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Abstract els [17], statistical analysis to develop image/video priors
[19), and object shape/pose/articulation learning [

We present a novel, implementation friendly and occlu- A video model must capture both short range correlations
sion aware semi-supervised video segmentation algorithm(within frame and successive frames) and long range cor-
using tree structured graphical models, which delivers relations (across many frames) in the video to enable oc-
pixel labels alongwith their uncertainty estimates. Our mo- clusion aware segmentation (see Fig). In addition, it
tivation to employ superivision is to tackle a task-specific must provide a measure of uncertainty which is temporally
segmentation problem where the semantic objects aresmooth and helps avoid propagation of erroneous instanta-
pre-defined by the user. The video model we propose forneous decisions. Existing video models 10, 21, 9] do
this problem is based on a tree structured approximation of not satisfy one or more of these requirements as discussed
a patch based undirected mixture model, which includes ain Sec.2. In contrast, the algorithm we propose is to the best
novel time-series and a soft label Random Forest classifierof our knowledge the first of its kind to address all these re-
participating in a feedback mechanism. We demonstratequirements. Specifically, our contributions in this paper are:
the efficacy of our model in cutting out foreground objects 1. A novel rectangular patch baseele structured graphical
and multi-class segmentation problems in lengthy and model for videosvhich capture both short and long range
complex road scene sequences. Our results have wideorrelations for occlusion aware segmentation.
applicability, including harvesting labelled video data for 2. Label uncertainty estimatiorin videos due toexact
training discriminative models, shape/pose/articulation probabilistic inference.
learning and large scale statistical analysis to 3. Animplementation friendly algorithmvhich only re-
develop priors for video segmentation. quires exact inference and a standard Random Forest clas-

sifier based on an entropic information gain criterian||

An example object cut-out obtained by our method is shown
1. Introduction in Fig. 1.
. . . We present a detailed literature review in SBc.Our pro-
. From a Baye5|an perspeptwe, unsupervised S?gmentabosed algorithm is elaborated in S&t1. We discuss our
tion must either tackle the issue of model selection (de- experimental setup and results in SécWe summarise the

termmmg th_e optimal number O.f segments from daff]a [ advantages and drawbacks of our approach in SedVe
or marginalize over segmentation hypotheses as in non-

parametric Bayesian approach@&s][ The first approach re- conclude in Secs.

quires deterr_ningti.on of model evidence, whiph for mo;t im- 2 Literature review

age models is difficult, and the second requires meaningful

priors over segmentations, which would need vast amountsvVideo Models - Image/video models which learn long
of training data to hypothesize. §]. We choose to avoid range correlations by removing redundancy in video data
semi-heuristic model selection methodq pnd instead  are the Epitome and Jigsaw model§ [10]. Their ability
tackle the problem dafask-specific segmentationhere the  to recognize semantic video segments by discovering “se-
semantic object labels are initialised by the user (seeljig. mantic clusters” in these compact representations using ad-
In particular, we define our problem as labelling a video into hoc clustering remains speculative for complex video data.
a fixed number of semantic classes, given the labels of theln this paper, we avoid compacting the video and instead
first and last frames of a video sequenck [The resulting use a soft label Random ForestRF) borrowed from ]

pixel soft labelsan be used for harvesting labelled data for for patch clustering, which is fast and is able to capture long
maximum likelihood (ML) learning of discriminative mod- range correlations in the video.
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Figure 1. A clean cut-out of aarticulated objecbver 100 frames using our method. We used a threshold.9® over the pixel marginal
posteriors to produce this cut-out. See supplementary video. Best viewed in colour and zoomed in.

The recently proposed unsupervised segmentation algowhich are key elements of our work. Indeed, there have
rithm of Reina et al. 11] aims to link temporally con-  been attempts to define label uncertainties through max-
sistent superpixels using a Graph-Cut optimiser. As their marginal probabilities within CRF model<q], but their
segmentation isask independentt is difficult to interpret uncertainty estimates are mis-matched to marginal posteri-
their over segmented results in terms of semantic object la-ors. Also, their global uncertainty formulation is unsuitable
bels. Further, their unsupervised approach does not conto prompt temporally smooth local correctici].[ Dynamic
sider within class appearance variation which is what makesMRF models [.1] introduce temporal smoothness by using
semantic segmentation difficult. We therefore consider thethe MAP label estimates in one frame to efficiently drive the
more well-defined yet non-trivial task-specific segmenta- MAP computation in the next. As uncertainties of the MAP
tion problem. estimates are not propagated through time, this method is
Buchanan et al. €] store video data in a efficient manner prone to accumulation of errors dueitstantaneous deci-
using K-D trees for fast semi-supervised feature point track- sion making In summary, global MAP estimation methods
ing. In contrast to theirs, and optical flow approached,[ compromise exact inference for a complex prior (MRF) and
we do not need pixel accurate matching. We rely on intra- do not capture long range correlations.

class matches in video, as in inpainting problers [ The desire to capture short and long range correlations in-
The hybrid label propagation (HLP) model of Budvytis et herently leads to a “loopy” graphical model, which does
al. [9] employs a directed graphical (DG) model to fuse not permit exact inference. Variational inference meth-
short and long range correlations for semi-supervised seg-ods such as the popularean-fieldapproximations g] fail
mentation. Their method suffers from the problem of “ex- to propagate meaningful uncertainty information in time-
plaining away” in directed models3], which affects the  series modelsZJ]. Therefore, we avoid such approxima-
ability to capture long range correlations (see supplemen-tions and instead estimatearae structured graphical model
tary report). In additionmultiple connectivityn their DG for videos, which permits exact inference. This model in-
restricts them to infer only two extreme states of uncertainty cludes a time-series to capture short-range correlations and
(delta or flat distibutions). To overcome these issues, wesIRF as a “black-box” which subsumes the “loopy” long
propose an undirected graphical (UG) model which retainsrange cliques (see Fig). We believe that this approxima-
the essential “inpainting” ability of their model. Our model tion is justified by the quality of the results it produces using
is able to model the desired correlations and also permitsexact inference.

exact inference. Semi-supervised Learning -The semi-supervised Random
Label Uncertainty Estimation - The energy minimisation  Forests of { 3] make no use of soft labels. They attempt to
method of Sturgess et al.1§] has shown promising re- spread deterministic labels to unlabelled data from labelled
sults for semantic segmentation, but they require plenti- ones using a slow iterative annealing scheme designed to
ful labelled data for maximum likelihood (ML) parameter minimise a loss function. In contrast, the sIRF seamlessly
learning. Further, there is no attempt to introduce tempo- balances the functionality of the Random Forest between
ral smoothness nor to deliver label uncertainties, both of the extremes as a classifier (fully certain labels) and a clus-



tering method (“flat” distributions) at almost no extra cost labels. Hergj (i) denotes coordinaterelative to the top-left

to the training speed of the Random Forest. corner of patchy. Unlike Z;, we ignore the correlations
Others - Video object cut-out systems like][employ ad- between the overlapping parts in order to permit exact
hoc fusion of colour, motion and shape cues for interactive inference. We instead average the pixel posteriors at
segmentation. Since they do not model long range corre-each coordinate ofi; to get the output coordinate-wise
lations, frequent user input is necessary to deal with occlu-distributions. This “post-inference” averaging performs
sions. SIFT-flow [4] based on the optic-flow style optimi-  effective video labelling without burdening the inference

sation is unsuitable for uncertainty propagation. with intractability issues.
_ 4.T;, = {Ty;}°_, is the set of “patch mapping” variables
3. Proposed Algorithm which couple the top and bottom Markov chains. An

instance of T}, ; maps latent image patcly;; to an

observed patcHy_; 7, ; of the same size id;_;. The

same instance df}, ; also maps latent labelled patéff

3.1. Tree Structured Graphical Model for Videos to apatchzi_, 7, , of the same size in the imagh,_;. In

our experiments, each varialilg ; takes onl200 instances

We introduce a rectangular patch based undirectedwithin a30 x 40 window at framek — 1 centered on patch

graphical (UG) model which is a mixture model similar in ;. Ty ; (i) denotes pixel in patchTy, ;.

topology to the model ing] (see Fig.2). This UG model

does not suffer from the drawbacks of “explaining away” Cliques

[€], which makes fusion of the time-series and the sIRF Top Markov chain cliques:

difficult ( see supplementary report). Our main idea is to The two kinds of cliques in this chain involving real-valued

perform inference, train the sIRF based on the inference,images are defined below.

and alternate between these two steps for segmentation

in this feedbacksetup. However, when we unravel the L

dimensions of our UG model, it is clear that exact inference Wiop,1(Zk, Ik-1,1,59) = H HN (Zkr,j(i)? Iy—1,1 5005 ¢) )

is intractable due to its “loopy” structure (see FigR). j=li€j

We find that training an sIRF usirgpproximate inference . . (1)

[20] can destabilise this feedback setup. Therefore, Wewhere, |nde>gQruns over a]lthg (oye.rla.pplng) Iatgnt p.atches

approximate our mixture by a tree structured graphical Zy = {_Z"'_vj}ﬂ'zl' Zy,55) 18 pixel i inside patchy at time

model using variational analysis and choose it as our video® i (i) indexes the pixely_. 7, ;i) in [—1. N'(.) isa

model. As this model permits exact inference, the estimatednormallzed Gauss.|an distribution ovef ;(;), with mean

soft labels for training the sIRF are reliable. We also find Ij—1,7, ;) @nd variance) set to1.0.

through empirical studies that this simple model is very L &8

effective for semi-supervised segmentation. We explain the ) A L o

components of the UG model below. Leopallh Zis ) H Mk Ny lefw(v)’ v

j=

We begin by developing our proposed graphical model
for video sequences.

veV

s.t.vE]
Random Variables _ wherel}, , denotes the intensity @flobal pixel coordinate
1. I, are the observed sequence of images. v in the image grid/. j indexes patches if, and the sum
2. Zy is alatent colour imageconsisting of “overlapping is over the patches which overlapNote thatj(v) = j(i'),
latent colour image patches?, = {Z; ;}}-,, wherejis  wherei  is a local coordinate in patch which overlaps
the patch index into the set of patchi@sAs in [7], [1] we global coordinatev. 1 is the variance of the normalized
first assume these patches (and pixels within them) to beGaussian which is set th0. Note that in Eqnsl and2 the
mutually independent, even though they share coordinatesR,G and B channels are treated independently.
but then enforce agreement in the overlapping parts duringBottom Markov chain cliques:
inference by using a delta approximation in the variational
posterior. This recaptures correlations between latentimage
patches, but at the cost of only a single point posterior. o f
3. Z¢ , Cy and A, arelatent labelled imagesepresenting H HH H /f(Z?a‘(j):lvzﬁ}l»m,j<’i>:m) ©)
the time-series, output of a soft label Random Forest 723k (1), T 5 (4),Lm ’
classifier §IRF), and theirfused outputespectively. They
all consist of “overlapping latent labelled patches”. Pikel where the indices on the first two products are the same as
in patchy, denotengyj(z.), Chr.jti)> Ak, j(i), aremultinomial in Egnl. The last term comprises the joint probability table
random variables taking one &f mutually exclusive class  fi..x,j(0).1., ) OV 21 ;) 211y, 5)- |, are indices

a a . A
bot (Z1: 5 21, [ezk) =

j=1li€jl=1m=1



a. Loopy Long Range Cliques within a Semantic Class

b. Black Box Classifier Capturing Loopy Long Range Cliques c. Unravelling the Dimensions of the Bottom Markov Chain
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Figure 2. lllustrates, (a) the increased burden on inference algorithms due to “loops”, if both short and long range correlations need to be
modelled; (b)the subsuming of loopy cliques into a BlackBox Classifier (in grey) in our mixture model; (c) an expanded view of the nodes
in the bottom Markov chain of the mixture and the MA®e structured approximation to the mixturegreen. A;.,—; are theoutput

nodes, see Algl. See supplementary report for more details. Best viewed in colour and zoomed in.

into this table. visible dataV = {Iy.,, Z¢, Z%} and model parameter set
ZE = {0, ®, hoz) fhaz, fhea, T} is as follows:
Black-box clique:

p(HIV,E) o< [ [ Wropr (Zks 1.1 8) Viop 2 (T, Zis 1) x

k3 (i) —
Wy (Cr,y Ii; T HHHM @t (Tejay; T) ’(c l)y k=1
j=1li€ji=1 4 \I’bot(ZI?7Z}?q,n%ﬂzz;k)‘l’bb(cm[k§T)X
where, class probabilities ob&y,” | m ;i) = 1.0. T VU rus,1 (Ck, Ak preask) ¥ fus,2(Ak, 215 tazsk),
represents the internal parameters specific to the chosen (7)

classifier, a Random Forest in our case. The tree structure

and split node functions are the internal parametergy[ where the proportionality constant is computationally in-
Notice that, this definition masks the internal “loopy” tractable.

structure of the Random Forest as a compromise for exacty » |nference

inference.
The log probability of the visible dat& can be lower
Fusion cliques: bounded as follows:
Q L L —_ p(V,H|=Z)
(Ch. sy =h Ak j(iy=m 1 Vig) > H)log ————, 8
U 5,1 (Cry Ak feask) = HHH H cakkjj(i>)lm #I® ), ogp(V[Z) 2 /Hq( )log q(H) ®)
i i me

®) whereq(H) is a variational posterior. We choose,
where the indices on the first two products are the same as

in Egnl. The last term comprises the joint probability table q(H) = ¢1(T)q2(0), 9)

betweenCy, ;y, A j(s) In corresponding patches,m are

indices into this table. Similarly, where® = {Zi.n, 28, _1,Crin—1, Arn—1}, T = Tiin,
and,

a A 1,Z¢ =
WpasAu Zs i) 2 TLTLTL LT 20, ()

j=li€jl=1m=1
(6)

Given the random variables and cliques, the
joint posterior distribution of the latent variables — ¢2(©)
H = {Z11n7Zfl;nflaCl:n717A1:n717T11n}1 given the
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We then apply the calculus of variations to maximise the ~Ajgorithm 1. Semi-supervised Video Segmentation
lower bound w.r.t71, ¢o and arrive at,

Input: Io.,, (video).Z§, Z;, (hand labelled end frames).

Output: Pixel label probabilities.
q1(T,;) < exp / @(Zk js Zk 1 m, ;) % Intialisation
Zy j 28 2 '

k-1.1 ; Set the initial values ofi., fta=, ftca, ¥, ¢ tO the values
given in Sec4.

Setm ;) = 1,/ =1:LandVk =1:n — 1, whichis
equivalent to an untrained sIRF.

log [W(Zi 5, .1y 53 )W (20 1, Zia i naea)] b (2D)

©(0-2.) =exp [ a(T)logp(©2, V.TiZ). (12
T Building the tree model

The second of the above fixed point equations is still com-  compute the MAP tree structured approximation to the

putationally intractable as it involves marginalising over all mixture model by evaluating Eqni.l (Sec.3.2) .
the mapping variables. For this reason we approximate it Segmentation
as, 1. Infer marginals ofC1.,—1 [3].

- _ /+ See Sl in Fig. 3.3 & Sec. 3.2. */

©2(0.z,.,) = eXP/ o7+ (7)logp(©-z,.,|V,T: 5), J

T 2. UpdateTY by learning a soft label Random Forest (sIRF)
=p(O. 2., |V, T"E) (13) using the marginals af'.,—1 as soft pixel labels .
/+ See S2 in Fig. 3.3 & Sec. 33. */

where7* = argmax; ¢1(7). A second motivation for

this approximation is thai(© z, .. |V, 7*; E) is tree struc- 3. Infer marginals ofd;., -1 using the updated.

tured or in other wordg * represents the best (MAP) tree [+ See S3 in Fig. 3.3 & Sec. 3.2. */
structured approximation of the mixture model from a vari- - compute probability of pixeb taking labell at framek as
ational inference viewpoint (see Fig). In consequence, it = S Ak

is now straightforward to evaluate the exact marginals of the T '

variables in@. z, . and the pairwise marginals to evaluate ~ /* An example of typical results at each

a (7). ) step is in a supplementary report to

encourage repeatability. */

In practice, we start by setting thg(Z; ;, Z;_, , ;) to
uniform andZ;.,, = I.., to evaluatey; (7) (Eqn. 11(a)).
With this initialisation, this step is similar tpatch cross- .
correlation Although simple to implement this step is com- 4. EXperiments and Results
putationally demanding (Fig.7) and therefore, we only

evaluateq; (7)) once for each sequence to derive the cor-

responding tree structured model for that video.

Our colour video sequences aB20 x 240 resolu-
tions. Our test sequences are taken from the CamVid
road scene dataset][and Berkeley Motion Segmentation
3.3. Parameter updates and sIRF training (BMS) datasetq]. For qualitative studies, we use the tennis
and Miss Marple sequences from BMS. We use the CamVid
dataset for a quantitative study. Each sequence in CamVid
is 750 frames in length, but we down sample to evéfy
frame to have a length ab0 frames. Ground-truth is avail-
able every30 frames. We study static classes like sky,

The tree model parameters., tq., iic, are updated in
the standard maximum likelihood (ML) style using the in-
ferred pairwise marginals[. Optimising the lower bound
in Egn.8w.r.t T we get the following ML update equation;

K n—1 L road, etc. and treat cars, pedestrians as outliers as they are
T = argmax Z Z Z Z G2(Cl ji(iy,1) X not permanent in a road scene. We assign a “flat” distribu-
T k=1j=1.04€j I=1 tion to these outlier classes in the start and end frames and

examine their false positive rate to gain insight into outlier
log k(i) ¢ (Z,33 ) (14 rejection performance.

Updating T is simply equivalent to minimising the KL- Each channel in all the images are scaled to lie between

divergence between the inferred soft label (marginal poste-[0.0, 1.0]. We use patches of size is sefita 7 and patches

rior of ¢2(Cy j(;)) and the predicted soft label (prioy; ; ;). overlap except fot pixel.

Therefore, we approximate this parameter update step a$n our tree model, we set the entries in the joint probabil-

a training of the sIRF using soft-labels. In practice, we ity tablesyu, ., (., itcq 10 0.9 along the diagonals and equal

adopt the “information gain” evaluation criterion of ] values along the non-diagonal elements such that the sum of

to train our sIRF, as it is directly suited to training by tak- all entries is unity. We choose thé' stage Random Forest

ing into account the entropy of soft labels. We summarise (RF) classifier, as in1[7], with 16 trees, each of depttD.

the discussions of this section in a psuedo-code shown inlnput LAB patches of1 x 21 are extracted around eves{f*

Algorithm 1. pixel on both axis. We leave out border pixels ih2apixel

s(ckith=r)
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Figure 3. (a) Miss Marple sequence from the Berkeley Dat&datith multiple complete occlusions. The occluding wall has similar
colour composition as the skin colour, but our method handles this difficult occlusion effectively as seen from the cut-out in row (b). We
obtained thi®ptimal cut-outy thresholding the marginal posteriors with a valu@ 8f7 (frames51 — 130), and0.99 (frames131 — 250).

This pair of thresholds could only be obtained due to the uncertainties in (e). In comparison row (c) shows a poorer cut-out using a sole
threshold 00.99. (d) are the uncertainties without including the sIRF, and in which inter-class separation is clearli(fignihis clarity

is sometimes lost in row (e) after fusing the predictions of the sIRF. Best viewed in colour and zoomed in. See supplementary video.

band to fit all rectangular patches. We use the same Kind| ayg. time/frameon  Buildingthe Inference sIRF training
and number of features as ifif. The key difference is that 8-core CPU, 8GBRAM  tree model = Y update
we use the inferredoft labelgo train the sIRF. We compute
the split function information gain and the leaf node distri-
butions (normalized histograms) by treating the data point | ° €lasses | 1.5 min 11 sec 3.2 min
label as arectorwhose elements sum to unity.

As the tree model expands from root to leaf from instahce Figure 7. Typical computational load of our method with an unop-
to n (see Fig.2) the model is unsymmetric in time, which timised C++ program foB20 x 240 sized images. We have as-
can result in unnecessary biases in the labels. We rectifysumed the arrays holding the marginals, incoming messages, and
this by repeating the segmentation for a time-reversed videgmodel parameters have been loaded into RAM in order to generate
and perform pixel-wise averaging of the two inferences to (€se numbers.

get our final results as suggestedSih [

Figs. 3, 4 are our results on the foreground/background

problem and the multi-class problem. For the convenience2. We avoid the common and unreliable demands of “gen-
of the reader, we have provided the highlights of these re-eralization” from a classifier, and only use it as a method
sults along side the images. We report our quantitative stud-10 setup long range correlations within its training data
ies in Table5 and study ROC curves for the sequence in Fig. obtained by inference. Therefore, the classifier operates
4, both underlined by appropriate comments to ease under2nly in the “closed-world” of a video.

standing. We also present the typical computational load for3- Inference and training on our modelifaplementation
our method in Fig7. friendly and free from hacks.

4. The inferred uncertainties lead to better object cut-outs
by leading tooptimal thresholdgor local time segments of
the video (see Fig3).

2 classes | 1.5 min 3 sec 1.4 min

5. Advantages and Drawbacks

The keyadvantagesof our proposed approach are:

1. Using exact inference we avoid sequential propagationOur approach suffers from the followirdyawbacks:

of erroneous instantaneous decisions and therefore reducé. The uncertainty in the marginal posteriors is based on
false positives. the number of pairwise cliques a patch is part of (its neigh-



== Erroneous MAP
labels with
probability 1

= Classifier results
filtered manually

= Accurate labels of
large classes: sky,
building, road

== Automatic fusion
of classifier and
time-series

)= Uncertainty
estimates reduce
false positives
(eg. pavements)

¢) Model of [9]

o= Small classes like
“signs" are labelled

d) Ours (MAP)

== Small classes below
patch resolution is
hard to handle

e) Ours (confidence)
= Improved occlusion
awareness
(Note road in frames
300, 510)

Max of marginal posterior color code:0.0 _

Figure 4. Seq05VD from the CamVid dataset with ground-trdih Black “outlier” labels at the ends have uniform distributions. The
labels in row (d) were obtained by thresholding the marginal posteriors at a valugsptelected using the ROC curves in F&33. We

encourage the reader to view the labels along with the confidence map in row (f) to see that our approach reduces false positive labelling.
Best viewed in colour and zoomed in. See video in supplementary material.

Settings Class accuracies for static classes i LRt et AL
8 classes (ASC) classes(LSC) classes (SSC) |classes
[ £ < <
g s 3 P, Po8 , Ho8us_z 38 _2 & 5 g3
[ £ ° z T En = ocxX 08 £E o0 58, 0,008, 0 @ = € S| £ =~
2 S |&d = 78 85900 ¢ £ 2808 o0c|8B 590cloF + 335 23
T £ s 5 nwa g > F §8 a8 e wl88sswes 3 228l 2%
g w -] £ g oo g< - TlOocagc —© = o = E a =
1 60— HLP |75 26 27 0 7 93 91 97 78 79 55 53 |8 77 51 57 44 87
810 Ours 100 77 0 O 0O 94 99 94 0|9 52 53|92 78 52 69 31 86
2 2310- HLP |99 87 7730 65 83 78 35 -| 8 70 94 | 88 80 82 62 39 2
3060 Ours |94 94 16 3 66 83 8 59 -| 8 63 90| 9 8 80 39 61 0
3 3060- HLP |98 92 1612 37 93 8 9 -| 9 55 45|92 76 44 62 38 38
3810 Ours 100 99 0 O 6 93 93 0 -| 8 49 47 |9 77 46 75 25 39
For similar label density as HLP; = |ower accuracy over SSC due to low image resolution,
gf better LSC accuracies, gf reduced false positive rate by remaining uncertain,

dl comparable density of uncertain labels for outlier classes, = no manual filtering of classifier output as in HLP [9].

Figure 5. Quantitative comparison on complex and lengthy (750 frames) video sequences from Cimidlddet. Unlike our method,
HLP [9] uses manual classifier monitoring. We used ROC curves @&8)to get optimal thresholds 6£75,0.12,0.77 for the three videos.

bourhood connectivity) and does include the uncertainty 6. Conclusions

with which the cligue was formed in the tree model. As

part of future work, we would like include this information We presented a novel tree structured graphical model

in the model to improve performance. for videos for semi-supervised segmentation. Unlike tradi-

2. We are currently restricted to segment classes which havejonal global MAP inference, our patch based video model

sizes above the patch resolutiorifof 7. Using higher reso-  permits exact inference of pixel marginal posteriors within

lution images should alleviate this problem to a large extent. an implementation friendly setup. Using simple patch
cross-correlation to model temporal correlations among



Global accuracy for different stages of the algorithm (ASC) Comparison of stages S3 and S5 (ASC) Analysis of stage S3
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Percentage of pix.els labelled . Threshold Threshold

O S3 obtained using S2 (sIRF training) is best

O sIRF (S4) trained after S3 overfits. This does not
improve performance (S5)

U Improved accuracy going from S1 to S3

0 S5 has higher average accuracy due to overfitting, O At threshold 0.75, used in Fig. 4, we balance label
but has lower global accuracy. density, avoid false positives over small classes
0 We stop at S3 in our experiments to avoid over- and outlier classes.
fits, obtain high global accuracy and label density.

Figure 6. Stages S1 to S3 correspond to our algorithm in Alg.We update model parametets., tiqz, tteca USING S3 results. S4
corresponds to re-training the sIRF (equivalenflyupdate) using S3. S5 corresponds to inference using all the updated parameters and
demonstrates model overfitting. In the first plot, the curves fall shartoiabel density as we do not count (1) outlier labels in computing
accuracies and (2) leave-out border pixels in sIRF predictions. Best viewed in colour and zoomed in.

pixel labels and patch-clustering to model long range label [10] A. Kannan, J. Winn, and C. Rother. Clustering appearance
correlations, we have demonstrated that our video model and shape by learning jigsaws. NiPS, Volume 192006.1
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sions. Another novelty is that the uncertainty information using dynamic graph cuts. ECCV, pages 3043, 2006
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