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Abstract

This paper presents a method for vote-based 3D shape
recognition and registration, in particular using mean shift
on 3D pose votes in the space of direct similarity transforms
for the first time. We introduce a new distance between
poses in this space—the SRT distance. It is left-invariant,
unlike Euclidean distance, and has a unique, closed-form
mean, in contrast to Riemannian distance, so is fast to com-
pute. We demonstrate improved performance over the state
of the art in both recognition and registration on a real and
challenging dataset, by comparing our distance with others
in a mean shift framework, as well as with the commonly
used Hough voting approach.

1. Introduction
This paper concerns itself with vote-based pose estima-

tion techniques. These arise in many vision tasks includ-
ing 2D object detection [13, 17, 22], motion segmenta-
tion [24, 25], and 3D shape registration and recognition
[9, 12, 26]. These methods all share a common two stage
framework: First they generate an empirical distribution of
pose through the collation of a set of possible poses, or
votes. The votes are often computed by matching local fea-
tures from a test object to those in a library with known pose
[9, 12, 13, 17, 22, 24, 25, 26]. The second step is then to
find one or more “best” poses in the distribution (the max-
ima, in the case of ML/MAP estimation). This curation of
data prior to inference makes such vote-based approaches
more efficient and robust than competing techniques, e.g.
global or appearance-based methods [16]. Here we focus
on the latter, inference step, and assume the votes are given.

Two methods for finding the maxima are Hough voting
and mean shift. In Hough voting the probability is com-
puted on a regular grid over the pose parameter space. This
discretization leads to loss of accuracy, as well as a com-
plexity exponential in the pose dimensionality, but ensures
coverage of the entire space. Mean shift [7] iteratively finds
local maxima of probability, resulting in initialization is-
sues but also high accuracy. The complexity of an iteration
is usually linear in the pose dimensionality. The two meth-

ods are therefore somewhat complementary; indeed they are
often used together [13, 17].

While Hough voting can easily be applied to any space
(in our case that of all poses), this is not straightforward
for mean shift; each iteration requires the computation of
a weighted average of input votes, formulated as a least
squares minimization of distances from input votes to the
mean. In Euclidean space this minimization yields a unique,
closed-form solution—the arithmetic mean. When poses lie
on a non-linear manifold this mean is typically outside the
manifold, requiring a projection onto it. A more direct ap-
proach is to minimize the geodesic arclengths over the man-
ifold, known as the Riemannian distance.

In this paper we focus on 3D shape recognition and regis-
tration, as part of a system (see figure 1) for recognizing in-
dustrial parts. However, unlike existing approaches, where
objects of interest are of either fixed (or omitted) scale [25]
or rotation [13, 17, 22], here we recognize and register ob-
jects in the direct similarity group: the group of isotropic
similarity transformations parameterized by translation, ro-
tation and scale. Scale is necessary when the input data’s
scale is unknown, or when there is high intra-class scale
variation. Rotation is necessary for full registration, leading
to more accurate recognition. The resulting 7D pose space
is currently too large to apply Hough voting to in practice
[11]. Here we use mean shift, for which scale and rotation
also introduce problems using existing distances: Euclidean
distance is scale variant, and the induced mean of poses has
a bias in scale. The mean of poses using Riemannian dis-
tance has no closed-form solution even when the poses are
rotations [15], and is slow to compute [23].

The contribution of this work is to introduce a new dis-
tance on the direct similarity group. The distance pro-
vides scale, rotation and translation-invariance concomi-
tantly. The weighted mean of this distance is unique,
closed-form, and fast to compute, as well as having sev-
eral key properties discussed in §2.2.3. We demonstrate this
distance’s performance in mean shift, in the context of our
3D shape registration and recognition system, comparing it
with other distances on the same space, as well as a Hough
voting method.

The paper is laid out as follows: The next section reviews
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Figure 1. Our System for 3D-shape-based object recognition and registration. (a) Real object, fabricated from a CAD model. (b) Point
cloud extracted using a multi-view stereo (MVS) system. (c) Iso-surfaces of the scalar volume computed from the points. (d) Features
(with full scale, rotation and translation pose) detected in the volume. (e) Votes for the object centre, based on detected features matched
with a library of learnt features. (f) The registered CAD model.

t t, s t, R t, R, s

Hough [26] [12] [10] [11]
Mean shift – [13, 17, 22]* [25] [24]*, This work

Table 1. Methods of pose estimation over different transforma-
tions. t: translation; R: rotation; s: scale. *Indicates 2D space.

the literature relevant to 3D shape recognition and registra-
tion inference, as well as means in Lie groups. In the fol-
lowing section we introduce our new distance on the direct
similarity group, and its associated mean. In the final two
sections we present our experiments, before concluding.

2. Background
We now briefly review the inference techniques used for

vote-based pose estimation, and take a closer look at mean
shift applied to this task.

2.1. Vote-based pose estimation
The inference step of vote-based pose estimation in-

volves the computation of maxima in the empirical distri-
bution of poses defined by a set of input votes. Two main
techniques for this are Hough voting (an extension of the
Generalized Hough Transform [4]) and mean shift [7]. Ta-
ble 1 lists a representative subset of works that use each of
these methods, and under which transformations.

Using Hough voting, Khoshelham [11] quantizes the 7D
space of 3D translation, rotation and scale for object regis-
tration. This creates a trade-off between pose accuracy and
computational requirements, the latter proving to be costly.
Other methods seek to reduce this complexity by shrink-
ing the pose space and marginalizing over some parameters.
Fisher et al. [10] quantize translations and rotations in two
separate 3D arrays; peak entries in both arrays indicate the
pose of the object, but multiple objects create ambiguities.
Knopp et al. [12] show effective object recognition using
Hough voting over 3D translation and scale. Tombari &
Di Stefano [26] first compute Hough votes over translation,
assuming known scale in their 3D object recognition and
registration application, then determine rotation by averag-
ing the rotations at each mode. Geometric hashing [9, 14] is
a similar technique to Hough voting which reparameterizes
pose in a lower dimensional space before clustering. How-
ever, all these dimensionality reduction techniques lead to
an increased chance of false positive detections.

Mean shift avoids the trade-off suffered by Hough vot-
ing methods, being both accurate and having lower (usu-
ally1 linear) complexity in the pose dimensionality, mak-
ing it suitable for inference in the full 7D pose space of the
direct similarity group in 3D. To date it has been used in
2D applications: object detection over translation and scale
[13, 17, 22], and motion segmentation over affine transfor-
mations [25], as well as in 3D for motion segmentation over
translation and rotation [24]. This is the first paper we know
of to apply mean shift to a 3D application using translation,
rotation and scale simultaneously. A reason for this could
be the problems associated with computing means using
Euclidean and Riemannian distances in this space, which
we discuss below.

2.2. Mean shift
The mean shift algorithm [7] (Algorithm 1) is a nonpara-

metric kernel density estimator that finds the local modes of
a density function by coordinate ascent. Given a distance
function d(·, ·) on the input space, the kernel density esti-
mate is defined as

f̂K(X) =
N�

i=1

1

ζ
λiK(d2(X,Xi)), (1)

where X is the random variable, X = {Xi, λi}Ni=1 is a set
of input points with weights λi ≥ 0, K(·) ≥ 0 is a kernel
function, and ζ is a volume density function which normal-
izes K(d2(·,Xi)). The most common (and our) choice for
K(·) is the Gaussian kernel, exp

�
− ·

2σ2

�
, where σ is the

bandwidth of the kernel. On Euclidean spaces a natural
choice for d() is the Euclidean distance, dE(); e.g. if X and
Y are matrices, dE(X,Y) = �X−Y�F where �·�F is the
Frobenius norm. Under the Euclidean distance, the solution
of step 5 in Algorithm 1,

µ(X ) = argmin
X

�

i

wid
2(X,Xi), (2)

where the wi are weights, is the arithmetic mean, i.e.
µ(X ) =

�
i wiXi�
i wi

.
In pose estimation, votes are represented by linear trans-

formations which form a matrix Lie group. This pa-
per is concerned with the direct similarity group S+(n) ⊂

1Certain distance computations are not linear, e.g. that of §2.2.2.



Algorithm 1 Mean shift [7] (for notation see text)
Require: X = {Xi, λi}Ni=1, distance function d(·, ·)

1: Initialize X
2: repeat
3: Xold := X
4: wi := λiK(d2(X,Xi)) ∀i = 1, .., N
5: X := argminX

�
i
wid

2(X,Xi)
6: until d(Xold,X) < �

7: return X

Scale<1

Rotation  only   Rotation  &  scale

A

B

(A,B)

(A,B)A

B

A
B

Scale=1

Figure 2. Scale bias of the extrinsic mean. Let us consider S+(2)
(without translation): on a plane, a rotation can be represented as
a point on a circle, the radius being the scale. Left: with rotation
only, the arithmetic mean of A and B leads to a smaller scale
but the reprojection onto the manifold (i.e. the unit circle) gives
a reasonable result. Right: with rotation and scale, the mean is
already on the manifold, but with a smaller scale.

GL(n + 1,R), which is the set of all affine transforma-
tion matrices acting on Rn preserving angles and orienta-
tions [21]. Using homogeneous coordinates, every matrix
X ∈ S+(n) is represented as follows:

X =

�
s(X)R(X) t(X)

0T 1

�
, (3)

where s(X) ∈ R+, R(X) ∈ SO(n,R) , and t(X) ∈ Rn

are the scale, rotation, and translation components of X.
When applying mean shift on a matrix Lie group, the

choice of d() is crucial since it affects both the computation
of weights and the mean (steps 4 & 5 of Algorithm 1). Two
well-known distances arise in the literature: Euclidean and
Riemannian. We now review how existing methods utilize
these distances in mean shift on matrix Lie groups.

2.2.1 Euclidean distance

Given a matrix Lie group G ⊂ GL(n,R), since
GL(n,R) ⊂ Rn

2
(up to an isomorphism), the most straight-

forward way to apply mean shift on G is to embed G in the
Euclidean space Rn

2
and run mean shift on this instead.

However, at each iteration the arithmetic mean may not lie
in G. It is therefore projected back to G via the mapping:

π : Rn
2

→ G : π(X) = argmin
Y∈G

�Y −X�2F . (4)

Figure 3. The intrinsic mean. Three poses in S
+(3) (with dif-

ferent scales, rotations and translations) and their intrinsic mean
(pink). The geodesics between the mean and input poses are also
drawn. Note that the shortest distance between two transforma-
tions is not necessarily a straight line in terms of translation.

The projected arithmetic mean, µ(X ) = π

��
i wiXi�
i wi

�
, is

referred to in the literature as the extrinsic mean [15, 23].
Mean shift using Euclidean distance (extrinsic mean

shift) has shown good results on Stiefel and Grassmann
manifolds [6]. However, there are two drawbacks with ex-
trinsic mean shift applied to S+(n). First, dE() is invari-
ant to rotation and translation but not to scaling, making the
weights, wi, computed by mean shift scale variant. Thus, al-
though the extrinsic mean is scale-covariant,2 extrinsic mean
shift is not. Second, the extrinsic mean of rotation and scale
transformations causes a bias towards smaller scales, as il-
lustrated in figure 2.

2.2.2 Riemannian distance

An alternative choice for d() is the Riemannian distance.
dR(). Given X,Y ∈ G, dR(X,Y) is defined as the ar-
clength of the geodesic between X and Y (see figure 3).
Since dR() depends only on the intrinsic geometry of G, the
mean defined as the solution of equation (2) using dR() is
called the intrinsic mean [15, 19]. Efficient formulations
of dR() exist for some G, notably SE(3) [2], which can be
adapted to S+(3). However, in S+(n) for n > 3, dR() gen-
erally has no closed-form formulation, taking O(n4) time
to compute [8].

Intrinsic mean shift methods have been proposed [6, 25].
The intrinsic mean itself has multiple non-closed-form so-
lutions [15]; in our experiments we compute an approxima-
tion using a single step3 of the iterative method of [25].

2.2.3 Properties of a good distance in S+(n)

In the context of mean shift, and subsequent to our overview
of Euclidean and Riemannian distances, we propose the fol-
lowing list of desirable properties for a distance in S+(n)
and its associated mean:

2Scale-covariant means a scale transformation of input data produces
the same transformation on the output.

3This is equivalent to computing a mean using the log-Euclidean dis-
tance [3], d(X,Y) = �logm(X)− logm(Y)�F.



1. Unique: The mean should have a unique solution.

2. Closed-form: For efficient computation, the mean
should have a closed-form solution.

3. Scale-compatible: If all rotations and translations are
equal, the mean should behave as an average of the
scales. Mathematically, if ∀Xi ∈ X : R(Xi) =
R�, t(Xi) = t� for some R� and t�, then we would
like R(µ(X )) = R�, t(µ(X )) = t�, and s(µ(X )) to
be an average of s(Xi)’s. In this case, we say that µ is
scale-compatible.

4. Rotation-compatible: If ∀Xi ∈ X : s(Xi) = s�,
t(Xi) = t�, then s(µ(X )) = s�, t(µ(X )) = t� and
R(µ(X )) is an average of R(Xi)’s.

5. Translation-compatible: If ∀Xi ∈ X : s(Xi) = s�,
R(Xi) = R�, then s(µ(X )) = s�, R(µ(X )) = R�

and t(µ(X )) is an average of t(Xi)’s.

6. Left-invariant: A left-invariant distance is one
that is unchanged by any post-transformation, i.e.
d(ZX,ZY) = d(X,Y) ∀X,Y,Z ∈ S+(n). This
property is crucial for two reasons: (a) it leads to a left-
covariant mean: µ(ZX ) = Zµ(X ),4 i.e. if all poses Xi

are transformed by Z, the mean is transformed by Z as
well, and (b) it ensures that the weights wi computed
in mean shift are invariant to any post-transformation
Z, leading to left-covariant mean shift.

A symmetric distance, s.t. d(X,Y) = d(Y,X) ∀X,Y ∈
S+(n), intuitively seems desirable, but its absence does not
prevent a distance from being used in mean shift and fur-
thermore, given the properties listed, it is not necessary.
Right-invariance might also be considered a desirable prop-
erty, but in the context of 3D recognition this occurrence
does not relate to any meaningful behaviour.

3. The SRT distance and its mean
In this section, we describe our new distance on S+(n),

which fulfills all the desirable properties defined in §2.2.3.
We call it the SRT distance, with corresponding mean µSRT.

3.1. Distance definition
We first define the following component-wise distances:

ds(X,Y) =

����log
�
s(X)

s(Y)

����� , (5)

dr(X,Y) = �R(X)−R(Y)�F , (6)

dt(X,Y) =
�t(X)− t(Y)�

s(Y)
, (7)

4ZX = {ZX : X ∈ X} is a left coset of X . Proof in [20, App. A.4].

Properties Extrinsic Intrinsic SRT

Distance:
Symmetric
Left-invariant
Mean:
Unique †

Closed-form
Scale-compatible
Rotation-compatible
Translation-compatible †

Table 2. Properties of distances and associated means in S
+(n).

†The approximation of [25] is, however, unique and translation compati-
ble.

in which ds(), dr() and dt() measure scale, rotation and
translation distances respectively, with X and Y in S+(n).
Given some bandwidth coefficients σs, σr, σt > 0, the SRT
distance is defined as:

dSRT(X,Y) =

�
d2s(X,Y)

σ2
s

+
d2r(X,Y)

σ2
r

+
d2t (X,Y)

σ2
t

.

(8)
By controlling σs, σr, σt, it is possible to create an SRT

distance that is more sensitive to one type of transforma-
tions among scale, rotation, and translation than the others.
In this sense, the SRT distance is more flexible than the Eu-
clidean and Riemannian distances.

Theorem 1. dSRT() is left-invariant.

Proof. dSRT() is related to a pseudo-seminorm on S
+(n), i.e.

dSRT(X,Y) =
��Y−1X

��
SRT, where

�·�SRT =

�
log2(s(·))

σ2
s

+
�R(·)− I�2F

σ2
r

+
�t(·)�2

σ2
t

. (9)

It follows that dSRT() is left invariant: dSRT(X,Y) =��Y−1X
��

SRT =
���X−1

i
Z−1

�
(ZX)

��
SRT = dSRT(ZX,ZY).

Note that, unlike dE() and dR(), dSRT() is not symmetric;
it could be made symmetric by a slight modification of the
translation component, but at the expense of the translation-
compatibility of the corresponding mean.

3.2. Mean computation
Having defined dSRT(), we now derive the mean µSRT

induced by dSRT() using equation (2), which is:

µSRT(X ) = argmin
X∈S+(n)

�

i

wid
2
SRT(X,Xi). (10)

and show that it is closed-form and generally unique.



Theorem 2. The solution of equation (10) is given as:

s (µSRT(X )) = exp

��
i
wi log s(Xi)�

i
wi

�
, (11)

R (µSRT(X )) = sop

��
i
wiR(Xi)�

i
wi

�
, (12)

t (µSRT(X )) =
�

i

wit(Xi)

s2(Xi)

�
�

i

wi

s2(Xi)
(13)

where sop(X) = argminY∈SO(n,R) �Y −X�F is the or-
thogonal projection of matrix X onto SO(n,R).

Proof. The sum in equation (10) can be rewritten as

�

i

wid
2
SRT(X,Xi) =

Fs(X)
σ2
s

+
Fr(X)
σ2
r

+
Ft(X)
σ2
t

, (14)

where5
F�(X) =

�
N

i=1 wid
2
�(X,Xi). Since s(X) only appears

in Fs(X), we can reformulate

s (µSRT(X )) = argmin
s∈R+

�

i

wi log
2

�
s(X)
s(Xi)

�
, (15)

yielding the solution (11). Similarly, since t(X) only appears in
Fr(X), after rewriting

t (µSRT(X )) = argmin
t∈Rn

�

i

wi

�t(X)− t(Xi)�2

s2(Xi)
, (16)

we get equation (13). Finally, since R(X) only appears in Fr(X),
we rewrite

R (µSRT(X )) = argmin
R∈SO(n,R)

�

i

wi �R(X)−R(Xi)�2F . (17)

This is precisely the definition of the Euclidean (extrinsic) mean
of rotation matrices in [15], except that SO(3,R) is generalized to
SO(n,R), and with the inclusion of weights wi. The uniqueness
and closed-form solution of equation (17) in the case of n = 3

is given in [15, §3.1], in which it is shown that R (µSRT(X )) =

sop
�

1
N

�
i
R(Xi)

�
.

It can be further verified that µSRT(X ) is:

Scale-compatible: If ∀Xi ∈ X : R(Xi) = R�, t(Xi) = t�

then R(µSRT(X )) = R�, t(µSRT(X )) = t� and s(µSRT(X ))
is the geometric mean of s(Xi)’s.

Rotation-compatible: If ∀Xi ∈ X : s(Xi) = s�,
t(Xi) = t� then s(µSRT(X )) = s�, t(µSRT(X )) = t� and
R(µSRT(X )) is the extrinsic mean of R(Xi)’s.

Translation-compatible: If ∀Xi ∈ X : s(Xi) = s�,
R(Xi) = R� then s(µSRT(X )) = s�, R(µSRT(X )) = R�,
and t(µSRT(X )) is the arithmetic mean of t(Xi)’s.

Table 2 summarizes the desirable properties of the SRT dis-
tance and mean, and contrasts them with those of the Eu-
clidean and Riemannian distances.

5� should be replaced with s, r or t.

3.3. SRT mean shift
We form our mean shift algorithm on S+(n) using

dSRT() and µSRT(X ) in steps 4 & 5 of Algorithm 1 respec-
tively. It follows from the left-invariance of dSRT that SRT
mean shift is left-covariant.

The coefficients σs, σt, σr act in place of the kernel
bandwidth σ in equation (1). Also note that, while the coef-
ficient ζ is constant in Euclidean space, it is not constant in
a non-Euclidean space, in which case ζ = ζ(Xi) [18, 25]
cannot be factored out of the kernel density estimate. Since
ζ(Xi) can be costly to compute (sometimes non-closed-
form), existing mean shift algorithms on Lie groups [6, 25]
replace ζ(Xi) with a constant. However, in the case of
dSRT(), indeed any left-invariant distance, it can be shown
that ζ(Xi) is constant:

Lemma 3. Using dSRT, the volume densities are constant:
∀X,Y ∈ S+(n) : ζ(X) = ζ(Y).

Proof. Let Z = XY−1. By definition, we have ζ(Y) =´
S+(n)

K
�
d
2
SRT(U,Y)

�
dν(U) where ν(U) is a (left-)Haar mea-

sure on S
+(n). If we assume that K(·) is integrable then

ζ(Y) is a Haar integral [20]. Using the substitution V =

ZU, we have ζ(Y) =
´
K

�
d
2
SRT(Z

−1V,Y)
�
dν(V) =´

K
�
d
2
SRT(ZZ

−1V,ZY)
�
dν(V) = ζ(X).

4. Experiments
4.1. Experimental setup

Our experimental data consists of 12 shape classes, for
which we have both a physical object and matching CAD
model. We captured the geometry of each object,6 in the
form of point clouds (figure 1(b)), 20 times from a variety
of angles. Along with the class label, every shape instance
has an associated ground truth pose, computed by first ap-
proximately registering the relevant CAD model to the point
cloud manually, then using the Iterative Closest Point algo-
rithm [5] to refine the registration.

4.1.1 Pose vote computation

Given a test point cloud and set of training point clouds
(with known class and pose), the computation of input pose
votes X is a two stage process7 similar to [12, 26]. In the
first stage, local shape features, consisting of a descriptor
and a scale, translation and rotation relative to the object,
are computed on all the point clouds (figure 1(c)). This is
done by first converting a point cloud to a 1283 voxel vol-
ume (figure 1(d)) using a Gaussian on the distance of each
voxel centre to the nearest point. Then interest points are

6We used an implementation of [28], kindly provided by the authors.
7We keep the description of this process short as it is not central to

the evaluation of relative performance, since all inference methods use the
same set of input pose votes.



localized in the volume across 3D location and scale using
the Difference of Gaussians operator, and a canonical ori-
entation for each interest point computed [27], to generate
a local feature pose. Finally a basic, 31-dimensional de-
scriptor is computed by simply sampling the volume (at the
correct scale) at 31 regularly distributed locations around
the interest point.

In the second stage each test feature is matched to the
20 nearest training features, in terms of Euclidean distance
between descriptors. Each of these matches generates a vote
(figure 1(e)), Xi = AB−1C, for the test object’s pose, A,
B and C being the test feature, training feature and training
object’s ground truth pose respectively. In addition each
vote has a weight, λi, computed as (NCNI)−1, NC being the
number of training instances in the class and NI the number
of features found in the feature’s particular instance.

4.2. Inference
Mean shift Mean shift finds a local mode, and its weight,
in the output pose distribution for a given object class. Since
there may be many such modes we start mean shift from 100
random input poses for each class. Each mode, duplicates
excepted, is then added to a list of candidate poses across
all classes.

In S+(3) it is possible to use the quaternion represen-
tation of rotation, q(X), which we do. We therefore alter-
nately define the rotation component of dSRT() as

dr(X,Y) =
�
1− |q(X)Tq(Y)|, (18)

where | · | is needed to account for the fact that q(X)
and −q(X) represent the same rotation. This formulation
confers a small computational advantage over other, non-
component-wise distances in this space.

Hough voting We implemented a published Hough vot-
ing scheme [12] to compare with the mean shift inference
approaches. This computes sums of weights of the pose
votes which fall into each bin of a 4D histogram over trans-
lation and scale, effectively marginalizing over rotation.
The bin widths are set to be 0.16 times the width (or scale)
of the average shape in each of the 4 dimensions. The high-
est bin sum for each class defines a pose mode. Note that we
used our own pose votes and weights, and not those com-
puted using the method described in [12].

4.3. Evaluation
We use cross validation on our training data for

evaluation—a training set is created from 19 of the 20
shape instances in each class, and the remaining instance
in each class becomes a test shape. Each test shape under-
goes 5 random transformations (over translation, rotation
and scale in the range 0.5–2), and this process is repeated
with each training shape being the test shape, creating 100

Figure 4. Test objects. CAD models of the 10 real objects used
for evaluation. Top: piston2, bearing, piston1, block, and pipe.
Bottom: cog, flange, car, knob, and bracket.

test instances per class. We use 10 classes in our evaluation
(shown in figure 4), so 1000 tests in all. The remaining 2
classes are used to learn the optimal kernel bandwidth, σ,
for each inference method. We have made the data used in
this evaluation publicly available [1].

We evaluate each inference method on two criteria:
Recognition rate and registration rate.

Recognition rate As described above, each inference
method generates a list of modes across pose and class for
a given test instance, each with an associated weight. The
output class is that of the mode of highest weight. A confu-
sion matrix logs the output class versus ground truth class
across all tests. The recognition rate is given by the trace of
this matrix, i.e. the number of correct classifications.

Registration rate The output pose for a given test in-
stance is given by that of the weightiest mode whose class
matches the ground truth class. We choose to consider a
pose X to be correct if its scale is within 5%, orientation is
within 15° and translation is within 10% (of the object size)
of the ground truth’s. Explicitly, the criteria to be met are

����log
�
s(X)

s(Y)

����� < 0.05, (19)

acos

�
trace(R(X)−1R(Y))− 1

2

�
< π/12, (20)

�t(X)− t(Y)��
s(X)s(Y)

< 0.1, (21)

with Y being the ground truth pose. In the case of an object
having symmetries there are multiple Y’s, and distance to
the closest is used.

4.3.1 Learning σ

We learn the mean shift kernel bandwidth, σ (or in the case
of SRT, σs, σr and σt), used for each mean shift algorithm
by maximizing the registration rate from cross-validation on
two training classes (which are not used in the final evalua-
tion). Registration rate is maximized using local search: an
initial bandwidth is chosen, then the registration rate com-
puted for this value and the values 1.2 and 1/1.2 times this
value. That value with the highest score is chosen, and the



process is repeated until convergence. With 3 parameters to
learn, the local search is computed over a 3D grid.

4.4. Results
Table 3 summarizes the quantitative results for the four

inference methods tested. It shows that SRT mean shift per-
forms best at both recognition and registration. The third
row gives registration rate taking into account scale and
translation only (as the Hough method only provides these),
indicating that mean shift performs considerably better than
Hough voting at registration. Also given (row 5) is the mean
of output scales (each as a ratio of the output scale over the
ground truth scale) of the registration result, which shows
a marked bias towards a smaller scale when using extrinsic
mean shift. Whilst better than extrinsic mean shift at reg-
istration, intrinsic mean shift is the slowest8 method by an
order of magnitude.

The per-class registration rates of the mean shift meth-
ods are given in table 4, showing that SRT out-performs ex-
trinsic mean shift in 9 out of 10 classes, and intrinsic mean
shift in 7 out of 10. The scale-invariance of registration rate,
and hence, by implication, recognition rate, using SRT and
intrinsic mean shift, and the contrasting scale-variance of
extrinsic mean shift (as discussed in §2.2.1), is shown em-
pirically in figure 5.

The confusion matrices for the four inference methods
are shown in figure 6. Hough voting performs very poorly
on bracket, car and pipe, getting a recognition rate of just
1.3% on average for these classes, which all have low ro-
tational symmetry; in particular it prefers cog and flange
(which both have high rotational symmetry), no doubt due
to the marginalization this method performs over rotation.
Intrinsic mean shift shows a tendency to confuse block, and
cog and piston1 to a lesser degree, for other classes, whilst
extrinsic and SRT mean shift confuse cog, and block and
piston1 to a lesser degree for other classes.

Finally, figure 7(a) demonstrates that SRT mean shift ap-
plied to a real scene containing multiple objects. Given a
threshold weight above which modes are accepted, mean
shift on the votes can produce many false positive detec-
tions, as shown by the low precision at high recall rates in
figure 7(b). Our system can additionally (though not used
here) filter the list of output poses using physical constraints
such as the position of the ground plane and collision detec-
tion, which we found removed the majority of false positive
results, including those shown in the figure.

5. Conclusion
We have introduced the SRT distance for use in mean

shift on poses in the space of direct similarity transfor-
8We used optimized implementations for all methods.
9This score is the percentage of ground truth poses that were in the

same bin as the output pose.

SRT Extrinsic Intrinsic Hough
Recognition 64.9% 49.6% 45.5% 56.1%
Registration 68.3% 52.0% 62.0% –
Reg. (t,s) 79.8% 62.0% 75.7% 57.3%9

Proc. time 1.6s 9.7s 127s 0.043s
Mean scale 0.995 0.959 0.987 –

Table 3. Quantitative results for the four inference methods
tested. The SRT mean shift method is best in all respects except
speed, for which it is better than the other mean shift methods.
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Table 4. Registration rate per class (%). SRT mean shift performs
best on 7/10 classes.
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Figure 5. Scale-invariance. Registration rate over scale, showing
that only extrinsic mean shift varies with scale.

mations, S+(n). We have proven the distance to be left-
invariant, and have a unique, closed-form mean with the de-
sirable properties of scale, rotation and translation compat-
ibilities. We have demonstrated the use of this distance for
registration and recognition tasks on a challenging and re-
alistic 3D dataset which combines real-world objects, with
and without rotational symmetries, together with a vision-
based geometry capture system and basic features.

Our results show that SRT mean shift has better recog-
nition and registration rates than both intrinsic and extrinsic
mean shift, as well as Hough voting. We also show that ex-
trinsic mean shift is not only scale-variant but also biases
output scale, and that intrinsic mean shift is slower to com-
pute. In addition to the performance increase over Hough
voting, especially in the presence of rotationally symmetric
objects, we demonstrate for the first time that mean shift on
the full 7D pose space of S+(3) is not only possible, but
that it also provides accurate 7D registration, including ro-
tation. This is not practical using Hough-based approaches,
due to their exponential memory requirements.

We address the issue of poor precision at high recall rates
in other work [29].
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(a) SRT mean shift (b) Extrinsic mean shift (c) Intrinsic mean shift (d) Hough voting
Figure 6. Confusion matrices for the four inference methods tested. The Hough voting method performs poorly on objects with low
rotational symmetry, while mean shift methods, and in particular SRT, perform better.
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(a) SRT output with six objects (b) Precision–recall
Figure 7. Performance with multiple objects. (a) Given a point
cloud with 6 objects, SRT mean shift finds 3 of them in the top 6
modes, the piston multiple times. (b) Precision-recall curves of the
mean shift methods for correct registration and recognition jointly.
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