
objects. In experiments we demonstrate the performance of
the vision components in challenging conditions.

1. INTRODUCTION
This paper presents a computer vision-based interface us-
ing a single camera on top of a display, as shown in Fig.1.
Such a system allows touch-free input at a distance and has
several uses in practice: virtual remote control for a TV or
for other home appliances, gaming, or browsing public in-
formation terminals in museums or window shops. Here we
present a complete system which integrates (a) an attention
mechanism for initiating the interaction, (b) face recogni-
tion for user identification and customisation (in terms of
content and functionality) and (c) fist tracking for moving
a pointer and recognition of hand gestures such as a ‘thumb
up’ or a ‘shake’ gesture for item selection. For face recogni-
tion we make use of the video data by matching image sets,
which has been shown to be significantly more robust than
single image matching [11]. Adaptation is a key element
for recognition under changing conditions and improves the
recognition rate by integrating new training data. The sys-
tem therefore includes a scheme to update the face mani-
fold representation online. The hand tracking problem is
challenging due to several factors, including motion blur,
distraction from background objects, and appearance varia-
tion due to pose and lighting changes. This is illustrated in
Fig.2, showing examples of image regions around the hand
taken from the test sequences. In order to handle such vari-
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Figure 1: Gesture interface. (a) set up of camera mounted

on top of the screen and multiple users in the field of view, (b)

interaction is initiated by hand detection, (c) face detection is

performed during the attention phase, (d) a sample application

for the inspection of 3D models.

ation the proposed hand tracker switches dynamically be-
tween different cues based on confidence estimates. In addi-
tion to tracking, automatic initialisation is required to find
the hand at the beginning and after loss of track. This may
occur regularly, for example every time the hand is outside
the camera’s view. The proposed system thus integrates an
off-line trained detector to initialise and update the trackers
to avoid drift.

In the following section we give an overview of prior work on
hand tracking in the context of this work. Section 2 explains
the attention mechanism that allows a user to initiate the
interaction. The face recognition component is described in
Section 4 and the fist tracker in Section 3. Experiments in
Section 5 demonstrate the performance of the face recogni-
tion and hand tracking components.

1.1 Previous work
A large number of vision-based gesture interfaces have been
proposed, only some of which are concerned with our par-
ticular setting of having a single camera pointing towards
a scene of possibly multiple people. In this paper we focus



on single camera systems. A stereo set-up or active time-of-
flight sensors present alternative systems. We give a brief
overview of prior art while highlighting some of the limita-
tions.

Freeman and Weissman [7] introduced a system for televi-
sion remote control by hand motion where a hand template
is tracked based on correlating local orientations. It uses
a hand template for detection and tracking and includes
background subtraction. The tracker works when the hand
moves slowly, but edge features tend to be unstable when
motion blur occurs. Bretzner et al. [5] used multi-scale blob
detection of colour features in order to detect an open hand
pose with possibly some of the fingers extended, correspond-
ing to different input commands. A simple 2D shape model
is used for tracking with a particle filter. The method re-
quires a skin colour prior, which is obtained by manually
labelling 30 frames. An interface based on tracking multiple
skin coloured regions was proposed in [1]. Again, the skin
colour model is obtained by manually labelling skin regions,
but the colour model is adapted during tracking. We ob-
served that trackers which use only colour features struggle
in our setting, in particular if the hand moves in front of the
face, if the user wears short sleeves, or if there are objects of
similar colour in the background. An active camera system
for hand tracking by finding regions of high motion and skin
colour probability was proposed in [13]. The Viterbi algo-
rithm is used to find a temporal path connecting local max-
ima of a likelihood function that combines these two cues.
A spatial prior is used to associate blobs to hand and face.
A restriction of the system is that it performs search over a
single scale only, requiring the user to be at a fixed distance
to the camera. Kölsch and Turk [12] presented a multi-cue
tracker that combines colour and many short tracks of lo-
cal features under ‘flocking’ constraints. The colour model
is automatically initialised from hand detection. Although
the method was shown for top-view tracking, it is general
enough to work for frontal views. However, it struggles with
rapid hand motion and skin coloured background objects.
The system in [21] used a trained detector followed by opti-
cal flow tracking. Tracking based on optical flow alone has
difficulties coping with rapid hand motion as well as mov-
ing background objects. Ike et al. [10] presented a real-time
system for gesture control that detects three different hand
poses independently in each frame. Due to the high com-
putation requirement it was implemented on a multi-core
processor. We included five of the above systems in our ex-
perimental comparison and present the results in Section 5.

To summarise, no complete system meets the requirements
of robust tracking, cleanly handles initialisation and track-
ing failure, works for both slow and rapid motion, handles
multiple scales, uses a single CCD camera and is sufficiently
fast to run on a standard PC.

2. VISUAL ATTENTION MECHANISM
One goal of this work is being able to set up the system in
an arbitrary environment, such as the living room, or a pub-
lic space, where multiple people may be within the camera’s
view. For some periods there may be no interaction at all
until one person initiates the interaction in order to achieve
a specific task. Initially our system performs face detection
using a boosted detector [18]. Multiple detections are as-

Figure 2: Appearance variation of hand regions. Shown

are cropped hand regions from test sequences. Motion blur,

changing pose and other skin coloured objects make tracking chal-

lenging.

sociated over time by minimising the sum of distances of
detections between two frames. Once a face is detected the
user is prompted to show an open hand gesture within the
area below their face, see Fig.1a. This also works for multi-
ple users in the scene. The rectangular input regions below
the face detections are ordered according to scale, giving eas-
ier access to users who are closer to the camera. The first
detection of an open hand triggers the face recognition step:
Detected face regions are stored during the attention phase
and the image set of the person who activated the system is
passed to the recognition component. At this point the user
may register in the database or, if they have used the sys-
tem before, they can choose to update their face model with
the new data. Recognition prompts a personalised greeting
message to be displayed (see Fig.1c) and the content can be
customised according to the user’s profile. Subsequently the
hand tracker becomes active and allows the user to browse
the content by selecting items from a menu that is over-
laid on the screen. Note that the scale of the face detection
is used to define the size of the interaction area while the
centre of the interaction area is set to the location of the
open hand detection. This means that the range of motion
remains constant for different distances to the camera.

3. HAND TRACKING
For initialisation, a detector for a fist pose is trained off-line
using the method of Mita et al. [18]. It is applied within
a region of interest I obtained during the attention phase,
which constrains the valid region of the hand tracker. Due
to the distinctive appearance of the frontal fist region a sin-
gle image patch is tracked using normalised cross-correlation
(NCC) [15]. The patch is selected as a smaller subregion of
the hand in order to discount background regions. NCC
tracking is accurate and works for slow hand motion within
a limited range of motion. However, It can only deal with
minor appearance variation, and rapid motion leading to
strong motion blur is also problematic. The idea therefore
is to start with NCC tracking and in case of failure apply
a second tracker as a fall-back strategy. The second tracker
uses different feature spaces, namely colour and motion (CM
tracker). Colour models for the foreground region and the
surrounding background region are obtained from the de-
tector and are represented by 32-bin RGB histograms. The
motion model is represented as histograms of the absolute
differences between consecutive frames. The CM tracker de-
tects scale space maxima of a likelihood function that uses
both cues. First a colour likelihood map is computed for
each location in the image region of interest p(x|col), x ∈ I .
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Figure 3: Different gestures for selection: (a) open hand

pose, (b) thumb up pose, (c) hovering for a short time period

and (d) a shake gesture.

Similarly a motion likelihood map p(x|mot), x ∈ I is ob-
tained. The likelihood function combines three terms as a
sum and is based on [13], however, here the functions are
smoothed by Gaussians with a variance depending on the
size of the previously detected hand. The likelihood func-
tion is defined as

p(hand|x) ∝ wc p(x|col) + wm p(x|mot) (1)

+ (1 − wc − wm) p(x|col) p(x|mot),

where wc and wm are weights that are determined through
experiments on a validation set (in our case wc = wm = 0.1).
Scale space maxima of this function are found with a ‘box
filter’ [23], which is an efficient approximation to the Lapla-
cian. The three terms in Eqn. 1 allow tracking in different
scenarios: e.g. if there is no other skin coloured object in the
background, the colour likelihood is discriminative enough.
Rapid motion leads to peaks in the motion likelihood func-
tion. The third term gives high values to objects that are
moving and are skin coloured. The terms could be combined
in a more principled way, but in practice this formulation
turns out to be quite efficient. Since the CM tracker essen-
tially models the shape as a simple blob, it can handle large
variations in pose. Both trackers return a confidence value,
which is the NCC correlation score and the filter output,
respectively.

The complete tracking algorithm proceeds as follows: Af-
ter detection the NCC tracker is active. If it returns a
confidence value below a threshold θNCC tracking continues
with the CM tracker. At every kth frame, the fist detec-
tor is applied in the local neighbourhood and, if successful,
NCC tracking resumes with a new template. Thus, trackers
(and corresponding features) are switched online. Tracking
is stopped when the confidence value of the CM tracker is
below a threshold θCM. A Kalman filter is used to combine
the estimates with a constant velocity dynamic model. The
approach taken in this paper is to efficiently but densely
sample the likelihood values around the estimated location.

Related tracking methods can be found in the extensive lit-
erature on multi-cue tracking [3, 14, 20]. The benefit of these
approaches is increased robustness when different cues have
different failure modes and therefore complement each other.
The most common idea is to run several trackers in parallel
and subsequently combine their output, by either selecting
between them [3] or by probabilistically merging them [14,
20]. In contrast, the proposed solution switches between
trackers (and corresponding features) entirely, therefore not
requiring trackers to run simultaneously. We further note
that our tracker is tightly integrated with a detector. In-
deed, local detection together with a strategy to link up
missing detections through time is a viable solution such as
in the system of Ike et al. [10]. Even though localisation is

Input

v2

u2

θ2

On−line Update

P1

P2

Manifold Learning

θΣby     cos   i

(Principal Angles)CCA

NN
Classification

Yes

P2
u1=v1

A model
set

set
A query

θ1=0

Figure 4: Face recognition by matching image sets. The

similarity between manifolds is computed as the sum of principal

angles and is used for NN classification. Once a query set has

been classified, it can be included in the model by on-line updating

the existing manifold.

not as precise as with NCC and less pose variation is han-
dled compared to the CM tracker, it allows handling mul-
tiple scales and updating the tracking template. Note that
the idea of running a tracker and a detector in tandem has
previously been used to build tracking systems that work
over arbitrary time periods, e.g. the system in [12]. Sim-
ilarly, detector output has been integrated directly in the
observation model [16].

3.1 Selection mechanisms
In order to activate a screen icon a selection mechanism
equivalent to a mouse click needs to be defined. Solutions
that have previously been proposed include changing hand
pose, finger or thumb extension and simply hovering over an
icon for a short time period [5, 7, 10, 12, 17, 21]. We have
implemented these by training separate detectors, see Fig.3,
(a) an open hand detector, (b) a thumb up detector, and
(c) hovering over an icon for a short period of time (0.5 sec-
onds). Additionally, we propose the following method: (d)
detecting a quick left-right shake gesture. The shake gesture
is detected by recording the hand motion over a sliding win-
dow of 20 frames and classifying this vector. In experiments
linear discriminant analysis (LDA) and k-nearest neighbour
classifiers were tested, but the most reliable results were
obtained by computing the distance to the closest positive
training example (among a small set of 75 examples) and
threshold this value. Only one of the four selection mecha-
nisms is used at any time, according to the user’s preference.

4. FACE RECOGNITION BY MATCHING
IMAGE SETS

This section describes the face recognition component of the
system. While the number of users may be small in our sys-
tem, the appearance variation may be large due to pose and
illumination changes. Our recognition component uses im-
age sets for matching, which are captured during the atten-
tion phase. The image set can capture appearance changes
and provide more evidence on face identity than a single
image alone. No temporal coherence is used as this may
actually decrease recognition performance [25].

Generally, there are three types of approaches to image set
(or vector set) matching: aggregation of multiple nearest
neighbour vector-matches [6], probability-density based meth-
ods [22], and manifold-based methods [24]. Taking the latter
approach, we match manifolds using canonical correlations.
Canonical Correlation Analysis (CCA) (also called canoni-



cal or principal angles) [24] compares manifolds by measur-
ing the angles between them (see Fig.4). Canonical correla-
tions, which are cosines of principal angles between any two
d-dimensional linear manifolds L1 and L2, are defined as

cos θi = max
ui∈L1

max
vi∈L2

u
T
i vi, i = 1, ..., d, (2)

subject to uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, i 6= j.
If P1,P2 denote the basis matrices of the two manifolds
(see Section 4.1), canonical correlations are conveniently ob-
tained as singular values of PT

1 P2, only taking O(d3). CCA
has the following nice properties: (a) It allows interpolation
of the vectors in each set when finding maximum correla-
tions, thus being more robust to data variation and noise,
and (b) the low-dimensional manifold representation allows
matching that is both time and memory efficient.

The manifold angle is a natural extension of prior manifold-
based face recognition methods. When a single face image
is given as an input, there is a standard way to classify it
by manifolds: by measuring the distance of the face vector
to each manifold and picking the closest one. When classi-
fying a manifold instead of a single vector, angles between
manifolds become a reasonable distance measurement. Ex-
perimental comparison with other vector-set classification
methods advocates the canonical correlation method [11].
Since Hotelling [9], CCA has received increasing attention
and recently Bach and Jordan [2] have proposed a proba-
bilistic interpretation, and Wolf and Shashua [24] proposed
a kernel version. Kim et al. [11] proposed discriminative
manifold learning for CCA, resulting in better performance
than other CCA-based methods.

4.1 On-line manifold learning
While most existing recognition systems rely on a single off-
line training phase, it is desirable to include new data when
it becomes available. Therefore the face recognition compo-
nent includes a method for user-interactive updating of the
manifolds. We will first explain how to learn the discrimi-
native manifold for CCA, i.e. the basis matrix Pi in Eqn. 2.
Recalling that the canonical vectors represent the directions
of most similar data variations the of two sets, it is ideal
to represent each set by the manifold that maximally repre-
sents the respective class data while minimising the variance
of other class data:

max
argPi

PT
i SiPi

PT
i ST Pi

, i = 1, ..., C (3)

where Si,ST denote the covariance matrices of the i-th class
and the total data. The basis matrix of i-th class model
Pi, is obtained as the generalised eigen-solution. It is too
inefficient in terms of time and memory to run the batch-
computation of the manifold whenever new data is added.
Instead, the two covariance matrices are first eigen-decomposed
as Si = QiΛiQ

T
i ,ST = QT ΛT QT

T , where Q, Λ are the eigen-
vector and eigenvalue matrix, respectively, corresponding to
the first few eigenvectors. The manifold is then updated by
separately updating the eigen-components and then com-
puting the manifold only by the new eigen-models. Owing
to its linearity, the method of Hall et al. [8] can be applied:
Qi, Λi,QT , ΛT are updated and Pi is computed by SVD of
(
√

ΛT Qi)
−1Qi

√
Λi.
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Figure 5: Hand tracker evaluation. Comparative results

showing the mean number of consecutively tracked frames over

10 sequences of 500 frames. The NCC/CM tracker is the most

robust.

5. EXPERIMENTAL RESULTS
This section presents quantitative results on the face recog-
nition algorithm as well as the hand tracking algorithm.

5.1 Hand tracking experiments
Given a number of candidate tracking algorithms, the fol-
lowing experimental set-up was used to compare them in
terms of tracking robustness. We recorded a set of 10 se-
quences of 500 frames each (size 320 × 240, recorded at
30fps) with hand-labelled ground truth of the hand location
and size. Robustness was measured as the mean number of
successfully tracked frames over the sequences. After loss
of track (defined by a scale-normalised distance being above
a threshold) trackers are re-initialised at the next detection
using an off-line trained classifier within the same sequence.
To reduce the bias introduced by the finite number of frames
(a failure close to the end may lead to a very short track) the
last measurement before the end of the sequence is discarded
if at least one tracking failures has occurred previously. The
trackers that were compared have been used in other hand
tracking systems and include: local orientation correlation
(LOC) [7], flocks of features tracking (FF) [12], optical flow
tracking using templates on a regular grid (OF) and local
feature tracking, KLT-tracker (KLT) [21], and boosted de-
tection (BD) [10, 12, 19, 21]. The performance of the indi-
vidual components, the CM and NCC tracker, was also mea-
sured. The results are summarised in Fig.5. The proposed
NCC/CM tracker performs best and loses track in only two
of the ten sequences. This is due to the CM component
locking onto other coloured objects, in one case the user’s
arm, in the other case the moving hand of another person.
In both cases the CM tracker’s confidence value drops below
the confidence threshold after a few frames and the tracker
re-initialises by global detection. The CM tracker comes
second in terms of robustness and Fig.5 suggests that the
results were very close. However, the CM method is much
less precise than NCC during slow hand motion. High pre-
cision is important in this case in order to allow navigation
with high accuracy, for example when activating on-screen
puttons.

The FF tracker can handle slow motion, but struggles with
strong motion blur. It can also be distracted by other skin



Figure 6: Comparison of individual trackers with com-

bined NCC/CM tracker. This figure shows snapshots of a

sequence and results of the NCC tracker, the CM tracker, frame-

by-frame detection and the proposed NCC/CM tracker.

coloured regions with salient features such as the face. The
regular block-based optical flow algorithm showed to be more
robust than the KLT tracker, but both had difficulties han-
dling rapid hand motion. Somewhat surprisingly the NCC
tracker is more robust than the LOC tracker. A back-
ground estimation step used in [7] does not change the per-
formance much (9 different updating weights were tested),
which is likely due to the fact that the background appear-
ance changes occasionally in the test sequences. The per-
formance of the boosted detector is lowest in terms of our
definition of robustness as consecutively tracked frames. The
average number of detections on the data set is 242, but it
varies significantly across the sequences. On some sequences
there are very few detections due to larger pose changes.

Fig.6 shows some typical results on one of the test sequences,
comparing the individual trackers as well as the frame-by-
frame detector output. The NCC tracker loses track dur-
ing rapid motion while the CM tracker is robust, but not
always accurate (see the two rightmost frames). The frame-
by-frame detector does not fire in several frames. The best
results are obtained with the combined NCC/CM tracker.
The switching behaviour of the NCC/CM tracker is illus-
trated in Fig.9. During this sequence the light is turned off
and on. Switches between components allows the tracker to
handle track successfully by updating its object representa-
tion.

5.2 Face recognition experiments
We have evaluated the face recognition performance using
a data set containing 5 people (10 sequences per person, 50
frames per sequence). The 10 sets were collected at different
times, days and places and leading to appearance variation.
The input dimension was set to 40 × 40 and the manifold
dimension to 10.

Fig.7 shows example inputs and the canonical vectors com-
puted by CCA. The canonical vectors in each pair ui,vi are
visually similar despite the large appearance changes across
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Figure 7: Canonical correlation (CCA) result on face

data. (a) Example input sets and canonical vectors u, v com-

puted.
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the two sets. As shown in Fig.8, the method achieved per-
fect recognition results after updating with 6 image sets.
The on-line method requires significantly lower computation
time than the batch-solution when increasing the amount of
training data. In the experiment one set per person was
added to the model at each stage and all remaining data
was used as query during each update. Five-fold cross vali-
dation was performed by random data partitioning.

6. CONCLUSIONS
We have presented a gesture interface by tracking a point-
ing fist with a single camera facing the user. Current sample
applications include browsing images and videos as well as
viewing a gallery of 3D models of museum artifacts. The
system allows the user to view the 3D model from different
directions by rotating it by hand. This can also be seen as
a step towards manipulation of virtual objects, which is still
an active research area [4]. Our proposed system includes
an attention mechanism that allows one user at a time to be
in control. Face recognition is employed for customising the
interface. To increase the recognition performance under
changing conditions the face model can be updated using
efficient online learning. For fist tracking, we proposed a
multi-cue method that switches trackers over time and is
updated continually by an off-line trained detector. In ex-
periments on ten hand pointing sequences our method out-
performed other algorithms proposed for hand tracking such



Figure 9: Switching trackers over time. This figure shows

the tracker’s switching behaviour, colours in the plot indicate the

component at each frame (blue=NCC, red=CM, green=detector).

During this sequence the light was turned off and on. Example

frames where transitions occur are shown below (first and third

pair from NCC to CM due to motion blur, middle pair from CM

to NCC via local detection).

as local orientation correlation tracking, flocks-of-features
tracking and optical flow tracking. Although the tracking
experiments in this paper show results on a relatively small
data set of 10 sequences, the system has been successfully
used by approximately 100 people within public exhibition
settings. The main failure modes were found to be false
fist detections, leading to incorrect adaptation of the colour
model, as well as the CM tracker’s reliance on colour and
motion cues alone.
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