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Abstract each [L6]. Recent methods for multi-classifier boosting ap-
proach the problem bjpintly clustering the positive sam-
This paper presents a new online multi-classifier boost- ples and training multiple classifierg,[13]. These tech-
ing algorithm for learning object appearance models. In niques have shown good results on learning multi-pose (or
many cases the appearance model is multi-modal, whichmore generally multi-modal) classifiers for object detatti
we capture by training and updating multiple strong classi- and our contribution is to formulate its online version for
fiers. The proposed algorithm jointly learns the classifiers the task of multi-modal object tracking. However, this is
and a soft partitioning of the input space, defining an area of not straightforward, the main reason being that in an on-
expertise for each classifier. We show how this formulation line setting the number of positive and negative samples
improves the specificity of the strong classifiers, alloveing  is not sufficient to ensure a good partitioning of the input
multaneous location and pose estimation in a tracking task. space in terms of classifier expertise in the initial phase.
The proposed online scheme iteratively adapts the classi-Figurel illustrates the classification results of (a) standard
fiers during tracking. Experiments show that the algorithm Adaboost f], (b) MCBoost [L3] and (c) the proposed algo-
successfully learns multi-modal appearance models duringrithm called MCBQ on a toy XOR classification problem.
a short initial training phase, subsequently updating them The positive class exhibits three clusters, but two of them
for tracking an object under rapid appearance changes.  actually form a single cluster in a discriminative sense as
there are no negative points between them. Standard Ad-
aBoost shows poor separation of the classes because it is
1. Introduction unable to resolve XOR configurations. For the MCBoost
algorithm and the proposed solution, we set the number
In object tracking a major challenge is handling appear- of classifiers to be three. MCBoost successfully divides
ance changes of the target object due to factors such agne two classes but shows overlapping areas of expertise
changing pose, illumination and deformatidi]. Recently  for the two classifiers, since the two clusters without neg-
a class of techniques using discriminative tracking hasbee ative data points in-between can be correctly classified by
shown to yield good results by treating tracking in a classi- 5 single boosting classifier. In contrast, the proposed-algo
fication framework {, 3, 5, 7]. A classifier is iteratively up-  rithm shows improved partitioning of the input space. As
dated using positive and negative training samples extlact 5 consequence, weak classifiers are used more efficiently.
from each frame. Online boosted classifiers have beenynile tracking continues, additional negative samples are
widely adopted owing to their efficiency and classification cojlected, eventually establishing three positive clisste
performance, which is required for tracking tasks 1, &]. a discriminative sense in this example. However, in the
However, as they maintain a single boosted classifier, theycase of MCBoost, the initially incorrectly assigned boost-
are limited to single view tracking or slow view changes of a ing classifiers are difficult to be correctly reassigned migiri
target object. Tracking tends to fail during rapid appeeean  gnjine updates. We have observed this case when classifiers
changes, because most weak learners of a boosted classifigje injtially trained on a short sequence that containsimult

tion of an online classifier in order to track these changes

increases the risk of incorrectly adapting to backgrourdre  We therefore propose an extension of the multi-classifier
gions. A multi-modal object representation is therefore re boosting algorithm by introducing a weighting functigh
quired. that enforces a soft split of the input space. In addition, we
Such a model can be either generati%el|/] or discrim- present an online version of the algorithm to dynamically
inative [L1]. Typically, in the latter case, distinct appear- update the classifiers and the partitioning. The algorithm
ance clusters are found first and a classifier is trained onis applied to object tracking where it is used to learn dif-



(a) Standard AdaBoost] (b) MCBoost [L3] (c) Proposed MCBQ

Figure 1.Learning cluster-specific classifiers on toy dat@ihe positive class (circles) exhibits three clusters aslirrounded by data from
the negative class (crosses). (a) The classification remiftg a standard boosting classifier shows errors due to & Xonfiguration
(colored circles denote classification as positive clagb). The Multi-classifier boosting algorithm of §] successfully divides the two
classes but uses two boosting classifiers (blue and red im#)e same region, leading to inefficient use of weak classifiThe two
clusters with no negative data points between them can lreatty classified by a single boosting classifier. (c) Thessification result
of the proposed MCBQ algorithm shows improved classifieegige.

ferent appearance clusters during a short initial supedvis Recently multi-classifier boosting was introduced, where
learning phase. clustering and classifier training is performed jointly T 3].

The paper is organized as follows. We briefly review pre- These methods have so far been applied to object detection,
vious work on multi-classifier learning and object tracking where the full training set is available from the beginning.
In section3 we propose MCBQ, an algorithm for multi- However, direct application to the online tracking domain
classifier boosting using the weighting functighto learn may lead to significant overlap of the classifier regions due
multi-modal appearance models. Sectioshows an online  to the small amount of initial data as explained in the pre-
version of MCBQ for tracking with a short initial learning  vious section. In the case of classifier overlap, weak classi
phase and subsequently using an online update scheme. Ifiers are used less efficiently and initially overlappingsela
the results sectioh we compare the proposed MCBQ with  sifiers in the algorithm are difficult to separate during sub-
standard boosting and the MCBoost algorithmig][ We sequent updates.
also compare the performance with that of two recent meth-  This paper takes the view that MCBoost is an example

ods, Semi-supervised Online Boosting and Online Mul- of a more general algorithm, where clustering can be based

tiple Instance Learning?]. on desired properties. In order to achieve this we introduce
a function@, which weights the contributions of each clas-

2. Prior Work sifier on a particular sample, similar to gating functions in

Mixture of Experts modelsl[].

A number_of online_ adaptation schemes_ have_been Pro-  Other related work is multiple instance learning
posed for object trackingl[ 5, 7]. The workin ] intro- — (\iL) [17]. The algorithm learns with ‘bags of examples’
duced online feature selection for tracking, where in eachyhich in the positive case only need to contain at least one
frame the most discriminative features are chosen to coM-positive example, thus training data does not have to be
pute likelihoods Ensemble Trackinffl] takes a similar ap-  jigned. The MIL boosting algorithm simultaneously de-
proach by combining a small number of weak classifiers ects positive samples in bags in order to train weak clas-
using AdaBoost. Online boosting for tracking] intro-  sfiers. The MCBoost algorithms ir2[ 15 can be seen as
duced a scheme where features are selected from a pool 0§ mylti-class extension of multiple instance learning veher
weak classifiers and combined into a strong classifier. O”'multiple classifiers, each of which simultaneously detects
line schemes without any target model tend to suffer from tayored positive samples and learns weak learners for them,
drift. One solution is to introduce an object model that is zre trained. Both MIL and MCBoost are derived from
learned prior to the tracking phasg, [L(]. This approach  tne interpretation of boosting algorithms as gradient de-
was first employed by Jebara and Pentland, who verifiedgcant 15). There is an online version of MIL Boosting for
the tracker output with a classifier trained to detect the tar tracking [3] and our proposed method in this paper can be
get object [ (]. The work in [5] proposed semi-supervised seen as a multi-class extension o[
learning, and included a boosted detector or simply the ob-
ject region in the first frame as a prior to an online boosting 3. Joint Boosting And Clustering
scheme. A single AdaBoost classifier may not always be
sufficientto capture multi-modal data, and one approach has This section first briefly reviews multi-classifier boost-
been to cluster the data and train separate classifiéfs [ ing as proposed by?[ 13], then details our improvements



in the MCBQ algorithm. In both cases the following nota- no guarantee of pose-specific clustering. In fact there is
tion is used: Given is a set of training samplex; € X, no constraint in the algorithm that enforces strong classi-
where X is the input domain (in our case image patches), fiers to focus on a unique area of expertise, and there is no
with labelsy; € {—1, 41} corresponding to non-objectand concept of a metric space on which perceived clusters can
object, respectively. Additionally, each of the object sam be formed. We make the classifier assignment explicit by
ples can be considered belonging to oné&ogroups where  defining functionsQ’“(xi) : X — [0,1] which weight the

the class membership is a priori unknown. influence of strong classifiéron a sample;. By mapping
_ N _ x; into a suitable metric space, we can impose any desired
3.1. Multi-Classifier Boosting clustering regime on the training set, th@sdefines a soft

In order to discriminate between object and non-object a partitioning of th? Input space. The chou?e@fls depen-_
boosting framework is used to tralti strong classifieré *, dent on the application domain. In principle any function
whereH(x;) = 3, ok bk (x;), k = 1 K. andht is the can be used that captures the structure of the input domain,
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t-th weak classifier of thé-th strong classifier weighted by l.e. that _mz?jpsf_ thz sbamap[I(es to meanlnggul cIu_sters._ In this
aF. Each weak classifier comprises a simple visual featurepaperg Is defined by a/-component Gaussian mixture

and threshold, and each strong classifié(x;) is trained model_ir! the space of the first principal components of
to focus its expertise on one of tli€groups. The key is the the training data. Thé-th GMM .mOde defines the area of
use of anoisy ORfunction to combine the output of strong experhse of t.héj'th str_ong cIassnﬂgr. The GMM s up.d-ated.
classifiers. This function classifies a sample as positive if using a EM-like algorithm alongside the weak classifiers in

any of theK strong classifiers does so, and negative other- the boosting algorithm:
wise:

p(xi) =1— H(l — Pk (x:), (1) Algorithm 1 Updatirllg Weighting Functio®®
I 1. Calculate the likelihood of each of the samples under

- ifiem” (x:
wherep*(x;) = 1/(1 + exp(—H*(x;))). Following stan- thek-th strong classifier,” (x; )

dard AdaBoost{], a distribution of weights for the training
samples is maintained, one distribution per strong classifi
and at each round the algorithm chooses a new weak classi-
fier b} with associated weight for each strong classifier, and
updates the sample weights for the next round. For given
weights, the algorithm find& weak classifiers at theth
round of boosting, to maximiz&_, wf hf(x;), hf € H,
wherehf € {~1,+1} andH is a set of weak classifiers.

2. Set the new probability of the sample being in the
th GMM component as its curredl value scaled by the
likelihood from the classifierQ” (x;)p* (x;)

3. Update thek-th cluster by the mean and covariance
matrix of the samples under this probability.

The weak classifier weights’, k = 1, ..., K are then found The new noisy-OR function in Equatidnbecomes:
by minimizing £L(H + ofh¥) by line search, wheré is

a loss function. Applying the AnyBoost methoiid], the pxi) =1-JJ(1 = Q" (x:) p¥(x:)), 3)
sample weights are set as the negative gradient of the loss k

function £ with respect to the classifier score. Choosihg

. o : . leading to the new weight update equation:
to be the negative log likelihood, the weight/eth classi-

fier overi-th sample is updated by . oL yi — p(x;) QF(x;) p¥(x;) (1 — pF(x;))
wh= 9B _wimpl) ey g R
OHk(x;) p(xi) The full MCBQ algorithm is summarized in Algo-

rithm 2. Note that compared to the original multi-classifier
Jooosting algorithm additional steps 1, 2, and 8 are required
and step 7 is modified.

Clearly the choice of{, the number of strong classifier,
is important for good performance. One method, suggeste
in[13], is to start with large values df and select the num-
ber of distinctive clusters.

4. Online MCBQ for Object Tracking

The goal is to learn an object-specific appearance model
Multi-classifier Boosting creates strong classifiers with using a short initial training sequence in order to guide the
different areas of expertise. However, it relies on thentrai  tracker B, 14]. The number of training samples is limited,
ing data set containing negative samples which separate théut is sufficient to bootstrap the classifier. Subsequenty,
positive samples into distinct regions in the classifiers*d  would like the tracker to remain flexible to some appear-
criminative feature space. This also implies that there is ance changes while using the learned model as an anchor.

3.2. Classifier Assignment



Algorithm 2 Multi-classifier Boosting with Weighting The error of the weak classifier is then given as the nor-
Function@ (MCBQ) malized sum of the weights of mis-classified samples:
Input: Data se{x;,y;), set of pre-defined weak learners.
Output: Multiple strong classifiers?* (x;), weighting Y 1(hg (i) # yi)lwy|

functionQ” (x;). ©,m > |wk| ®

1. Initialize @ with a Gaussian mixture model N

2. Initialize weightsw? to the values 0" (x;). A vye_ak classme_r can then be chosen from a pool as the
3. Repeatfot — 1,...T one giving the minimum error.

4. Repeatfok=1,..., K . .

5.  Find weak learners} maximizing$", wFhf (x;). 4.2. Supervised Learning

6. Compute weights; maximizing£(H* + afhy). During the supervised learning stage, we have a set of
7. Update weights by Equatieh weighted samples, and a global feature psoMeight dis-

8. Update weighting functio®”(x;) by Algo 1. tributions are initialized to randomly assign positive sam
9. End ples to a strong classifiér, and at each roundand strong

10. End classifierk the equations, 6, 7, 8 are applied to initial-

ize and select a weak classifier based on exact errors. In

order to facilitate selection at the incremental updatgesta
This motivates the following approach of iteratively adapt we store in each selectdi¥, for the positive and negative
ing multiple strong classifiers with MCBQ. samples (1) for each feature value, the sum of weights of

In order to move MCBQ into an online setting we need samples with that value, and (2) the sum of image weights.
a mechanism for rapid feature selection and incremental To improve speed, each selector only keeps the hest
updates of the weak classifiers as new training samplesperforming weak classifiers for use in the incremental up-
become available. The online boosting algorithih dd- date stage. After each round of boosting, image weights
dresses this issue, allowing for the continuous learnireg of are updated as in Equatidnand voting weights calculated
strong classifier from training data. The key step is, at eachbased on the error of the chosen weak classifier.
boosting round, to maintain error estimates from samples
seen so far, for a pool of weak classifiers. Ateach rouad  4.3. Incremental Update
selectorS; maintains these error estimates for weak classi-
fiers in its pool, and chooses the one with the smallest error
to add to the strong classifier.

To summarize, our tracking algorithm contains two-
stages: Firstly, training data is assembled in a supervise
learning stage, where the system is given initial samples
which span the extent of all appearances to be classified
An initial MCBQ classifier is then built rapidly from this
data. Secondly, additional training samples are supptied t
update the classifier with new data during tracking.

Once the initial classifier has been created, it can be up-
dated with new samples. Weights for positive samples are
initialized based on their classification responses froahea
dpf the component strong classifiers in the MCBQ classifier,

and the sample is passed through the boosting framework.
The summations stored in each selector can be updated from
the new sample, and thus the new classification thresholds
for the weak classifiers calculated using equations, 7.

The error values from Equatio® are used to choose the
best weak classifier to add to the strong classifier. Finally,

. . the worst-performing weak classifier is replaced with a new
4.1. Weak Learning and Selection randomly-generated one. Note that in the cas@ dfeing
defined as a Gaussian mixture in PCA space, we update the
PCA space by the algorithm of Hadt al. [9] before updat-

ing Q. Pseudo-code is given in Algorithm 3.

All weak classifiers use a single Haar-like feature. For
online learning from a featur¢f and labeled samples
(xi,y;) we create a decision threshadlfj, with parity p*,
from the mean of feature values seen so far for positive and
negative samples, where each feature value is weighted by. Results

the corresponding image weight: Pose Clustering. For this experiment we captured short

training and testing sequences (about 100 frames each) of

k k o k
Wi (Xi) = Dy, sign(f (x:) — Op,), ®) tace rotating from left to right, see Fig. We trained
classifiers using MCBoostLF] and the MCBQ algorithm
0F = (uPt + ) 2, pkf = sign(ufT — p®7), (6)  on face images and random patches sampled from the
training sequence. In both cases the number of strong
v Siwklf(xi) classifiers K is set to 3 by hand. The& function is

Silwk| () defined by a 3-component Gaussian mixture on the first



Algorithm 3 Online MCBQ — Incremental Update
Require: Labeled training imagéx;, v;), v; € {—1,+1}.
Require: MCBQ classified* (x;), k = 1, ..., K.

/I Initialize sample weight

wf = QF(xi)/ >, Q% (x:)

/I For each round of boosting Figure 2.Improved pose expertisePlots of the contributions of
_ three strong classifiers given the image input (bottom roga).
fort=1,...,Tdo i . ”
MCBoost [L3] shows no clear separation of expertise over differ-
ent poses, whil¢b) MCBQ has learned pose-specific classifiers,
corresponding to left, center and right view of the face.

Il For each strong classifier, update sele&pr
fork=1,...,K do
/I Update the selector’s weak classifiers
form=1,2,...,M do
I Update cached weight sums from sample’s fea- j
ture value, for positive and negative samples .
/I Update classification threshold and parity
Update (hfim, (xi,9i), wf)
/I Calculate new errary , ,

Figure 3.Positive class samples for trainingd subset of the pos-
itive samples is shown for the four sequences.

efym =3, 1(hf_’m(xi) # yi)|wk sequence the initial classifier was trained on a short Initia
end for training set (25-40 frames), capturing the appearanca-vari
Il Choose the weak classifier with the lowest error  tion, and updated online during tracking. Examples of pos-
m* = argmin,, (ef,,), hi* = hf,,. andef* = itive training samples are shown in Fi§. Because such
ef s a training set is generally not available for public track-
/I Calculate voting weight ing sequences, the training data for ®yvestesequence
ak = L — was constructed by randomly sampling 30 frames from the
1+CXP{*1H< e )} whole sequence. For AdaBoost, MCBoost and MCBQ 50
Il Replace the weak classifier with the highest error random patches per frame were collected as negative class
m~ = argmax,, (e},,) and replacé samples. We stopped boosting rounds when the classifica-
end for ' tion error reached zero on the training samples. The public
code for semi-supervised Boosting and MIL tracking was
Il UpdateQF (x;) function modified so that these methods can also be trained on the
/I Update importance weights by Equatiénthen re- initial set, otherwise their default parameters were ubed.
normalize. rameter settings were unchanged for all experiments 4Fig.
end for shows the tracking errors on the five sequences, and Table

shows the mean error for each tracker (for SemiBoost the

best of five runs is shown). While none of the algorithms
30 principal components. The graph in Figyshows the  was able to successfully track the target in all sequences,
contribution of each strong classifier on the test sequenceMCBQ showed the best overall performance, in particular
The MCBoost algorithm shows no clear pose-specific outperforming AdaBoost and MCBoost. The MIL tracker
response, while MCBQ has successfully captured threeperformed best on two sequences, however, was not able
distinct pose clusters, left, right, and center, as shown byto recover from drift in two of the other sequences. Over-
the changes in classifier weights. all, the single classifier trackers tend to adapt to a current

appearance mode forgetting previous appearance modes,
Tracking Performance. In order to evaluate the per- Which often makes them fail when target objects rapidly
formance on the multi-appearance tracking problem, we change appearance modes. Fighows example frames
captured four sequences where the target object rapidlyffom the test sequences.
changes its pose. The sequencestaytace(452 frames), g Conclusion
handball (210 frames)cube (357 frames), andace (185
frames). We also compared on the pubfiglvesterse- This paper proposed MCBQ, a multi-classifier boosting
guence (1345 frames). The performance was evaluatedalgorithm with a soft partitioning of the input space. THss i
against manually labeled ground truth. We compared Ad- achieved with a weighting functio@ ensuring that coher-
aBoost, MCBoost and MCBQ trackers (both manually set ent clusters are formed. We applied the method to simul-
to K = 2), as well as two publicly available trackers, Semi- taneous tracking and pose estimation. The learned model
supervised Boosting3] and MIL tracking [3]. For each allows tracking during rapid pose changes, since it cap-
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Figure 4.Tracking error on test sequences. The plots show the tracking error over time on four test sagas for AdaBoost (red)
MCBoost (green), MCBQ (blue), MILTrack (cyan), and Sem@@gellow). MCBQ shows the best overall performance.

principled selection of the number of strong classifiers and
exploring other choices for the weighting function.
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