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We present a video-based system which interactively
captures the geometry of a 3D object in the form of a point
cloud, then recognizes and registers known objects in this
point cloud in a matter of seconds (fig. 1). In order to
achieve interactive speed, we exploit both efficient infer-
ence algorithms and parallel computation, often on a GPU.
The system can be broken down into two distinct phases:
geometry capture, and object inference. We now discuss
these in further detail.

Geometry capture
The reconstruction phase consists of two key steps: pose

estimation of each video frame, and dense geometry esti-
mation using the input frames and their computed poses.
We have two interchangeable methods for real-time cam-
era pose estimation. Both assume known internal camera
parameters. The first is PTAM [1]—an off-the-shelf visual
SLAM algorithm. The second computes pose metrically
(required here for object inference) using a known planar
pattern [5] (fig. 2(a)), as well as being fast and robust.

Given pose, computing points by finding frame-to-frame
correspondences becomes a 1D search (fig. 2(b)) (assuming
a static scene). Even so, accurately matching hundreds of
thousands of correspondences over multiple frames can be
computationally expensive if approached naively. We use
a probabilistic framework [3] which maintains a very com-
pact state per correspondence over time. Further speed-up
is achieved by matching, using NCC on 5⇥5 windows, on
a GPU. Note that each point is computed independently—
there is no regularization.

Object inference
Recognition and registration is done jointly, in a phase

consisting of four key steps [2]. The first step converts the
point cloud to a 1283 voxel volume (fig. 3(a)) using a Gaus-
sian on the distance of each voxel centre to the nearest point.

The second step finds features over scale and translation
using the DoG detector, then computes orientation using
PCA on the surrounding volume, to generate a local, 7D
feature pose (fig. 3(b)). A simple descriptor is computed by
sampling the volume (at the correct scale) at 31 regularly
distributed locations around the feature point. The entire
feature extraction pipeline is implemented on a GPU.
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Figure 1. Our system in use. The user ro-
tates the object on the pattern, and it is recon-
structed on screen (cyan dots). After object
inference the recognized objects are overlaid
on the point cloud and on the video output.
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Figure 2. Geometry
capture key steps.
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Figure 3. Object inference key steps.

In the third step, 8D votes over object class and pose
are computed (fig. 3(c)) by matching features with those
extracted from training data of known class and pose.

In the final step, modes of density in the vote space
indicating the presence of an object are found using the
minimum-entropy Hough transform [4], which additionally
explains away incorrect votes. The density is defined using
a scale-invariant distance between votes [2].

Additional physical constraints, such as object size,
height off the ground and collision detection, can be used
to filter the list of detected objects further.
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