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Abstract

Shape and texture are two fundamental properties of ob-
jects. The use of texture (i.e. 2D surface colouration), or
appearance, for object detection, recognition and registra-
tion has been well studied, shape (in 3D) less so. However,
the increasing prevalence of depth sensors and the dimin-
ishing returns to be had from appearance alone have seen
a surge in shape-based methods. In this work we investi-
gate the performance of several detectors of interest points
in volumetric data, in terms of repeatability, number and
nature of interest points. Such methods form the first step in
many shape-based applications. Our detailed comparison,
with both quantitative and qualitative measures on synthetic
and real 3D data, both point-based and volumetric, enables
readers to easily select a method suitable to their applica-
tion.

1. Introduction
The applications of object detection, recognition and

registration are of great importance in computer vision.
Much work has been done in solving these problems us-
ing appearance, helped by the advent of image descriptors
such as SIFT and competitions such as the PASCAL chal-
lenge, and these methods are now reaching maturity. How-
ever, advancing geometry capture techniques, in the form
of stereo, structured light, structure-from-motion and also
sensor technologies such as laser scanners, time-of-flight
cameras, MRIs and CAT scans, pave the way for the use
of shape in these tasks, either on its own or complementing
appearance—whilst an object’s appearance is a function not
only of its texture, but also its pose and lighting, an object’s
3D shape is invariant to all these factors, providing robust-
ness as well as additional discriminative power.

Shape-based techniques for object recognition range
from the very local, with small, indistinct features, e.g. sin-
gle points, combined in a geometrical consistency frame-
work, to the global, with a single descriptor for an entire
object. While the former methods offer robustness to oc-
clusion and clutter and provide pose, they do not cope well

(a) DoG (b) SURF (c) Harris

(d) Hessian (e) V-FAST (f) MSER

Figure 1: Different types of volumetric interest points de-
tected on a testing shape.

with shape variability, nor scale well with the number of ob-
ject classes. The global methods’ pros and cons are tend to
be the inverse. Between these two extremes are those meth-
ods that describe local features of limited but sufficiently
distinctive scope, thereby gaining the discriminability of
global methods and the robustness of local methods. The
distribution of such features can be used for effective object
detection, recognition and registration. The nature of these
hybrid methods is reminiscent of the image descriptors of
appearance-based methods, not least in the need for shape
features to be chosen at points that are repeatedly locatable
in different data sets, and whose localities are distinctive. A
common and crucial stage of such approaches is therefore
the detection of interest points to be described.

This paper aims to provide the first performance evalu-
ation of interest point detectors on scalar volumetric data.
Such data not only comes directly from volumetric sensors,
e.g. MRIs, but can also be generated from other 3D data
such as point clouds or meshes, making the evaluation as
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widely applicable as possible. The representation allows in-
terest points to be located off an object’s surface, e.g. at the
centre of a limb. In addition, the nature of the data—voxels,
the 3D equivalent of pixels—makes repurposing the many
2D interest point detectors for 3D straightforward. The pri-
mary, quantitative evaluation criterion is a novel measure
combining both repeatability, based on the number of cor-
responding points found across two volumes, and the spatial
accuracy of correspondences. Detected interest points have
a (sub-voxel) location and also a scale, and distances are
computed in this space.

The remainder of this section reviews previous work rel-
evant to interest point detectors and our evaluation frame-
work. The following section introduces the interest point
detectors we compared, while section 3 describes our eval-
uation methodology. Section 4 describes our experiments
and presents the results, before we conclude in section 5.

1.1. Previous work

We will now discuss relevant prior work on interest point
detectors and evaluation methodologies.

1.1.1 Interest point detectors

Interest points are typically used to match corresponding
points across two or more similar sets of data. The data has
predominantly been images, though some detectors have re-
cently been applied to volumes. This review will be brief,
focusing on the detectors we evaluate and previous applica-
tions to 3D data, as the field is well studied (at least in re-
spect to images); we refer the reader to a recent survey [23]
for more details.

Differential approaches to interest point detection find
optima in the data response to differential operators such
as the second moment matrix (first order derivatives), e.g.
the Harris corner detector [10], and the Hessian matrix
(second order derivatives). Lindeberg [14] studied scale-
covariant1 points using the Laplacian-of-Gaussian kernel
(equivalent to the trace of the Hessian), as well as the
determinant of the Hessian. Lowe [15] approximated
the former with a Difference-of-Gaussians (DoG) opera-
tor for efficiency, a method recently applied to CT scan
volumes [9]. The SURF detector of Bay et al. [1] ac-
celerates computation of the Hessian determinant through
the use of integral images, since applied to integral vol-
umes of space-time video [24] and binary volumes gener-
ated from 3D meshes [11]. Mikolajczyk & Schmid [17] de-
veloped the scale-covariant Harris-Laplace detector by find-
ing Harris corners in the spatial domain which are maxima

1Covariant characteristics, often (inaccurately) referred to as invariant
characteristics, undergo the same transformation as the data. We prefer
“covariant” in order to distinguish truly invariant characteristics.

of the Laplacian in the scale domain, an approach which
Laptev [13] applied to classification of video volumes.

In a different approach, the FAST detector of Rosten
et al. [20] uses the largest number of contiguous pixels
on a circle of fixed radius which are significantly darker,
or brighter, than the centre pixel. They learn a deci-
sion tree classifier that makes the approach extremely ef-
ficient, leading it to be applied to space-time video volumes
also [12, 25]. The MSER detector of Matas et al. [16] finds
thresholded regions whose areas are maximally stable as the
threshold changes. It is therefore inherently multi-scale, as
well as invariant to affine intensity variations and covari-
ant with affine transformations. MSER has already been
applied to volumetric data, firstly in the context of segmen-
tation of MRIs [8], then on spatio-temporal data [19].

Image-based detectors have also been made affine-
covariant (e.g. [17]), in order to approximate the perspec-
tive distortion caused by projection of 3D surfaces onto the
2D image plane. Such covariance is not necessary with 3D
shape data because most shape acquisition techniques are
invariant to view point changes, thus affine transformations
are not common among datasets.

1.1.2 Methodologies

Empirical performance evaluation is a popular pastime in
Computer Vision, and the topic of interest point2 detection
is no exception. Some methods evaluate performance in the
context of a particular task, lacking generality to other ap-
plications. Most investigate one or more interest point char-
acteristics. One such characteristic, important for registra-
tion applications, e.g. camera calibration, scene reconstruc-
tion and object registration, is the accuracy of interest point
localization. Coelho et al. [7] measure accuracy by com-
puting projective invariants and comparing these with the
actual values, measured from the scene. Brand & Mohr [4]
introduce three further measures, including 2D Euclidean
distance from detected points to ground truth corner loca-
tions (given by line fitting to a grid). This has been ex-
tended to using the distance to the nearest point detected in,
and transformed from, another image (e.g. [21]). Match-
ing scores for interest points found over location and scale
[17] , and also affine transformations [17], have since been
proposed.

When used for object detection and recognition, two
other important characteristics of the interest points are
their repeatability (i.e. is the same feature found in multi-
ple datasets) and their distinctiveness (i.e. can a point, or
region of interest be easily recognized among many). Re-
peatability was proposed by Schmid et al. [21] as the ra-
tio of repeated points to detected points. Rosten et al. [20]

2When referring to interest points in the context of methodology, we
include image features such as corners, lines, edges and blobs.
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used the area under the repeatability curve as a function of
number of interest points, varied using a threshold on the
detector response, in their evaluation. When ground truth
locations of interest points are given, e.g. hand labelled, an
alternative measure is the ROC curve [3], which takes into
account false matches. Schmid et al. [21] also introduce
a quantitative measure of distinctiveness—entropy, or “in-
formation content”. Alternatively, qualitative visual com-
parison is used (e.g. [14, 13]), on test datasets containing a
variety of different interest points.

In the context of texture-based interest points, perfor-
mance of detectors are often measured over variations in im-
age rotation, scale, viewpoint angle, illumination and noise
level (e.g. [21] covers all these factors), as well as corner
properties. Efficiency may be a further consideration [20].

2. Detectors
This section briefly describes the interest point de-

tectors we evaluate. Our work aims to evaluate some
of these volumetric interest points, these include differ-
ence of Gaussians (DoG) [9], speeded up robust features
(SURF) [24, 11], Harris-based [13] and Hessian-based in-
terest points, V-FAST [25] and maximally stable extremal
regions (MSER) [8, 19]. This section briefly recapitulates
the approaches of these candidate interest points.

DoG Difference of Gaussians is a popular blob detection
technique since it has been used by SIFT algorithm [15]
for feature localization. Its volumetric extension has been
applied in both shape recognition [9]. DoG approximates
the Laplacian of Gaussian filter, which enhances features
at a particular size. The DoG saliency response SDoG is
computed by subtracting two Gaussian smoothed volumes,
which are often adjacent scale-space representations, of the
same signal. Interest points are detected at the Interest point
are detected at the 4D local maxima (both 3D space and
scale) in SDoG within each octave of V(x, σs).

Harris Extending the Harris corner detector [10], Laptev
introduces the space-time interest point for video catego-
rization [13]. The volumetric Harris corner detector is
largely identical to Laptev’s work, except a spherical lo-
cal window is used instead of a ellipsoidal window. The
second-moment matrix is computed by smoothing the first
derivatives of the volume in scale-space V(x;σs) by a
spherical Gaussian weight function g(·;σharris):

M = g(·;σ2
harris) ∗

 V2
x VxVy VxVz

VxVy V2
y VyVz

VxVz VyVz V2
z

 , (1)

where Vx,Vy ,Vz denote the partial derivatives of the vol-
ume in scale-space V(x;σs) along x, y and z axes respec-

tively. The saliency SHarris is computed from the determi-
nant and trace ofM:

SHarris = σ3
sdet(M)− k trace(M)

3
. (2)

The parameter k controls the rejection of edge points, which
ranges between 0.003 to 0.006. Each saliency response S
is normalized by its scale σs. The window size σharris is
proportional to expected feature scales σs by a factor of 0.7
as suggested in [17]. Interest point are the 4D local maxima
in the scale-space of SHarris.

Hessian The Hessian interest point is similar to the Harris
detector. However, instead of a second-moment matrixM,
it is based on Hessian matrixH.

H =

 Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 , (3)

where Vxy denotes the second derivative of the volume
at scale σs, along x and y axes: ∂V(x;σs)

∂x∂y . The Hessian
saliency is the determinant of the H normalized by scale
σs. Similarly, the interest points are located at the 4D scale-
space maxima of SHessian.

SHessian = σ3
sdet(H) (4)

SURF Speeded up robust features (SURF) is a feature
extraction algorithm optimized for efficiency [1]. SURF
is similar to Hessian interest point in terms of the feature
model it is based on. Haar wavelets are leveraged to approx-
imate derivatives of Gaussian functions, hence the computa-
tion of Hessian is accelerated. The first 3D version of SURF
was introduced in by Willems et al. [24] for video classifi-
cation. Recently, it was utilized in [11] for 3D shape object
recognition tasks.

V-FAST Building on the success of FAST corner detec-
tor [20], Yu et al. [25] propose V-FAST for video recogni-
tion. Koelstra & Patras [12] also introduce a similar FAST-
3D interest point. The V-FAST algorithm performs accel-
erated segment tests (AST) on three orthogonal Bresenham
circles. Along each plane, the saliency score is computed
by maximizing the threshold t that makes at least n con-
tiguous voxels brighter or darker than the nucleus voxel by
t in equation 5.

ASTxy(n, t)

 t ||vnucleus > cxy + t|| ≥ n
t ||vnucleus < cxy − t|| ≥ n
0 otherwise

, (5)

Sxyvfast = max(ASTxy(n, t)) (6)

Svfast =
√
(Sxyvfast)

2 + (Sxzvfast)
2 + (Syzvfast)

2 (7)

3
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where cxy denotes the voxels on a xy-circle centred at
cnucleus. The overall saliency Svfast is the Euclidean norm
of saliency scores on the three planes in equation 7. Inter-
est points are local maxima in Svfast along both space and
scale, with at least two non-zero values in ASTxy(n, t),
ASTxz(n, t) or ASTyz(n, t).

MSER Maximally stable extremal region (MSER) is a
blob detection technique proposed by Matas et al. [16].
MSER is inherently advantageous for volumetric interest
point detection, therefore MSER has already been applied
for detecting volumetric salient regions [8, 19].

Subvoxel refinement We apply the subpixel refinement
process of Lowe [15] to all the candidate detectors (except
MSER). Interest points are localized at the subvoxel level by
fitting a 4D quadratic function around the local scale-space
maxima. More accurate maxima are determined by inter-
polating the quadratic function. On the contrary, MSER lo-
cates interest points by fitting an ellipsoid to the detected
salient region [16].

3. Methodology
This section describes our framework for evaluating the

volumetric interest points.

3.1. Test data

Figure 2: Mesh to volume conversion: Left to right –
mesh, point cloud and voxel array.

We use three sources of data in our evaluation. Two
of these are synthetic, as large sets of real, registered, 3D
data are not commonly available. The first set, Mesh, con-
tains 25 shapes (surface meshes) chosen from the Princeton
shape database [22] and TOSCA [5] set. The selection con-
tains a wide range of geometric features, from coarse struc-
tures to fine details. The meshes are converted to scalar vol-
umetric data by first randomly sampling a number of points
from a uniform distribution over the area of the mesh, and
adding homogeneous Gaussian noise to these points (in 3D
space). The point clouds are then voxelized to volumetric
data using kernel density estimation with a Gaussian kernel
g(·, σKDE). The conversion process, illustrated in figure 2,
allows sampling density and noise to be varied when gener-
ating the volumes. The second data set, MRI, is two syn-

thetic MRI scans of a brain, generated from BrainWeb [6],
again with known transformation between the two. The
third data set, Stereo, is a pair of dense 3D point clouds of
an object, captured using a multi-view stereo system.3 The
point clouds were then registered to the known mesh of the
object using ICP [2]. The point clouds are voxelized as be-
fore.

3.2. Performance Measure

Whilst previous evaluations have focused on either lo-
calization accuracy or repeatability, we combine the two in
a single score.

Localization accuracy A key component of the score is
the distance metric used to measure the closeness of two
interest points.

D(P,Q′) = ||P−Q′||2 (8)
P = [Px, Py, Pz, f logPs]

T (9)

where Px, Py and Pz are the spatial components and Ps
is the scale component of an interest point’s location. The
log of scale is used to remove multiplicative bias across de-
tectors, and since spatial location and scale are not fully
commensurable, a parameter f is introduced to balance the
importance of scale to the distance function.

In our evaluation the interest point P is in the coordinate
frame of the volume, VP , it was found in, whilst Q′ is the
point Q found in volume VQ of a given pair of volumes,
transformed into the coordinate frame of VP . Our score
is based on the distance of an interest point to the nearest
transformed interest point, thus:

D(P,Q′) = min
Q′

j∈Q′
D(P,Q′j) (10)

where Q′ = {Q′j}
q
j=1, the set of q transformed interest

points found in VQ.

Repeatability Schmid et al. [21] defined repeatability as
the ratio of correspondences to points:

Rratio(P,Q′, d) =
∑p
i=1[D(Pi,Q′) < d]

min(p, q)
(11)

where P = {Pi}pi=1, the set of p interest points found in
VP , and d is a user provided distance threshold. The func-
tion [expr] returns 1 if expr is true, 0 otherwise.

Combined score Rosten et al. [20] computed the area un-
der Rratio as a function of the number of interest points (var-
ied using a contrast threshold on the detector). We use the

3Source withheld for anonymity.
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same idea, but computing Rratio as a function of the dis-
tance threshold, d. The score therefore increases both if
more points are matched, and also if matches are more ac-
curate. We also compute a symmetric score, by averaging
the scores with VP and VQ as the reference frames respec-
tively. This score is given as

Rarea =
1

2D

∫ D

0

Rratio(P,Q′, d) +Rratio(Q,P ′, d) dd

(12)

4. Experiments
A comprehensive evaluation is performed on the volu-

metric interest point detectors in this section. The main
objective is to investigate how the interest points perform
under different variations. Our Rarea score is advantageous
over traditional repeatability reflects both repeatability and
accuracy of interest points in one measurement.

4.1. Experiment set-up

We evaluate the robustness of the detectors under several
variations. These include rotation, scale, sampling density
and noise. The three datasets in section 3.1 are tested under
different variations:
• Mesh: Sampling noise and density, scale, rotation.
• MRI: Rotation + translation.
• Stereo: Scale + rotation + translation.

In the proposed evaluation framework, comparisons are
performed between the transform shapes with their corre-
sponding reference shapes. Reference shapes are generated
by voxelizing the input point clouds with a set of default
parameters. Subsequently, transformed shapes are created
from the reference shapes, with increasing magnitudes of
one target variation (e.g. scale, noise) and others factors
kept at default values. The default parameters for the refer-
ence shapes and the number of transformed shapes created
are listed in table 1.

Some default parameters for reference shapes are defined
in terms of L, which is equal to the largest dimension of
the voxelized reference shapes. In this paper, the maximum
value of L is set to 200 voxels.

4.2. Experiments on synthetic meshes

4.2.1 Sampling noise

Sampling noise and density are of crucial importance to
shape-based interest point detection. However, existing
shape acquisition techniques (e.g. multi-view stereo) often
produce data with sampling noise. In this test, different lev-
els of Gaussian white noise, with standard deviations from
0.25%L to 3%L, are applied to the Mesh dataset. Its mag-
nitude is measured in a percentage of L (i.e. longest dimen-
sion of the shape).

Parameter Value
Default parameters for reference shapes
Default point cloud size 50000 points

Default noise 0.25%L
Default rotation 0◦

Maximum L 200 voxels
Default σKDE in g(·, σKDE) 1.5 voxel

Distance threshold d 3%L

Parameter f in equation 8
√
8

Number of octaves in scale-space 4

Number of transformed shapes compared
Sampling noise 13

Sampling density 17
Noise 21
Scale 21

Table 1: The reference parameters for the testing shapes.

R
area

Score Versus Sampling Noise

Std. Deviation of Noise (% of longest dimension: L)

S
c

o
re

 (
w

it
h

 2
5

%
 &

 7
5
%

 q
u

a
rt

il
e

s
)

0% 0.5% 1% 1.5% 2% 2.5% 3%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Rarea Score vs Noise

The result is shown as figure 4. MSER outperforms other
interest points by demonstrating high robustness. While
other detectors cease working properly due to the noisy in-
put, MSER still obtains a high Rarea score. The Hessian-
based detector shows a relatively stronger tolerance than
detectors like SURF, Harris and V-FAST.

4.2.2 Sampling density

The Rarea score of shapes with various sampling densities
are measured. Point clouds are randomly sampled from the
input meshes, with sizes ranging from 4K points to 405K
points. Figure 3a presents the change of Rarea scores ver-
sus point cloud size. The scores vary linearly in log scale,
therefore a diminishing return is observed with increasing
sampling density. MSER achieves the best average perfor-
mance but it also has the largest variance across different
shapes. Hessian and DoG produce satisfactory results, with
high scores but smaller intra-dataset variance than that of
MSER.
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(a) Sampling Density
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(b) Scale
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(c) Rotation

Figure 3: Rarea scores of testing dataset under changing (a) sampling density (point cloud size), (b) scaling and (c) rotation.
Solid lines indicate the average, and the light colour bands show the 25% and 75% quartiles.

4.2.3 Rotation

In the experiment for rotation transformation, which evalu-
ates susceptibility of the detectors to aliasing effects, eight
rotation axes are generated randomly. Rotations of increas-
ing magnitude are applied about these axes, the testing
shapes are rotated up to π radians.

The effect of rotation is shown in figure 3c. Most detec-
tors show excellent tolerance to rotation. Most volumetric
interest points have inherited strong robustness to rotation
from their texture-based counterparts. DoG and MSER per-
forms slightly better than others, with almost unchanged av-
erage scores. SURF performs worse than other volumetric
interest point because the use of box filters leads to extra
quantization errors when the shapes are rotated.

4.2.4 Scale

Dimensions of voxelized input data are scaled from 50% to
200% of their original sizes. The values of Rarea measured
against scale changes are illustrated in figure 3b. DoG and
Hessian detectors are comparatively more robust to scale.
SURF only works well at 100% and drops outside the orig-
inal scale, because of the approximated scale-space used.
MSER achieves the best result at its original size, yet its
performance decreases steadily when the shape is scaled.
Repeatability scores of all detectors drop faster in down-
sampled volumes (scale < 100%) than in up-sampled vol-
umes (scale > 100%). It is because information of fine
features is lost when the input volume is down-sampled. In
addition, the scale-space does not cover any feature with
size smaller than the first octave, therefore fine details are
undetected. Similarly, the performance of most detectors
drop slowly at scale > 100%, when some features become

too large to be detected.

Avg.# Pts. Sampling Noise Level
Avg.# Corr.Pts. Low Medium High

(Corr. %) (0.25L%) (1.0L%) (2L%)

DoG
170.1 128.5 95.2
30.9 14.7 6.1

(18.1%) (11.5%) (6.4%)

SURF
160.1 73.4 37.0
40.5 15.0 4.8

(25.3%) (20.4%) (12.9%)

Harris
233.3 180.9 150.5
45.8 14.1 5.8

(19.6%) (7.8%) (3.8%)

Hessian
309.7 289.8 201.2
62.7 36.9 16.1

(20.3%) (13.9%) (9.1%)

VFAST
154.1 121.7 111.4
22.8 11.1 4.0

(14.8%) (9.1%) (3.6%)

MSER
94.1 80.1 57.5
47.9 36.1 24.4

(50.9%) (45.1%) (41.8%)

Table 2: Top to bottom: The average number of interest
points detected, the average number of correspondences
(d ≤ 1.5%L), percentage of correspondence points.

4.2.5 Number of interest point correspondences

Table 2 presents a quantitative statistics for the number
of interest points and correspondences at three noise lev-
els (0.25%, 1% and 2% of L). MSER detector has the best
percentage of correspondences, yet it gives a smaller set of
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interest points. By contrast, Hessian, SURF and Harris pro-
duce larger sets of interest points with good correspondence
ratios. The displacement threshold used here (d = 1.5%L)
is much lower than the typical value (d = 3%L), hence only
highly accurate corresponding points are counted towards
the ratios.

4.3. Experiments on MRI and stereo data

(a) MRI scan 1 (b) MRI scan 2 (c) DoG on Stereo data

Figure 5: (a) MRI scan 1 with MSER detected, (b) MRI
scan 2 (aligned) with MSER, (c) Point clouds in the Stereo
dataset, together with the DoG interest points detected.

In addition to synthetic mesh data, detectors are evalu-
ated on other input datasets (the MRI dataset and the Stereo
dataset) as mentioned in section . As a reference for cross
validation, average scores obtained from the Mesh dataset
are plotted against displacement threshold d in figure 6a.

MRI dataset This dataset contains two MRI scans of a
human brain. Each MRI has the longest dimension L of 218
voxels. The first MRI scan is transformed (with 20◦ rotation
and 20 voxels translation) and interpolated to generate the
second MRI scan. Figure 5a and 5b shows the MSER inter-
est points detected on the data. It is worth noting that some
points detected on the MRIs can be matched easily, such as
those on the nose-tips, eye sockets and foreheads.
Rarea scores are measured from the dataset with varying

d in figure 6b. The evaluation results obtained are compara-
ble to that of synthetic mesh data — MSER, DoG and Hes-
sian work slightly better in synthetic meshes, while Harris
detector is good at detecting complicated internal structures
in the MRI scans.

Stereo dataset A pair of point clouds, as shown in figure
5c, are acquired separately from a multi-view stereo system.
Volumetric data with maximum length of 132 voxels are
converted from these point. The Rarea scores obtained from
the Stereo dataset are shown in figure 6c. Although the
order of detectors is similar to that of MRI and Mesh data,
Rarea scores of stereo data are much lower its counterpart.
Particularly, the performances of Hessian and Harris drop
rapidly, as the uneven sampling of data points affects the
computation of volume derivatives. Generally, the decrease

of performance is due to: (1) low sampling frequency and
high noise in stereo data, (2) uneven surface points which
are infeasible for some detection algorithms (e.g. MSER,
Harris and Hessian) and (3) errors in homography obtained
from ICP alignment.

4.4. Qualitative analysis: Blobs vs Corners

The volumetric interest points can be roughly classified
into three categories: region-based blob detection (MSER),
derivative-based blob detection (DoG, Hessian and SURF)
and corner detection (Harris, V-FAST). The evaluation re-
sults imply that region-based blob detector works better
than derivative-based detectors, and blob detectors are bet-
ter than corner detectors.

Region-based blob detection (MSER) works better in
3D volumes because 3D regions are more stable in volu-
metric data. Furthermore, 3D shapes are invariant to view
point changes (affine tranformations), therefore blob detec-
tion in 3D shapes has become more stable than in texture
(images) with view point changes.

Derivative-based detection (DoG, Hessian and SURF)
also possesses the advantages of blob detection techniques.
However, these approaches are more vulnerable to noise be-
cause of the derivative calculation involved.

Corner detection is relatively less robust to noise than
blob detection techniques. Whilst blobs remain stable in
noisy or transformed volumetric data, corners are more eas-
ily affected by quantization errors or sampling noise. How-
ever, they are still suitable for detecting features when blobs
cannot be detected correctly at low sampling density (c.f .
figure 6c).

5. Conclusion
In this paper, we compared the state of the art volumetric

interest points. Combining both repeatability and accuracy,
we proposed a novel metric to evaluate a feature detector.
Three types of input data (meshes, MRI and stereo point
clouds) are leveraged in the evaluation framework to give
a complete picture of different detectors. Summarising the
results with respect to the proposed Rarea score, there does
not exist any interest point that outperforms others in all as-
pects. MSER achieves the best overall performance. It is
robust to both noise and rotation, but does not work well
in unevenly sampled shapes. Taking the number of corre-
sponding points into account, Hessian and DoG maintain
a balanced performance between repeatability and number
of correspondences. From the experiments, blob detec-
tors (e.g. Hessian) performs better than corners detectors
(e.g. Harris) in 3D shapes, and this phenomenon is anal-
ysed qualitatively. Interestingly, some parts of our results
agree with the evaluation of texture-based detectors in [18].
Nevertheless, the choice of volumetric interest points can
also be application dependent. Our work seeks to provide
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(c) Repeatability Score: Stereo

Figure 6: Rarea scores versus displacement threshold d: Left to Right — Mesh, MRI and Stereo dataset.

guidance on selection of interest point algorithm for specific
computer vision or machine learning tasks.
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