
Online Multiple Classifier Boosting for Object Tracking

Tae-Kyun Kim1 Thomas Woodley1 Björn Stenger2 Roberto Cipolla1
1Dept. of Engineering, University of Cambridge, Cambridge,UK

2Computer Vision Group, Toshiba Research Europe, Cambridge, UK

Abstract

This paper presents a new online multi-classifier boost-
ing algorithm for learning object appearance models. In
many cases the appearance model is multi-modal, which
we capture by training and updating multiple strong classi-
fiers. The proposed algorithm jointly learns the classifiers
and a soft partitioning of the input space, defining an area of
expertise for each classifier. We show how this formulation
improves the specificity of the strong classifiers, allowingsi-
multaneous location and pose estimation in a tracking task.
The proposed online scheme iteratively adapts the classi-
fiers during tracking. Experiments show that the algorithm
successfully learns multi-modal appearance models during
a short initial training phase, subsequently updating them
for tracking an object under rapid appearance changes.

1. Introduction

In object tracking a major challenge is handling appear-
ance changes of the target object due to factors such as
changing pose, illumination and deformation [18]. Recently
a class of techniques using discriminative tracking has been
shown to yield good results by treating tracking in a classi-
fication framework [1, 3, 5, 7]. A classifier is iteratively up-
dated using positive and negative training samples extracted
from each frame. Online boosted classifiers have been
widely adopted owing to their efficiency and classification
performance, which is required for tracking tasks [3, 7, 8].
However, as they maintain a single boosted classifier, they
are limited to single view tracking or slow view changes of a
target object. Tracking tends to fail during rapid appearance
changes, because most weak learners of a boosted classifier
do not capture the new feature distributions. Rapid adapta-
tion of an online classifier in order to track these changes
increases the risk of incorrectly adapting to background re-
gions. A multi-modal object representation is therefore re-
quired.

Such a model can be either generative [4, 14] or discrim-
inative [11]. Typically, in the latter case, distinct appear-
ance clusters are found first and a classifier is trained on

each [16]. Recent methods for multi-classifier boosting ap-
proach the problem byjointly clustering the positive sam-
ples and training multiple classifiers [2, 13]. These tech-
niques have shown good results on learning multi-pose (or
more generally multi-modal) classifiers for object detection,
and our contribution is to formulate its online version for
the task of multi-modal object tracking. However, this is
not straightforward, the main reason being that in an on-
line setting the number of positive and negative samples
is not sufficient to ensure a good partitioning of the input
space in terms of classifier expertise in the initial phase.
Figure1 illustrates the classification results of (a) standard
Adaboost [6], (b) MCBoost [13] and (c) the proposed algo-
rithm called MCBQ on a toy XOR classification problem.
The positive class exhibits three clusters, but two of them
actually form a single cluster in a discriminative sense as
there are no negative points between them. Standard Ad-
aBoost shows poor separation of the classes because it is
unable to resolve XOR configurations. For the MCBoost
algorithm and the proposed solution, we set the number
of classifiers to be three. MCBoost successfully divides
the two classes but shows overlapping areas of expertise
for the two classifiers, since the two clusters without neg-
ative data points in-between can be correctly classified by
a single boosting classifier. In contrast, the proposed algo-
rithm shows improved partitioning of the input space. As
a consequence, weak classifiers are used more efficiently.
While tracking continues, additional negative samples are
collected, eventually establishing three positive clusters in
a discriminative sense in this example. However, in the
case of MCBoost, the initially incorrectly assigned boost-
ing classifiers are difficult to be correctly reassigned during
online updates. We have observed this case when classifiers
are initially trained on a short sequence that contains multi-
views of a target object and are subsequently updated.

We therefore propose an extension of the multi-classifier
boosting algorithm by introducing a weighting functionQ
that enforces a soft split of the input space. In addition, we
present an online version of the algorithm to dynamically
update the classifiers and the partitioning. The algorithm
is applied to object tracking where it is used to learn dif-

1

(a) Standard AdaBoost [6] (b) MCBoost [13] (c) Proposed MCBQ

Figure 1.Learning cluster-specific classifiers on toy data. The positive class (circles) exhibits three clusters and is surrounded by data from
the negative class (crosses). (a) The classification resultusing a standard boosting classifier shows errors due to the XOR configuration
(colored circles denote classification as positive class).(b) The Multi-classifier boosting algorithm of [13] successfully divides the two
classes but uses two boosting classifiers (blue and red line)in the same region, leading to inefficient use of weak classifiers. The two
clusters with no negative data points between them can be correctly classified by a single boosting classifier. (c) The classification result
of the proposed MCBQ algorithm shows improved classifier expertise.

ferent appearance clusters during a short initial supervised
learning phase.

The paper is organized as follows. We briefly review pre-
vious work on multi-classifier learning and object tracking.
In section3 we propose MCBQ, an algorithm for multi-
classifier boosting using the weighting functionQ to learn
multi-modal appearance models. Section4 shows an online
version of MCBQ for tracking with a short initial learning
phase and subsequently using an online update scheme. In
the results section5 we compare the proposed MCBQ with
standard boosting and the MCBoost algorithm in [13]. We
also compare the performance with that of two recent meth-
ods, Semi-supervised Online Boosting [7] and Online Mul-
tiple Instance Learning [3].

2. Prior Work

A number of online adaptation schemes have been pro-
posed for object tracking [1, 5, 7]. The work in [5] intro-
duced online feature selection for tracking, where in each
frame the most discriminative features are chosen to com-
pute likelihoods.Ensemble Tracking[1] takes a similar ap-
proach by combining a small number of weak classifiers
using AdaBoost. Online boosting for tracking [7] intro-
duced a scheme where features are selected from a pool of
weak classifiers and combined into a strong classifier. On-
line schemes without any target model tend to suffer from
drift. One solution is to introduce an object model that is
learned prior to the tracking phase [8, 10]. This approach
was first employed by Jebara and Pentland, who verified
the tracker output with a classifier trained to detect the tar-
get object [10]. The work in [8] proposed semi-supervised
learning, and included a boosted detector or simply the ob-
ject region in the first frame as a prior to an online boosting
scheme. A single AdaBoost classifier may not always be
sufficient to capture multi-modal data, and one approach has
been to cluster the data and train separate classifiers [11].

Recently multi-classifier boosting was introduced, where
clustering and classifier training is performed jointly [2, 13].
These methods have so far been applied to object detection,
where the full training set is available from the beginning.
However, direct application to the online tracking domain
may lead to significant overlap of the classifier regions due
to the small amount of initial data as explained in the pre-
vious section. In the case of classifier overlap, weak classi-
fiers are used less efficiently and initially overlapping clas-
sifiers in the algorithm are difficult to separate during sub-
sequent updates.

This paper takes the view that MCBoost is an example
of a more general algorithm, where clustering can be based
on desired properties. In order to achieve this we introduce
a functionQ, which weights the contributions of each clas-
sifier on a particular sample, similar to gating functions in
Mixture of Experts models [12].

Other related work is multiple instance learning
(MIL) [17]. The algorithm learns with ‘bags of examples’
which in the positive case only need to contain at least one
positive example, thus training data does not have to be
aligned. The MIL boosting algorithm simultaneously de-
tects positive samples in bags in order to train weak clas-
sifiers. The MCBoost algorithms in [2, 13] can be seen as
a multi-class extension of multiple instance learning where
multiple classifiers, each of which simultaneously detects
favored positive samples and learns weak learners for them,
are trained. Both MIL and MCBoost are derived from
the interpretation of boosting algorithms as gradient de-
scent [15]. There is an online version of MIL Boosting for
tracking [3] and our proposed method in this paper can be
seen as a multi-class extension of [3].

3. Joint Boosting And Clustering

This section first briefly reviews multi-classifier boost-
ing as proposed by [2, 13], then details our improvements

in the MCBQ algorithm. In both cases the following nota-
tion is used: Given is a set ofn training samplesxi ∈ X ,
whereX is the input domain (in our case image patches),
with labelsyi ∈ {−1,+1} corresponding to non-object and
object, respectively. Additionally, each of the object sam-
ples can be considered belonging to one ofK groups where
the class membership is a priori unknown.

3.1. Multi-Classifier Boosting

In order to discriminate between object and non-object a
boosting framework is used to trainK strong classifiersHk,
whereHk(xi) =

∑

t �
k
t ℎ

k
t (xi), k = 1, ...,K, andℎk

t is the
t-th weak classifier of thek-th strong classifier weighted by
�k
t . Each weak classifier comprises a simple visual feature

and threshold, and each strong classifierHk(xi) is trained
to focus its expertise on one of theK groups. The key is the
use of anoisy ORfunction to combine the output of strong
classifiers. This function classifies a sample as positive if
any of theK strong classifiers does so, and negative other-
wise:

p(xi) = 1−
∏

k

(1− pk(xi)), (1)

wherepk(xi) = 1/(1 + exp(−Hk(xi))). Following stan-
dard AdaBoost [6], a distribution of weights for the training
samples is maintained, one distribution per strong classifier,
and at each round the algorithm chooses a new weak classi-
fierℎk

t with associated weight for each strong classifier, and
updates the sample weights for the next round. For given
weights, the algorithm findsK weak classifiers at thet-th
round of boosting, to maximize

∑

iw
k
i ℎ

k
t (xi), ℎ

k
t ∈ ℋ,

whereℎk
t ∈ {−1,+1} andℋ is a set of weak classifiers.

The weak classifier weights�k
t , k = 1, ...,K are then found

by minimizing ℒ(H + �k
t ℎ

k
t) by line search, whereℒ is

a loss function. Applying the AnyBoost method [15], the
sample weights are set as the negative gradient of the loss
functionℒ with respect to the classifier score. Choosingℒ
to be the negative log likelihood, the weight ofk-th classi-
fier overi-th sample is updated by

wk
i =

∂ℒ

∂Hk(xi)
=

yi − p(xi)

p(xi)
pk(xi). (2)

Clearly the choice ofK, the number of strong classifier,
is important for good performance. One method, suggested
in [13], is to start with large values ofK and select the num-
ber of distinctive clusters.

3.2. Classifier Assignment

Multi-classifier Boosting creates strong classifiers with
different areas of expertise. However, it relies on the train-
ing data set containing negative samples which separate the
positive samples into distinct regions in the classifiers’ dis-
criminative feature space. This also implies that there is

no guarantee of pose-specific clustering. In fact there is
no constraint in the algorithm that enforces strong classi-
fiers to focus on a unique area of expertise, and there is no
concept of a metric space on which perceived clusters can
be formed. We make the classifier assignment explicit by
defining functionsQk(xi) : X → [0, 1] which weight the
influence of strong classifierk on a samplexi. By mapping
xi into a suitable metric space, we can impose any desired
clustering regime on the training set, thusQ defines a soft
partitioning of the input space. The choice ofQ is depen-
dent on the application domain. In principle any function
can be used that captures the structure of the input domain,
i.e. that maps the samples to meaningful clusters. In this
paperQ is defined by aK-component Gaussian mixture
model in the space of the firstd principal components of
the training data. Thek-th GMM mode defines the area of
expertise of thek-th strong classifier. The GMM is updated
using a EM-like algorithm alongside the weak classifiers in
the boosting algorithm:

Algorithm 1 Updating Weighting FunctionQk

1. Calculate the likelihood of each of the samples under
thek-th strong classifier,pk(xi)

2. Set the new probability of the sample being in thek-
th GMM component as its currentQ value scaled by the
likelihood from the classifier,Qk(xi)p

k(xi)

3. Update thek-th cluster by the mean and covariance
matrix of the samples under this probability.

The new noisy-OR function in Equation1 becomes:

p(xi) = 1−
∏

k

(1−Qk(xi) p
k(xi)), (3)

leading to the new weight update equation:

wk
i =

∂ℒ

∂Hk(xi)
=

yi − p(xi)

p(xi)

Qk(xi) p
k(xi) (1− pk(xi))

1−Qk(xi) pk(xi)
.

(4)
The full MCBQ algorithm is summarized in Algo-

rithm 2. Note that compared to the original multi-classifier
boosting algorithm additional steps 1, 2, and 8 are required
and step 7 is modified.

4. Online MCBQ for Object Tracking

The goal is to learn an object-specific appearance model
using a short initial training sequence in order to guide the
tracker [8, 14]. The number of training samples is limited,
but is sufficient to bootstrap the classifier. Subsequently,we
would like the tracker to remain flexible to some appear-
ance changes while using the learned model as an anchor.

Algorithm 2 Multi-classifier Boosting with Weighting
FunctionQ (MCBQ)

Input: Data set(xi, yi), set of pre-defined weak learners.
Output: Multiple strong classifiersHk(xi), weighting
functionQk(xi).
1. InitializeQ with a Gaussian mixture model
2. Initialize weightswk

i to the values ofQk(xi).
3. Repeat fort = 1, ..., T
4. Repeat fork = 1, ...,K
5. Find weak learnersℎk

t maximizing
∑

iw
k
i h

k
t (xi).

6. Compute weights�k
t maximizingℒ(Hk + �k

t h
k
t).

7. Update weights by Equation4.
8. Update weighting functionQk(xi) by Algo 1.
9. End
10. End

This motivates the following approach of iteratively adapt-
ing multiple strong classifiers with MCBQ.

In order to move MCBQ into an online setting we need
a mechanism for rapid feature selection and incremental
updates of the weak classifiers as new training samples
become available. The online boosting algorithm [7] ad-
dresses this issue, allowing for the continuous learning ofa
strong classifier from training data. The key step is, at each
boosting round, to maintain error estimates from samples
seen so far, for a pool of weak classifiers. At each roundt a
selectorSt maintains these error estimates for weak classi-
fiers in its pool, and chooses the one with the smallest error
to add to the strong classifier.

To summarize, our tracking algorithm contains two-
stages: Firstly, training data is assembled in a supervised
learning stage, where the system is given initial samples
which span the extent of all appearances to be classified.
An initial MCBQ classifier is then built rapidly from this
data. Secondly, additional training samples are supplied to
update the classifier with new data during tracking.

4.1. Weak Learning and Selection

All weak classifiers use a single Haar-like feature. For
online learning from a featuref and labeled samples
(xi, yi) we create a decision threshold�km with parity pkm
from the mean of feature values seen so far for positive and
negative samples, where each feature value is weighted by
the corresponding image weight:

ℎk
t,m(xi) = pkm sign(f(xi)− �km), (5)

�km = (�k,+ + �k,−)/2, pkm = sign(�k,+ − �k,−), (6)

�k =
Σi∣w

k
i ∣f(xi)

Σi∣wk
i ∣

. (7)

The error of the weak classifier is then given as the nor-
malized sum of the weights of mis-classified samples:

ekt,m =

∑

i 1(ℎ
k
t,m(xi) ∕= yi)∣w

k
i ∣

∑

i ∣w
k
i ∣

. (8)

A weak classifier can then be chosen from a pool as the
one giving the minimum error.

4.2. Supervised Learning

During the supervised learning stage, we have a set of
weighted samples, and a global feature poolℱ . Weight dis-
tributions are initialized to randomly assign positive sam-
ples to a strong classifierk, and at each roundt and strong
classifierk the equations5, 6, 7, 8 are applied to initial-
ize and select a weak classifier based on exact errors. In
order to facilitate selection at the incremental update stage,
we store in each selectorSk

t , for the positive and negative
samples (1) for each feature value, the sum of weights of
samples with that value, and (2) the sum of image weights.

To improve speed, each selector only keeps the bestM
performing weak classifiers for use in the incremental up-
date stage. After each round of boosting, image weights
are updated as in Equation4, and voting weights calculated
based on the error of the chosen weak classifier.

4.3. Incremental Update

Once the initial classifier has been created, it can be up-
dated with new samples. Weights for positive samples are
initialized based on their classification responses from each
of the component strong classifiers in the MCBQ classifier,
and the sample is passed through the boosting framework.
The summations stored in each selector can be updated from
the new sample, and thus the new classification thresholds
for the weak classifiers calculated using equations5, 6, 7.
The error values from Equation8 are used to choose the
best weak classifier to add to the strong classifier. Finally,
the worst-performing weak classifier is replaced with a new
randomly-generated one. Note that in the case ofQ being
defined as a Gaussian mixture in PCA space, we update the
PCA space by the algorithm of Hallet al. [9] before updat-
ingQ. Pseudo-code is given in Algorithm 3.

5. Results

Pose Clustering. For this experiment we captured short
training and testing sequences (about 100 frames each) of
a face rotating from left to right, see Fig.2. We trained
classifiers using MCBoost [13] and the MCBQ algorithm
on face images and random patches sampled from the
training sequence. In both cases the number of strong
classifiersK is set to 3 by hand. TheQ function is
defined by a 3-component Gaussian mixture on the first

Algorithm 3 Online MCBQ – Incremental Update

Require: Labeled training image(xi, yi), yi ∈ {−1,+1}.
Require: MCBQ classifierHk(xi), k = 1, ...,K.

// Initialize sample weight
wk

i = Qk(xi)/
∑

k Q
k(xi)

// For each round of boosting
for t = 1, . . . , T do

// For each strong classifier, update selectorS
k
t

for k = 1, . . . ,K do
// Update the selector’s weak classifiers
for m = 1, 2, . . . ,M do

// Update cached weight sums from sample’s fea-
ture value, for positive and negative samples
// Update classification threshold and parity
Update

(

ℎk
t,m, (xi, yi), w

k
i

)

// Calculate new errorekt,m
ekt,m =

∑

i 1(ℎ
k
t,m(xi) ∕= yi)∣w

k
i ∣

end for
// Choose the weak classifier with the lowest error
m∗ = argminm

(

ekt,m
)

, ℎk∗
t = ℎk

t,m∗ andek∗t =

ekt,m∗

// Calculate voting weight
�k
t = 1

1+exp{−ln

(

1−ek∗

t

ek∗

t

)

}

// Replace the weak classifier with the highest error
m− = argmaxm

(

ekt,m
)

and replaceℎk
t,m−

end for

// UpdateQk(xi) function
// Update importance weights by Equation4, then re-
normalize.

end for

30 principal components. The graph in Fig.2 shows the
contribution of each strong classifier on the test sequence.
The MCBoost algorithm shows no clear pose-specific
response, while MCBQ has successfully captured three
distinct pose clusters, left, right, and center, as shown by
the changes in classifier weights.

Tracking Performance. In order to evaluate the per-
formance on the multi-appearance tracking problem, we
captured four sequences where the target object rapidly
changes its pose. The sequences aretoyface(452 frames),
handball (210 frames),cube(357 frames), andface (185
frames). We also compared on the publicSylvesterse-
quence (1345 frames). The performance was evaluated
against manually labeled ground truth. We compared Ad-
aBoost, MCBoost and MCBQ trackers (both manually set
toK = 2), as well as two publicly available trackers, Semi-
supervised Boosting [8] and MIL tracking [3]. For each

(a)

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

Q1
Q2
Q3

(b)

Figure 2.Improved pose expertise:Plots of the contributions of
three strong classifiers given the image input (bottom row).(a)
MCBoost [13] shows no clear separation of expertise over differ-
ent poses, while(b) MCBQ has learned pose-specific classifiers,
corresponding to left, center and right view of the face.

Figure 3.Positive class samples for training.A subset of the pos-
itive samples is shown for the four sequences.

sequence the initial classifier was trained on a short initial
training set (25-40 frames), capturing the appearance varia-
tion, and updated online during tracking. Examples of pos-
itive training samples are shown in Fig.3. Because such
a training set is generally not available for public track-
ing sequences, the training data for theSylvestersequence
was constructed by randomly sampling 30 frames from the
whole sequence. For AdaBoost, MCBoost and MCBQ 50
random patches per frame were collected as negative class
samples. We stopped boosting rounds when the classifica-
tion error reached zero on the training samples. The public
code for semi-supervised Boosting and MIL tracking was
modified so that these methods can also be trained on the
initial set, otherwise their default parameters were used.Pa-
rameter settings were unchanged for all experiments. Fig.4
shows the tracking errors on the five sequences, and Table1
shows the mean error for each tracker (for SemiBoost the
best of five runs is shown). While none of the algorithms
was able to successfully track the target in all sequences,
MCBQ showed the best overall performance, in particular
outperforming AdaBoost and MCBoost. The MIL tracker
performed best on two sequences, however, was not able
to recover from drift in two of the other sequences. Over-
all, the single classifier trackers tend to adapt to a current
appearance mode forgetting previous appearance modes,
which often makes them fail when target objects rapidly
change appearance modes. Fig.5 shows example frames
from the test sequences.

6. Conclusion

This paper proposed MCBQ, a multi-classifier boosting
algorithm with a soft partitioning of the input space. This is
achieved with a weighting functionQ ensuring that coher-
ent clusters are formed. We applied the method to simul-
taneous tracking and pose estimation. The learned model
allows tracking during rapid pose changes, since it cap-

50 100 150 200 250 300 350 400 450
0

50

100

150

Frame #

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

Toy face

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Frame #
P

os
iti

on
 E

rr
or

 (
pi

xe
l)

Hand ball

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180

Frame #

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

Cube

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

Frame #

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

Face

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

200

Frame #

P
os

iti
on

 E
rr

or
 (

pi
xe

l)

Sylvester

AdaBoost
MCBoost
MIL
SemiOAB
MCBQ

Figure 4.Tracking error on test sequences.The plots show the tracking error over time on four test sequences for AdaBoost (red)
MCBoost (green), MCBQ (blue), MILTrack (cyan), and SemiBoost (yellow). MCBQ shows the best overall performance.

Figure 5.Example tracking results on test sequences.The com-
parison shows tracking results for MCBQ (blue), AdaBoost (red),
MILTrack (cyan), and SemiBoost (yellow) in the evaluation.See
text for details.

Sequence SemiBoost MIL AdaBoost MCBoost MCBQ
Toy face 31 9 28 22 10
Hand ball 33 41 59 62 19

Cube 16 59 20 10 8
Face 15 6 18 12 14

Sylvester 20 15 17 58 13
Cumulative 22.1 21.6 22.9 41.9 12.3

Table 1. Tracking error. Average center location errors rounded
to nearest integer (in pixels). Algorithms compared are Semi-
Boost [8] (best of 5 runs), MILTrack [3], our implementations of
AdaBoost, MCBoost [13] and MCBQ trackers. Bold font indi-
cates best performance, italic second best. Cumulative errors are
weighted by the number of frames per sequence.

tures multiple appearances. Existing single classifier track-
ers tend to adapt to a single appearance mode, forgetting
previous modes. MCBQ can be seen as an extension of
MCBoost [13] for the online setting, or a multi-class exten-
sion of the MIL tracker [3]. Future work includes a more

principled selection of the number of strong classifiers and
exploring other choices for the weighting function.

References
[1] S. Avidan. Ensemble tracking.IEEE Trans. Pattern Analysis and

Machine Intell., 29(2):261–271, 2007.1, 2
[2] B. Babenko, P. Dollár, Z. Tu, and S. Belongie. Simultaneous learning

and alignment: Multi-instance and multi-pose learning. InWorkshop
on Faces in Real-Life Images, October 2008.1, 2

[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual trackingwith on-
line multiple instance learning. InCVPR, Miami, FL, June 2009.1,
2, 5, 6

[4] M. J. Black and A. Jepson. Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation. In
Proc. ECCV, pages 329–342, Cambridge, UK, 1996.1

[5] R. Collins, Y. Liu, and M. Leordeanu. Online selection ofdiscrimi-
native tracking features.PAMI, 27(10):1631–1643, 2005.1, 2

[6] Y. Freund and R. Schapire. A decision theoretic generalization of
on-line learning and an application to boosting.J. of Computer and
System Sciences, 55(1):119–139, 1997.1, 2, 3

[7] H. Grabner and H. Bischof. On-line boosting and vision. In Proc.
CVPR, volume 1, pages 260–267, 2006.1, 2, 4

[8] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line
boosting for robust tracking. InProc. ECCV, Marseille, France, Oc-
tober 2008.1, 2, 3, 5, 6

[9] P. Hall, D. Marshall, and R. Martin. Merging and splitting eigenspace
models.Trans. PAMI, 22(9):1042–1049, 2000.4

[10] T. Jebara and A. Pentland. Parameterized structure from motion for
3d adaptive feedback tracking of faces. InCVPR, pages 144–150,
June 1997.2

[11] M. Jones and P. Viola. Fast multi-view face detection. Technical
Report 96, MERL, 2003.1, 2

[12] M. I. Jordan and R. A. Jacobs. Hierarchical mixture of experts and
the EM algorithm.Neural Computation, 6(2):181–214, 1994.2

[13] T.-K. Kim and R. Cipolla. MCBoost: Multiple classifier boosting
for perceptual co-clustering of images and visual features. In NIPS,
Vancouver, Canada, December 2008.1, 2, 3, 4, 5, 6

[14] K.-C. Lee, J. Ho, M.-H. Yang, and D. Kriegman. Visual tracking
and recognition using probabilistic appearance manifolds. Computer
Vision and Image Understanding, 99(3):303–331, 2005.1, 3

[15] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boostingalgorithms
as gradient descent. InNIPS, pages 512–518, 2000.2, 3

[16] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: ef-
ficient boosting procedures for multiclass object detection. InCVPR,
pages 762–769, Washington, DC, July 2004.1

[17] P. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for
object detection. InNIPS, pages 1417–1426, 2006.2

[18] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM
Journal of Computing Surveys, 38(4):1–45, 2006.1

