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Abstract—This paper presents the first performance eval-
uation of interest points on scalar volumetric data. Such
data encodes 3D shape, a fundamental property of objects.
The use of another such property, texture (i.e. 2D surface
colouration), or appearance, for object detection, recognition
and registration has been well studied; 3D shape less so.
However, the increasing prevalence of depth sensors and the
diminishing returns to be had from appearance alone have seen
a surge in shape-based methods. In this work we investigate the
performance of several detectors of interest points in volumetric
data, in terms of repeatability, number and nature of interest
points. Such methods form the first step in many shape-based
applications. Our detailed comparison, with both quantitative
and qualitative measures on synthetic and real 3D data, both
point-based and volumetric, aids readers in selecting a method
suitable for their application.

Keywords-Volumetric interest points; performance evalua-
tion;

I. INTRODUCTION

The applications of object detection, recognition and reg-
istration are of great importance in computer vision. Much
work has been done in solving these problems using appear-
ance, helped by the advent of image descriptors such as SIFT
and competitions such as the PASCAL challenge, and these
methods are now reaching maturity. However, advancing ge-
ometry capture techniques, in the form of stereo, structured
light, structure-from-motion and also sensor technologies
such as laser scanners, time-of-flight cameras, MRIs and
CAT scans, pave the way for the use of shape in these tasks,
either on its own or complementing appearance—whilst an
object’s appearance is a function not only of its texture, but
also its pose and lighting, an object’s 3D shape is invariant to
all these factors, providing robustness as well as additional
discriminative power.

Shape-based techniques for object recognition range from
the very local, with small, indistinct features, e.g. single
points, combined in a geometrical consistency framework,
to the global, with a single descriptor for an entire object.
While the former methods offer robustness to occlusion and
clutter and provide pose, they do not cope well with shape
variability, nor scale well with the number of object classes.
The global methods’ pros and cons tend to be the inverse.
Between these two extremes are those methods that describe
local features of limited but sufficiently distinctive scope,
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Figure 1: Different types of volumetric interest points de-
tected on a test shape.

thereby gaining the discriminability of global methods and
the robustness of local methods. The distribution of such
features can be used for effective object detection, recog-
nition and registration. The nature of these hybrid methods
is reminiscent of the image descriptors of appearance-based
methods, not least in the need for shape features to be chosen
at points that are repeatably locatable in different data sets,
and whose localities are distinctive. A common and crucial
stage of such approaches is therefore the detection of interest
points to be described.

This paper aims to provide the first performance eval-
uation of interest point detectors (shown in figure 1) on
scalar volumetric data. Such data not only comes directly
from volumetric sensors, e.g. MRIs, but can also be gen-
erated from other 3D data such as point clouds or meshes,
making the evaluation as widely applicable as possible. The
representation allows interest points to be located off an
object’s surface, e.g. at the centre of a limb. In addition, the
nature of the data—voxels, the 3D equivalent of pixels—
makes repurposing the many 2D interest point detectors
for 3D straightforward. The primary, quantitative evaluation
criterion is a novel measure combining both repeatability,



based on the number of corresponding points found across
two volumes, and the spatial accuracy of correspondences.
Detected interest points have a (subvoxel) location and also
a scale, and distances are computed in this space.

The remainder of this section reviews previous work
relevant to interest point detectors and our evaluation frame-
work. The following section introduces the interest point
detectors we compared, while section III describes our eval-
uation methodology. Section IV describes our experiments
and presents the results, before we conclude in section V.

A. Previous work

We will now discuss relevant prior work on interest point
detectors and evaluation methodologies.

Interest point detectors Interest points are typically
used to match corresponding points across two or more
similar sets of data. The data has predominantly been
images, though some detectors have recently been applied to
volumes. This review will be brief, focusing on the detectors
we evaluate and previous applications to 3D data, as the field
is well studied (at least in respect to images); we refer the
reader to a recent survey [1] for more details.

Differential approaches to interest point detection find
optima in the data response to differential operators such as
the second moment matrix (first order derivatives), e.g. the
Harris corner detector [2], and the Hessian matrix (second
order derivatives). Lindeberg [3] studied scale-covariant1

points using the Laplacian-of-Gaussian kernel (equivalent
to the trace of the Hessian), as well as the determinant
of the Hessian. Lowe [4] approximated the former with
a Difference-of-Gaussians (DoG) operator for efficiency, a
method recently applied to CT scan volumes [5]. The SURF
detector of Bay et al. [6] accelerates computation of the
Hessian determinant through the use of integral images,
since applied to integral volumes of space-time video [7] and
binary volumes generated from 3D meshes [8]. Mikolajczyk
& Schmid [9] developed the scale-covariant Harris-Laplace
detector by finding Harris corners in the spatial domain
which are maxima of the Laplacian in the scale domain,
an approach which Laptev [10] applied to classification of
video volumes.

In a different approach, the FAST detector of Rosten et
al. [11] uses the largest number of contiguous pixels on a cir-
cle of fixed radius which are significantly darker, or brighter,
than the centre pixel. They learn a decision tree classifier
that makes the approach extremely efficient, leading it to
be applied to space-time video volumes also [12], [13].
The MSER detector of Matas et al. [14] finds thresholded
regions whose areas are maximally stable as the threshold
changes. It is therefore inherently multi-scale, as well as
invariant to affine intensity variations and covariant with

1Covariant characteristics, often (inaccurately) referred to as invariant
characteristics, undergo the same transformation as the data. We prefer
“covariant” in order to distinguish truly invariant characteristics.

affine transformations. MSER has already been applied to
volumetric data, firstly in the context of segmentation of
MRIs [15], then on spatio-temporal data [16].

Image-based detectors have also been made affine-
covariant (e.g. [9]), in order to approximate the perspective
distortion caused by projection of 3D surfaces onto the 2D
image plane. Such covariance is not necessary with 3D shape
data because most shape acquisition techniques are invariant
to view point changes, thus affine transformations are not
common among datasets.

Methodologies Empirical performance evaluation is a
popular pastime in Computer Vision, and the topic of interest
point2 detection is no exception. Some methods evaluate
performance in the context of a particular task, lacking
generality to other applications. Most investigate one or
more interest point characteristics. One such characteristic,
important for registration applications, e.g. camera calibra-
tion, scene reconstruction and object registration, is the
accuracy of interest point localization. Coelho et al. [17]
measure accuracy by computing projective invariants and
comparing these with the actual values, measured from the
scene. Brand & Mohr [18] introduce three further measures,
including 2D Euclidean distance from detected points to
ground truth corner locations (given by line fitting to a grid).
This has been extended to using the distance to the nearest
point detected in, and transformed from, another image
(e.g. [19]). Matching scores for interest points found over
location and scale [9], and also affine transformations [9],
have since been proposed.

When used for object detection and recognition, two
other important characteristics of interest points are their
repeatability (i.e. is the same feature detected in multiple
datasets) and their distinctiveness (i.e. can a point, or region
of interest be easily recognized among many). Repeatability
was proposed by Schmid et al. [19] as the ratio of repeated
points to detected points. Rosten et al. [11] used the area
under the repeatability curve as a function of number of
interest points, varied using a threshold on the detector
response, in their evaluation. When ground truth locations
of interest points are given, e.g. hand labelled, an alternative
measure is the ROC curve [20], which takes into account
false matches. Schmid et al. [19] also introduce a quanti-
tative measure of distinctiveness—entropy, or “information
content”. Alternatively, qualitative visual comparison is used
(e.g. [3], [10]), on test datasets containing a variety of
different interest points.

In the context of texture-based interest points, perfor-
mance of detectors are often measured over variations in im-
age rotation, scale, viewpoint angle, illumination and noise
level (e.g. [19] covers all these factors), as well as corner
properties. Efficiency may be a further consideration [11].

2When referring to interest points in the context of methodology, we
include image features such as corners, lines, edges and blobs.



II. DETECTORS

This section briefly describes the volumetric interest
point detectors that we will evaluate: difference of Gaus-
sians (DoG) [5], Harris-based [10] and Hessian-based
interest points, speeded up robust features (SURF) [7],
[8], V-FAST [13] and maximally stable extremal regions
(MSER) [15], [16].

DoG Difference of Gaussians is a blob detection tech-
nique for feature localization popularized by the SIFT al-
gorithm [4]. Its volumetric extension has been applied to
shape recognition [5]. DoG approximates the Laplacian of
Gaussian filter, which enhances features of a particular size.
The DoG saliency response SDoG is computed by subtracting
two Gaussian smoothed volumes, usually adjacent scale-
space representations, of the same signal and taking the
absolute values of this. Interest point are detected at the
4D local maxima (both 3D space and scale) in SDoG within
each octave of V(x, σs).

Harris Extending the Harris corner detector [2], Laptev
introduces the space-time interest point for video catego-
rization [10]. The second-moment matrix is computed by
smoothing the first derivatives of the volume in scale-space
V(x;σs) by a spherical (in our case) Gaussian weight
function g(·;σHarris):

M = g(·;σ2
Harris) ∗

 V2
x VxVy VxVz

VxVy V2
y VyVz

VxVz VyVz V2
z

 , (1)

where Vx,Vy ,Vz denote the partial derivatives of the vol-
ume in scale-space V(x;σs) along x, y and z axes respec-
tively. The saliency SHarris is computed from the determinant
and trace of M:

SHarris = σ3
sdet(M)− k trace(M)

3
, (2)

where k controls the rejection of edge points. Each saliency
response SHarris is normalized by its scale σs. The window
size σHarris is proportional to expected feature scales σs by
a factor of 0.7 as suggested in [9]. Interest point are the 4D
local maxima in the scale-space of SHarris.

Hessian The Hessian interest point is similar to the Harris
detector; instead of a second-moment matrix M, it is based
on Hessian matrix H.

H =

 Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

 , (3)

where Vxy denotes the second derivative of the volume at
scale σs, along x and y axes: ∂V(x;σs)

∂x∂y . The Hessian saliency
is the determinant of H normalized by scale σs:

SHessian = σ3
sdet(H) . (4)

Similarly, the interest points are located at the 4D scale-
space maxima of SHessian.

SURF Speeded up robust features (SURF) [6] is a
feature extraction algorithm optimized for efficiency. SURF
is similar to Hessian in terms of the feature model it is based
on; Haar wavelets are used to approximate derivatives of
Gaussian functions, accelerating computation. The first 3D
version of SURF was introduced in Willems et al. [7] for
video classification. Recently, it was used in a 3D shape
object recognition task [8].

V-FAST Building on the success of FAST corner de-
tector [11], Yu et al. [13] proposed V-FAST for video
recognition. Koelstra & Patras [12] introduced an alternative
FAST-3D interest point. The V-FAST algorithm performs
accelerated segment tests (AST) on three orthogonal Bre-
senham circles. Along each plane, the saliency score is
computed by maximizing the threshold t that makes at least
n contiguous voxels brighter or darker than the nucleus voxel
by t in equation 5.

ASTxy(n, t) =

 t if ||vnucleus > cxy + t|| ≥ n
t if ||vnucleus < cxy − t|| ≥ n
0 otherwise

(5)

Sxyvfast = max(ASTxy(n, t)) , (6)

Svfast =
√
(Sxyvfast)

2 + (Sxzvfast)
2 + (Syzvfast)

2 , (7)

where cxy denotes the voxels on an xy-circle centered at
cnucleus. The overall saliency Svfast is the Euclidean norm of
saliency scores on the three planes in equation 7. Interest
points are local maxima in Svfast along both space and
scale, with at least two non-zero values in ASTxy(n, t),
ASTxz(n, t) or ASTyz(n, t).

MSER Maximally stable extremal regions (MSER) is
a blob detection technique proposed by Matas et al. [14].
Being inherently advantageous for volumetric interest point
detection (e.g. robust to rotation and scale changes), MSER
has already been applied for detecting volumetric salient
regions [15], [16].

Subvoxel refinement MSER locates interest points by
fitting an ellipsoid to the detected salient region [14]. We
apply the subpixel refinement process of Lowe [4] to all the
other detectors; interest points are localized at the subvoxel
level by fitting a 4D quadratic function around the local
scale-space maxima, and selecting the maxima of those
functions instead.

III. METHODOLOGY

Whilst previous evaluations have focused on either lo-
calization accuracy or repeatability, we combine the two
performance metrics into a single score.

Localization accuracy A key component of the score is
the distance metric used to measure the closeness of two
interest points.

D(P,Q′) = ||P−Q′||2 , (8)
P = [Px, Py, Pz, f log(Ps)]

T , (9)



where Px, Py and Pz are the spatial components and Ps
is the scale component of an interest point’s location. The
log of scale is used to remove multiplicative bias across
detectors, and since spatial location and scale are not fully
commensurable, a parameter f is introduced to balance the
importance of scale to the distance function.

In our evaluation the interest point P is in the coordinate
frame of the volume, VP , it was found in, whilst Q′ is the
point Q found in volume VQ of a given pair of volumes,
transformed into the coordinate frame of VP . Our score is
based on the distance of an interest point to the nearest
transformed interest point, thus:

D(P,Q′) = min
Q′

j∈Q′
D(P,Q′j) , (10)

where Q′ = {Q′j}
q
j=1, the set of q transformed interest

points found in VQ.
Repeatability Schmid et al. [19] defined repeatability as

the ratio of correspondences to points:

Rratio(P,Q′, d) =
∑p
i=1H(d−D(Pi,Q′))

min(p, q)
, (11)

where P = {Pi}pi=1, the set of p interest points found in
VP , d is a user provided distance threshold, and H(·) is the
Heaviside step function.

Combined score Rosten et al. [11] computed the area
under Rratio as a function of the number of interest points
(varied using a contrast threshold on the detector). We use
the same idea, but computing Rratio as a function of the
distance threshold, d. The score therefore increases both
if more points are matched, and also if matches are more
accurate. We also compute a symmetric score, by measuring
the average score across two directions of transformation ,
using VP and VQ as the reference frames respectively. This
score is given as

Rarea =
1

2D

∫ D

0

Rratio(P,Q′, d)+Rratio(Q,P ′, d) dd, (12)

where D is a maximum distance threshold.

IV. EVALUATION

A comprehensive evaluation is performed on the volu-
metric interest point detectors in this section. The main
objective is to investigate how the interest points perform
under different variations. Our Rarea score is advantageous
over traditional repeatability, as it reflects both repeatability
and accuracy of interest points in one measurement.

A. Test data

Three sources of data are used in our evaluation. Two
of these are synthetic, as large sets of real, registered, 3D
data are not commonly available. Synthetic data are used
because we can create new test data with arbitrary noise
levels, transformations and sampling density with accurate

Figure 3: Mesh to volume conversion: Left to right – mesh,
point cloud and voxel array.

ground-truths for evaluation. The first set, Mesh, contains 25
shapes (surface meshes) chosen from the Princeton shape
database [21] and TOSCA [22] sets. This selection contains
a wide range of geometric features, from coarse structures to
fine details. Point clouds are created by randomly sampling
3D points, with a uniform distribution, over the area of
the meshes. Homogeneous Gaussian noise is added to the
points. The point clouds are then voxelized using kernel
density estimation with a Gaussian kernel g(·, σKDE). The
conversion process, illustrated in figure 3, allows sampling
density and noise to be varied when generating the volumes.
The MRI dataset consists of two synthetic MRI scans of
a human brain, generated from BrainWeb [23], again with
known transformation between the two. The Stereo dataset
contains 16 point clouds of 8 objects captured from a variety
of viewpoints using a multi-view stereo system [24]. Relative
transformations are computed by aligning each point cloud
with a reference model using the iterative closest point
algorithm [25]. The same voxelization technique is used to
convert stereo point clouds to volumetric data.

While the synthetic shape instances of the same object
completely overlap one another, avoiding bias to the repeata-
bility score [26], the real stereo data contains occlusions
(the underside of each object, which varied across instances,
was not captured), as well as uneven sampling density and
generally more sampling noise. The applicability to real
applications of our performance evaluation using synthetic
data will therefore be tested by comparing the results with
those on the Stereo dataset.

B. Experimental setup

We evaluate the robustness of the detectors under varia-
tions of several test parameters: rotation, translation, scale,
sampling density and noise. The three datasets in section
IV-A are tested under different variations:
• Mesh: Sampling noise and density, scale, rotation.
• MRI: Rotation + translation.
• Stereo: Scale + rotation + translation.

Performances of the candidate detectors are measured as
each test parameter is varied individually, keeping all the
other parameters at their default values (given in table I).
Sampling parameters (i.e. noise level and sampling density)
are applied to all shape instances, whilst pose parameters
(i.e. rotation, translation and scale) are applied to only
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(d) Rotation

Figure 2: Rarea scores of testing dataset under changing (a) sampling density (point cloud size), (b) scaling and (c) rotation.
Solid lines indicate the average, and the light colour bands show the 25% and 75% quartiles.

one instance in each matching pair. Some parameters are
defined in terms of L, the largest dimension of the voxelized
reference shapes. We set the maximum value of L to 200
voxels.

C. Experiments on synthetic meshes

Sampling noise Sampling noise and density are crucial
factors in shape-based interest point detection. Existing
shape acquisition techniques (e.g. multi-view stereo) often
produce data with sampling noise. In this test, different levels
of Gaussian white noise, with standard deviations 0–0.03L,
are applied to the Mesh dataset.

The result is shown in figure 2a. While the Rarea scores
of other detectors decline rapidly, MSER maintains a high
Rarea score, demonstrating high robustness to noise, since
it does not use derivatives, which are vulnerable to it. The
Hessian-based detector shows a relatively stronger tolerance
than the remaining detectors at higher noise levels.

Sampling density The Rarea score of shapes with various
sampling densities (point clouds range from 4K points to
405K points) are measured. Figure 2b presents the change
of Rarea scores versus point cloud size. The scores vary
linearly in log scale, therefore a diminishing return is
observed with increasing sampling density. MSER achieves
the best average performance but it also has the largest
variance across different shapes. Hessian and DoG produce
satisfactory results, with high scores but smaller intra-dataset
variance than that of MSER.

Rotation This experiment evaluates susceptibility of the
detectors to rotational aliasing effects. Eight rotation axes
are generated randomly for each shape, and rotations of
increasing magnitude, up to 90◦, applied about them.

The effect of rotation is shown in figure 2d. Most detectors
show excellent tolerance to rotation, inheriting this from
their texture-based counterparts. DoG and MSER perform
slightly better than others, with almost unchanged average

Parameter Value
Default point cloud size 50000 points

Default noise 0.0025L
Default rotation 0◦

Maximum L 200 voxels
Default σKDE in g(·, σKDE) 1.5 voxels

Distance threshold D 0.03L
Parameter f in equation (8)

√
8

Number of octaves in scale-space 4

Table I: The reference parameters for the testing shapes.

scores. SURF performs worse than other detectors because
the use of box filters leads to increased quantization errors
as the shapes are rotated.

Scale Data are scaled from 50% to 200% of their original
sizes. The values of Rarea measured against scale changes
are illustrated in figure 2c. DoG and Hessian detectors
are comparatively more robust to scale. SURF only works
well at 100% and drops significantly outside the original
scale, because of the approximated scale-space used. MSER
achieves the best result at its original size, its performance
decreasing steadily as the shape is scaled. The loss of infor-
mation in smaller volumes leads to a greater performance
drop at smaller scales than larger scales for all detectors.

Number of correspondences Table II presents quan-
titative statistics for the number of interest points and
correspondences at three noise levels (0.0025, 0.01 and 0.02
of L). The MSER detector has the highest percentage of
correspondences, yet it gives a smaller set of interest points.
By contrast, Hessian, SURF and Harris produce larger sets
of interest points with good correspondence ratios. The
displacement threshold used here (D = 0.015L) is about
half the typical value, hence only accurate correspondences
are counted towards the ratios.

Saliency Figure 5 shows the repeatability, Rratio, with
varying percentages of interest points. For each detector, the



Avg.# Pts. Sampling Noise Level
Avg.# Corr.Pts. Low Medium High

(Corr. %) (0.0025L) (0.01L) (0.02L)

DoG
122.0 118.2 73.1
48.8 35.1 9.3

(39.8%) (29.7%) (12.7%)

SURF
154.7 70.4 28.7
54.7 18.4 3.84

(35.3%) (26.2%) (13.4%)

Harris
303.3 142.2 123.8
78.6 33.2 13.4

(25.9%) (23.3%) (10.83%)

Hessian
330.8 272.0 201.2
117.1 72.2 30.2

(35.4%) (26.6%) (18.2%)

V-FAST
115.9 85.5 74.6
33.5 15.5 7.4

(28.8%) (18.10%) (9.85%)

MSER
99.0 74.4 52.5
59.9 44.7 28.8

(60.5%) (60.2%) (54.9%)

Table II: For each entry, top to bottom: The average number
of interest points detected, the average number of correspon-
dences (d ≤ 0.015L), percentage of correspondence points.

detected interest points are sorted by their corresponding
saliency responses in descending order, then the first p%
of interest points for computing Rratio. However, since no
saliency measure is defined in the MSER detector, the num-
ber of detected interest points cannot be controlled directly;
MSER is therefore not included in figure 5. For analyzing
the accuracies of the candidate detectors, Rratio is computed
using a smaller displacement threshold (D = 0.015L) in this
experiment.

The performance of DoG and Harris detectors tend to
be stable (though Harris performs notably worse than DoG)
with increasing numbers of interest points (i.e. decreasing
saliency threshold), indicating that a saliency threshold is not
necessary for these detectors. Hessian’s performance, which
is initially the best, decreases very slowly and converges with
DoG and SURF, indicating that the lower saliency points are
less reliable. A saliency threshold for Hessian might benefit
applications requiring more accurate point localization. By
contrast, the reapeatability scores of SURF and VFAST
increases steadily before leveling off, suggesting that some
of the high saliency points are unreliable; this poses more
of a problem in terms of interest point selection.

D. Experiments on MRI and stereo data

Interest points detectors are also evaluated on the MRI
and Stereo datasets. As a reference for comparison, average
scores obtained from the Mesh dataset are plotted against
displacement threshold D in figure 6a.

MRI dataset Rarea scores measured on this dataset with
varying D are shown in figure 6b. The evaluation results
obtained are comparable to that of synthetic mesh data—
MSER, DoG and Hessian work slightly better in synthetic

(a) MRI scan 1 (b) MRI scan 2

Figure 4: Two volumetric MRI scans of a human brain, with
detected MSER features.

meshes, while the Harris detector is good at detecting
complicated internal structures in the MRI scans.

Figure 4 shows the MSER interest points detected in the
data. It is worth noting that some points detected on the
MRIs can be matched easily, such as those on the nose-tips,
eye sockets and foreheads, but that there are fewer detections
within the brain area.

Stereo dataset The Rarea scores obtained from the Stereo
dataset, shown in figure 6c, are lower compared with Mesh
and MRI datasets, especially at small D. Nonetheless, in
terms of overall rankings and relative scores of the detectors,
our synthetic and real data demonstrate similar behaviour.
The decrease in performance for our stereo data could be
due to its: (a) low sampling frequency and high noise,
(b) uneven object surfaces, which are infeasible for blob
detection algorithms (e.g. MSER, SURF and Hessian) and
(c) small errors in the estimated ground truth poses.

Figure 7 shows two example point clouds and their corre-
sponding volumes, with detected DoG, Harris and SURF
features (figures 7b, 7c and 7d respectively). One object
exhibits a much sparser reconstruction (due to a lack of
texture on the object’s surface), but it is interesting to note
that the distribution of detected features is no less dense
across any of the detectors, suggesting that our synthetic
results are representative of sparse point clouds as well as
dense.

E. Qualitative analysis

Volumetric interest points can be roughly classified
into three categories: region-based blob detection (MSER),
derivative-based blob detection (DoG, Hessian and SURF)
and corner detection (Harris, V-FAST). The quantitative
evaluation results imply that region-based blob detectors
work better than derivative-based blob detectors, and blob
detectors are better than corner detectors, but this is not
the whole story. The candidate detectors demonstrate dif-
ferent behaviours in terms of locations and scales of the
detected interest points. Therefore, besides repeatability, it
is also important to analyze the characteristics of detectors
qualitatively. Figure 1 visualizes interest points detected by
the six candidate detectors on the “cat” object from the Mesh
dataset.



Percentage of Interest Points (p%)

R
ep

ea
ta

bi
lit

y_
R

ra
ti

o

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Figure 5: Repeatability Rratio vs.
percentage of interest points p.

Displacement_D_(_%_of_L_)

R
ar
ea
__
S
co
re

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Repeatability Score: Mesh

Displacement_D_(_%_of_L_)

R
ar
ea
__
S
co
re

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Repeatability Score: MRI
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(c) Repeatability Score: Stereo

Figure 6: Rarea scores versus displacement threshold d: (a) Mesh dataset,
(b) MRI dataset and (c) Stereo dataset.

Region-based blob detection MSER detects contiguous
regions of any shape (i.e. not limited to spherical blobs)
allowing it to select more robust regions from a greater
selection, and hence perform better. It can be seen in figure
1f that MSER finds features at fewer locations, but over
multiple scales. The locations tend to center on regions of
high surface curvature.

Derivative-based blob detection DoG, Hessian and SURF
detectors theoretically find, in order of preference, spherical
blobs, corners and planes. DoG and Hessian have qualita-
tively similar output, as shown in figures 1a and 1d, finding
features at limb extremities such as paws, ears and tail, as
well as within limbs. By contrast, SURF (figure 1b), despite
being an approximation of the Hessian detector, produces
features off the surface (both inside and outside), often over
regions of low surface curvature.

Corner detection Harris and V-FAST both aim to find
areas of high curvature. However, their outputs (figures 1c
and 1e) vary qualitatively, with the former tending to find
fewer large features and more sharp corners than the latter,
which finds an even distribution of features over both scale
and translation.

V. CONCLUSION

In this paper, we evaluated the state of the art for
volumetric interest points. Combining both repeatability
and accuracy, we proposed a novel metric to evaluate a
feature detector. Three types of input data (meshes, MRI
and stereo point clouds) are leveraged in the evaluation
framework to give a complete picture of different detectors.
Summarizing the results with respect to the proposed Rarea
score, MSER achieves the best overall performance, being
robust to both noise and rotation. Taking the number of
corresponding points into account, Hessian and, to a lesser
extent, DoG maintain a balanced performance between this
and repeatability. From the experiments, blob detectors (e.g.

Hessian) appear to perform better than corner detectors (e.g.
Harris) in 3D shapes, a result that agrees with an evaluation
of texture-based detectors [27]. Nevertheless, the choice of
volumetric interest points can also be application dependent.
This work seeks to provide guidance on selection of interest
point algorithm for specific computer vision or machine
learning tasks. In a qualitative analysis we discussed the
nature of features found by each detector. In addition we
have demonstrated that our extensive evaluation on synthetic
data can aid detector selection for real applications.
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