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Abstract

We present a model for early vision tasks such as denois-
ing, super-resolution, deblurring, and demosaicing. The
model provides a resolution-independent representation of
discrete images which admits a truly rotationally invariant
prior. The model generalizes several existing approaches:
variational methods, finite element methods, and discrete
random fields. The primary contribution is a novel en-
ergy functional which has not previously been written down,
which combines the discrete measurements from pixels
with a continuous-domain world viewed through continous-
domain point-spread functions. The value of the functional
is that simple priors (such as total variation and general-
izations) on the continous-domain world become realistic
priors on the sampled images. We show that despite its ap-
parent complexity, optimization of this model depends on
just a few computational primitives, which although tedious
to derive, can now be reused in many domains. We define
a set of optimization algorithms which greatly overcome
the apparent complexity of this model, and make possible
its practical application. New experimental results include
infinite-resolution upsampling, and a method for obtaining
“subpixel superpixels”.

1. Introduction
This paper argues for a new formulation of image recon-

struction problems. The essential claim, motivated in fig-
ure 1, is that while image data is provided as spatially dis-
crete samples, the interpretation and reconstruction of im-
ages should be in terms of functions defined over a spatially
continuous world. The contributions of our work are:

1. a new energy functional (6) which generalizes a large
class of existing models and allows solutions to be
compared independent of the basis functions over
which they are defined;

2. a set of algorithms for optimization of this func-
tional over finite-element meshes with moving ver-
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Figure 1. The need for a spatially continuous world model. The
red circles are samples from a slice across the sharpest edge on
a well known image. The image edge subtends about 2.5 pixels.
Despite the hat’s presumably slightly furry real-world boundary,
it is almost certainly not blurred to the tune of 5mm, which is
what would be needed to cause this level of image blur. An ideal
step edge (black) is a poor model of the image edge, implying
that discontinuity-preserving priors are poor models of this image.
However, if the discontinuity-preserving prior is instead applied
on a latent image of the spatially continuous world, and viewed
through a blur kernel (green), the blue curve results, which is a
good fit to the image data. Thus even when not attempting upsam-
pling, the combination of “infinite resolution” world edges and an
explicit blur kernel is a better model than discontinuity-preserving
priors on the image.

tices, and a subpixel-accurate image partition (“super-
pixels”) aligned with object boundaries;

3. because we are truly optimizing over functions, rather
than fixed discretizations, we begin to find that simple
priors on the continuous model can replace complex
priors on pixels. Figure 2 illustrates how a simple to-
tal variation (TV)-like prior in 1D can perform as well
as large patch priors. In 2D, a simple TV-like prior
is inherently rotationally invariant, so that metrication
artifacts are trivially avoided (fig 3);

4. a set of precomputed integrals and derivatives which
will enable other researchers to easily adopt these tech-
niques.

To discuss related work, let us follow a standard exam-
ple: combined denoising and (non-blind) upsampling. The
input is a digital image I, represented as a set of n pixels

I = {(Ii,xi)}ni=1, (1)
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where pixel i comprises a location xi and a scalar Ii, which
ultimately represents some physical quantity such as a count
of the number of photons which have fallen into a particular
sensor bin in a given capture period. Define the vector of
image samples I = [I1, ..., In]>. The task is to recover a
latent image U such that the downsampled latent image is
close to I and such that U is likely under some prior on
natural images.

In the discrete approach [14, 5], the latent image is a
vector u ∈ RN for N > n. It is found by minimizing an
energy similar to

E(u) =
∥∥I− Fu

∥∥
ρ

+
∑
j

∥∥Dju∥∥ρ′ (2)

where the ith row of F encodes the blur kernel or point-
spread function at pixel i, and Dj encodes the regularizer
or prior term, with nonzero entries in Dj corresponding to
the elements of the jth clique or neighbourhood. The ‖ · ‖ρ
norms are used to signify any nondescending function such
as absolute value or a robust estimator. From this formu-
lation we immediately see that the form of the prior term,
encoded in the Dj , is strongly dependent on the output res-
olution. However, methods using large patch dictionaries
are known to produce excellent results albeit at sometimes
tremendous computational cost [10]. Multiresolution com-
putation is also complex [23], as the priors at different res-
olutions must be kept consistent. On the other hand, dis-
crete formulations benefit from efficient algorithms which
can make use of the grid structure on GPUs.

The continuous approach represents the latent image by
a function u(x) defined on a continuous image domain Ω ⊂
R2, found by minimizing the functional

Ecd(u˜) =

∫∫
Ω

∥∥I(x)− u(x)
∥∥
ρ
dx +R(u˜) (3)

whereR is a regularizer functional, to be discussed in §1.2,
and where the undertilde notation refers to a function as
an object. We note immediately that the blur kernel does
not appear, and that the image is assumed to be supplied
as a continuous function I(x) which must somehow be as-
sembled from the discrete samples I. Ignoring these defi-
ciencies, approaches to minimizing Ecd divide into two sub-
classes: variational approaches, and finite element methods.

Finite element approaches [19, 18, 17] explicitly
parametrize u˜ as a linear combination ofM basis functions:

u(x) =

M∑
m=1

umψm(x) (4)

so that the function u˜ is parameterized by the M -
dimensional vector u = [u1, ..., uM ]>, and the integrals
in Ecd become plain functions of u which can be optimized
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Figure 2. Denoising as an upsampling problem. Rows 1-3: we
obtain noisy samples of a piecewise constant world through a
point-spread function. Row 4: Simple TV-like prior on the dis-
crete image at input resolution cannot model the PSF-blurred dis-
continuities. Row 5-6: A field of experts (FoE) prior yields a good
reconstruction only for large filter sizes. Row 7: Simple TV-like
prior on the resolution-independent latent image is equivalent to
9-wide FoE.

using standard methods. Finite element approaches are eas-
ily modified to allow multiresolution computation and have
been applied on massive datasets [8]. While refinement of
FE meshes is well known, few systems allow the user to
move vertices, as in our work. Szeliski [18] shows how
multiresolution approaches can be generalized using hier-
archical preconditioners, but cannot deal with blur kernels
other than the Dirac delta function.

Variational approaches [12, 22] apply variational calcu-
lus to obtain the Euler-Lagrange equations, a set of differ-
ential equations in u˜. This has the apparent advantage that
in the common case whereR involves∇u, the energy is ro-
tationally invariant. However, these methods then discretize
the differential equations in order to compute a solution,
with the same disadvantages as the discrete approach above.
Indeed all variational methods we have encountered can be
recast as a finite element formulation whose parametriza-
tion yields the same discretization. It is well known that
there are transformations between discrete and continuous
approaches [16] but such transformations, depending on the



continuous function I(x) lack the connection to the raw im-
age samples that we now propose.

1.1. The new model

Our representation of the world is the continuous func-
tion u˜. Pixel measurements are generated through the ac-
tion of a point-spread function. For pixel i, the kernel1 is
written κi(x) and is, like u˜, a function from Ω → R+. A
noise-free image sample I̊i is generated from the integral

I̊i =

∫∫
Ω

κi(x)u(x)dx (5)

and the noisy pixel Ii = I̊i + ηi where ηi is a random vari-
able representing imaging noise. The energy functional is
then

E(u˜) =

n∑
i=1

∥∥Ii − ∫∫
Ω

κi(x)u(x)dx
∥∥
ρ

+R(u˜) (6)

whereR is the regularizer, detailed below. The energy com-
bines discrete and continuous components: a sum over the n
discrete pixel samples, and a continuous integral over spa-
tial locations x, and it is our claim that optimization of this
discrete/continuous energy has previously been proposed
only in strictly special cases. Work that comes close to
minimizing (6) includes [20], who compute an integral over
a piecewise-continuous grid representation of u, and [13],
who compute the integral over a quadrilateral. Similarly,
discrete superresolution techniques [3, §5.4], describe an
area-sampling approximation to the integral, but none refine
the underlying grid, or allow arbitrary boundary positions.

1.2. The regularizer

The regularizer R that we use is a generalization of the
Mumford-Shah functional, and is the sum of a continuous
HyperLaplacian [9] prior in the smooth areas of u˜, and a
TV-like term on the discontinuities. If we define J(u˜), the
jump set of u˜, as the set of locations in Ω where ∇u is not
finite, and we assume that J(u˜) is a simple curve almost
everywhere, then the regularizer is defined as

R(u˜) = λ1

∫∫
Ω\J(u˜)

‖∇u(x)‖αp dx+

λ2

∫
J(u˜)

∣∣ul(x)− ur(x)
∣∣β dx+

λ3

∫
J(u˜)

∥∥∇ul(x)−∇ur(x)
∥∥β′

p′
dx (7)

1 A common simplification is to assume a spatially invariant kernel so
that κi(x) = κ0(x− xi), yielding an interpretation of (5) as convolution
u˜′ = κ˜0 ∗ u˜ followed by sampling I̊i = u′(xi), but this offers no real
advantage in our framework, so we use the general model throughout.

where ul(x) at a discontinuity point x is the limit value of u
as we approach x from the left along the normal to J(u˜),
and similarly ur from the right. The second term is thus an
integral along the discontinuity boundary of a function of
the difference in intensities across the boundary. Because
of the work of Ambrosio et al. [1, 2], we are assured that
this prior is “sensible” in the sense of having a minimizer.
Note that J(u˜) is a function of u˜, so that the functionalR is
correctly expressed as a functional over u˜ alone. Figure 1
discusses the applicability of this “infinite resolution” prior
on real-world images.

1.3. Finite element representation

Under the above definition (4) of u˜, the image forma-
tion integral (5) becomes linear in the parameter vector
u = [u1, ..., uM ], as follows:

I̊i =

∫∫
Ω

κi(x)

M∑
m=1

umψm(x)dx (8)

=

M∑
m=1

um

∫∫
Ω

κi(x)ψm(x) (9)

=:

M∑
m=1

umfim, (10)

so we obtain a simple form for the energy (6):

E(u) =
∑
i

∥∥Ii −∑
m

umfim
∥∥
ρ

+R(u) (11)

where R is the evaluation of the regularizer at u˜(u). If
∥∥·∥∥

ρ

were just the squared Frobenius norm, and we were to ig-
nore R(·), this would simply yield a linear least squares
problem: by assembling the coefficients fim into an n×m
render matrix F, we would obtain

E(u) = ‖I− Fu‖2 (12)

which is minimized using any linear solver. When the norm
is not Frobenius, any of a number of standard methods can
be used [9].

It is now straightforward to relate the new formulation
and the standard discrete formulation. Defining as basis
functions the box function around each pixel centre, that is
ψm(x) = ‖x − xm‖∞ < 1

2 means that the um simply pa-
rameterize pixel height (assuming a simple “box” PSF κ).
Noticing that only the second term of R is nonzero any-
where, setting β = 1 gives a 4-connected total variation
regularizer where a pixel of height u with North and East
neighbours uN , uE contributes |uN − u| + |uE − u| to
the energy. What is more interesting is to see that an in-
terpretation in terms of more complex regularizers can be
found. For example, it is known that this simple prior suf-
fers from metrication artefacts, and is sometimes replaced
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Figure 3. Rotation invariance. Left: (a) Low resolution input
(after Fattal [5]). (b) 8x upsampling [5] showing different be-
haviour on vertical and slanted edges. (c) 128x upsampling using
our method3. Right: (Top left) Disc, point-spread function and
sample points; (Top right) Reconstruction showing metrication
artifacts; (Lower left) “Three pin” basis function; (Lower right)
“Three pin” (i.e. anisotropic TV) reconstruction.

by an “isotropic TV” term
√
|uN − u|2 + |uE − u|2 [4].

Figure 3 illustrates an unusual “3-pinned” planar basis func-
tion which yields exactly the isotropic TV energy.

So far, however, we have merely derived the new for-
mulation and hinted as to how it can be related to a variety
of existing models. The next sections show how to gain
the real power of the method, by defining a second-order
optimizer over a triangle mesh partition of the image, and
introducing algorithms to optimize mesh vertices as well as
the basis function weights.

2. The mesh model
Our model is defined by a set of V vertices, represented

by a 2 × V matrix V = [v1, ...,vV ], a set of edges where
each edge is a 4-tuple of indices ej = (ν0

j , ν
1
j , t

l
j , t

r
j), in-

dexing the edge’s start and end vertices, and left and right
triangles respectively. The line segment corresponding to
the edge, as a subset of R2, is written ej . The number of
triangles is T , triangles are indexed by t, and the triangle as
a subset of R2 is written Tt. We define the characteristic
function of each triangle χt(x) as

χt(x) =

{
1 x ∈ Tt

0 otherwise
(13)

and again express u(x) as a linear combination of basis
functions modulated by χt, parameterized per triangle by
a vector ut = [ut1, ..., utK ]> ∈ RK ,

u(x) =

T∑
t=1

K∑
k=1

utkφk(x)χt(x) (14)

3One might think that when comparing to existing algorithms, we
should use the same upsampling factors. Prima facie this is true, but as our
algorithm in fact upsamples to ”infinite resolution”, we believe we should
compare the N -fold upsampling of existing methods to our resolution-
independent representation. The problem is that the latter can’t be ren-
dered reliably in PDF, so in the end we chose to simply render a bitmap
at 128x, as a “near-infinite” scale factor. No existing algorithm can get to
that resolution in a reasonable time, so we ended up comparing between
8x and 128x.

For typical applications, a piecewise linear model is appro-
priate, so K = 3 and

φ1(x, y) = 1 (15)
φ2(x, y) = x (16)
φ3(x, y) = y. (17)

This allows u to have discontinuities on every edge in the
mesh, so is a richer model than would be obtained by lin-
early interpolating per-vertex values. In certain applica-
tions, such as image vectorization, it might be useful to use
a different set of basis functions as discussed in §6.

The elements of the render matrix fim are now integrals
of the form in (9), i.e. of the blur kernel multiplied by ψm =
φkχt. Note that we associate indices m with pairs tk, e.g.
via m = (t − 1)K + k. Our model of the blur kernel is
a sum of constant functions defined within arbitrary convex
polygons, which allows the integral to be computed very
simply. In the the simplest case, illustrated in figure 4, the
kernel for pixel i is defined as constant inside a polygon Qi,
i.e.

κi(x) =

{
1 x ∈ Qi

0 otherwise
(18)

so that the integral to evaluate is

fitk =

∫∫
Ω

κi(x)φk(x)χt(x)dx =

∫∫
Tt∩Qi

φk(x)dx,

(19)

the integral of the basis function φk inside the convex poly-
gon P = Tt∩Qi, whose vertices are easily computed using
convex polygon intersection [11]. For φ1 the result is sim-
ply the area of P. For other k we can use Green’s theorem
to greatly simplify evaluation of the region integral, e.g. for
k = 2, we have φ2(x, y) = x, and

∫∫
P

φ2(x)dx =

∫∫
P

x dxdy =

∫
∂P

1

2
x2dy (20)

which may be broken into a sum of contributions along each
segment of P. More details are supplied in the supplemen-
tary material.

2.1. Computing the regularizer term

The second item to be computed is the regularizer (7).
Again given V, the integral becomes a sum over triangles



Figure 4. The imaging model. (a) Example mesh and blur kernels
for a 3× 3 pixel image. The blur kernel κi(x) for each pixel i is 1
inside the decagon Qi and 0 outside. (b) The integral for pixel 1
is
∫∫
κ1(x)u

>
t φ(x)dx, computed as the sum over all triangles t

which intersect Qi. The integral is easily computed by convex
polygon clipping, then applying Green’s theorem on the returned
boundary (20). Note that the pixels at the image edge need not be
specially treated: triangles which intersect any pixel contribute to
the integral, and those which intersect no pixel will be filled by the
prior. Second row: the render matrix F for this example.

and edges:

R(U) = λ1

T∑
t=1

∫∫
Tt

∥∥∥∥∥∑
k

utk∇φk(x)

∥∥∥∥∥
α

p

dx+

+ λ2

nedges∑
j=1

∫
ej

∣∣∣∣∣∑
k

(utlj ,k − utrj ,k)φk(x)

∣∣∣∣∣
β

dx

+ λ3

nedges∑
j=1

∫
ej

‖
∑
k

(utlj ,k − utrj ,k)∇φk(x)‖β
′

p′ dx (21)

For linear elements the first integrand is independent of x
which means the first summation becomes∑

t

#Tt

∥∥∥∥(ut2ut3

)∥∥∥∥α
p

, where #Tt is the area of Tt (22)

which although in general a nonlinear function of U, is one
for which derivatives are straightforward to compute. The
special case where p = α = 2, is particularly simple, giving
a quadratic form in U.

The second term is rather involved, but can be computed
in closed form (see supplementary material). Differences of
elements of U appear raised to powers of β + 1, and again
derivatives are straightforward. Similarly, the start and end
vertices of the edge appear, raised to powers of β + 1. We
write the result in terms of overloaded functions Rdisc as

Rdisc(U,V) =

nedges∑
j=1

Rdisc(utlj − utrj ,vν0
j
,vν1

j
) (23)
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Figure 5. Derivatives with respect to vertex positions. We must
compute the derivative with respect to v of an integral computed
over the grey intersection polygon P. The integral is computed
over line segments, giving three cases: on red segments, both end-
points are a function of v, on yellow segments one endpoint, and
on green none.

2.2. Derivatives with respect to vertex positions

To summarize the preceding sections, E(U) is a rela-
tively well behaved (and for some parameter settings, con-
vex) function of U. However, the real power of the mesh
model is not seen until optimization over the mesh vertices
is introduced. The strategy is ostensibly straightforward:
for fixed U, compute the derivatives of E with respect to
vertex positions, and then perform a line search. Let us first
write E with the dependencies on V made clear:

E(U,V) =
∥∥I− F(V)U:

∥∥
ρ
+

λ1

∑
t

#Tt(V)

∥∥∥∥(ut2ut3

)∥∥∥∥α
p

+ λ2R
disc(U,V) (24)

Computing derivatives with respect to V is easy for Rdisc,
and for the triangle areas #Tt as the vertices simply ap-
pear analytically in those expressions. The more interest-
ing terms are the derivatives of F where the computational
steps comprise first a polygon clipping, and then a moment
computation (19). The strategy is illustrated in figure 5. For
example, to compute dfitk

dvν
, the intersection polygon Tt∩Qi

is computed, and for each line segment in the intersection, it
is determined whether perturbation of vν affects zero, one,
or both endpoints, and the derivative of that segment’s con-
tribution is accumulated.

3. Optimization

Our optimization strategy interleaves a number of high-
level processes:

• Optimization over U using quasi-Newton method.

• Optimization over V using analytic block-diagonal
Hessian. This requires some interesting strategies to
make progress in the presence of “sliver” triangles, and
is described in the supplementary material.

• Edge optimization via global “N/Z” flips.

• Mesh refinement



Figure 6. Global “N/Z” flips. The triangle mesh is grouped
into triangle pairs, and within each pair, a boolean flag indicates
whether to perform an edge swap. Global optimization of the
boolean flags can discover useful image structure.

The main optimization loop is an alternation over U and V,
with NZ flips and refinement when the alternation conver-
gence rate drops. Each process optimizes the same global
energy, so that there is no difficulty in interleaving them ar-
bitrarily. The optimization may also begin with a piecewise
constant model, which tends to position the image edges
well, and then on convergence initialize a piecewise linear
model, which improves reconstruction in smooth areas.

3.1. Global “N/Z” flips

Local mesh moves are effective at positioning object
boundaries when edges are close to correctly oriented.
However when meshes are initialized at a coarse scale,
such alignment is difficult to ensure. The N/Z flip process
takes a triangle mesh, and greedily creates pairs of triangles
which share an edge, with each triangle in at most one pair.
Some triangles may not be paired without causing prob-
lems. In each pair, an alternative configuration is consid-
ered, whereby the edge is swapped to traverse the other two
vertices. The data term of the energy is easily computed
for the new pair, as is the prior contribution on the internal
edge. The prior contribution on the external edges can be
computed as a function of the boolean flag in an adjacent
pair, leading to a quadratic boolean optimization problem,
which, although not submodular, can be solved via a variety
of modern techniques [15]. Figure 6 illustrates the process.

4. Extensions to the basic model
The model as described deals only with grayscale im-

ages, and does not deal with varying noise levels or missing
data.

Colour is most simply handled for reconstruction prob-
lems by performing reconstruction on the luminance im-
age, and interpolating the colour channels via some ad hoc
method. However, we are interested in obtaining a repre-
sentation which treats colour correctly, having each trian-
gle parameterize a colour triple rather than a scalar. This
can be implemented using vector-valued basis functions, so
that φk(x) maps to R3 rather than R, and adapting the dis-
continuity term in the prior (7), for example by replacing
the absolute value by an appropriate norm. If that norm is
the 1-norm, the model behaves as the sum of three separate
models, which means that boundaries are not necessarily

coherent across channels. An alternative method of linking
the channels is to parameterize the latent image colour as
YCrCb, and impose the prior only on the Y channel.

At the sensor side, colour appears in two ways: the image
samples Ii may be true colour (e.g. from a 3-CCD camera),
in which case Ii might be considered an element of a col-
orspace C, for example RGB, and be treated as a vector in
R3; alternatively the image samples may be through a Bayer
filter. When each pixel sample is one of R,G,B, the mixing
coefficients appear in the data term. If Ii is the sample count
behind a red filter, its energy contribution is∥∥Ii − γr4 − (γr1FY + γr2FCr + γr3FCb)U:

∥∥
ρ

(25)

where γr is the first row of the YCbCr-to-RGB conversion
matrix.

The above exposition has talked mostly about blur ker-
nels which are constant inside a specified polygon Q, so we
stress again that kernels which are the sum of such kernels
may also be implemented without any new derivations. On
the other hand, if piecewise linear or other kernels were re-
quired, one would need to be able to compute the integrals
of κ(x)φk(x) over polygonal regions. For any polynomial
kernel this is easy; for something like a Gaussian, it is more
difficult, but of course real-world PSFs are not Gaussian.

5. Applications
Images in this section are duplicated in the supplemen-

tary material.
The most obvious application of this approach is in

super-resolution. The approach is simple: compute the la-
tent image, essentially an infinite-resolution upsampling,
and then re-render using a render matrix corresponding to
a narrow PSF at the target resolution. It is a strength of
our model that enormous upsampling ratios can be obtained
easily, while some example-based methods [7] require re-
peated application of the pixel-based method, with a loss in
quality.

An important parameter is the selection of the blur ker-
nel, which encapsulates the prior knowledge one has about
the low-resolution image source. For the experiments in
figure 7 we used the known downsampling kernel. For the
more interesting case in 8, we modelled the PSF at each
pixel as a linear combination of two fixed PSFs. The fixed
PSFs were estimated by selecting one edge on the chip, and
one on the blurry background, and then choosing the PSF
width which optimized reconstruction error using a fixed
model with a small number of triangles aligned to the se-
lected edge.

As a denoising experiment, we took the heavy noise ex-
ample from [10] and fitted a latent image to it. While one
might expect the algorithm to perform only slightly better
than TV, it is, in terms of PSNR, among the better perform-
ers (figure 9). Visually, it is probably fairest to say that the



Figure 7. Upsampling (a) Input data. (b) Fattal [5]. (c) Freedman [6]. (d) Glasner [7]. (e) Ours. On natural images, performance is visually
similar to Fattal [5]. On man-made images, performance arguably exceeds the other algorithms.

Input Ground truth BM3D (23.86) KSVD (22.42)

Port (23.28) LB (24.04) TV (22.26) Our (23.80)

Figure 9. Denoising. Algorithms with PSNR. Our method, with TV-like prior, is competitive in PSNR with BM3D, and has “different”
artifacts.

artifacts are less pleasant than LB [10], but the improvement
over TV appears clear.

For many image processing tasks, the ultimate consumer
is willing to interact with the process to produce better re-
sults. We simulated such a scenario in figure 10, where the
user draws lines on an initial reconstruction, and polygons
on those lines are constrained to have a given colour. This
is easily implemented as a constrained optimization.

6. Conclusions

We have presented, we believe for the first time, a near-
complete account of image modelling using a resolution-
independent mesh representation. In particular, the ability
to adapt mesh vertex positions on an arbitrary subpixel grid
has not previously been demonstrated in the context of im-
age processing.

Currently most examples require several minutes of



Figure 8. Spatially varying PSF. (a) Input data. (b) Reconstruc-
tion with narrow PSF. (c) Reconstruction with broad PSF. (d) Re-
construction with PSF width determined as a linear combination
of (b),(c).

Figure 10. User interaction. (a) Reconstruction without user ed-
its. (b) Constrained polygons. (c) Reconstruction with user inter-
action

CPU, but we do not believe this is representative of ulti-
mate performance. Our implementation has been optimized
for speed at an algorithmic level by use of second order op-
timizers, and by limiting the number of polygon clippings
required, but has not been micro-optimized. We would hope
to be not worse than a small factor of grid-graph perfor-
mance for most tasks.

Although we have not demonstrated it here, we expect
the model to be of particular use in modelling intrinsically
sub-pixel entities such as matte boundaries (using a sub-
pixel binary matte rather than the approximation in alpha
matting), optical flow, and depth discontinuities in stereo.

As mentioned above, the prior is currently limited
to a purely geometric prior on real-world discontinu-
ities. It would be interesting to see if texture priors
could be introduced using more wavelet-like basis func-
tions. For example, instead of [1, x, y] one might con-
sider [1, sin(x), cos(x), sin(y), cos(y), sin(2x), sin(2y), ...]
and then impose different prior weights on the different
bases.

A. Integrals

At a number of points we need to compute the integral
of some function over a polygonal region P. For example,

for the basis function set

φ(x, y) =

xy
1

 (26)

we must compute ∫∫
P

x dxdy (27)∫∫
P

y dxdy (28)∫∫
P

1 dxdy (29)

Taking the first of these, we apply Green’s theorem (stated
in Box A). To do so, we should find a vector function f(x, y)
such that div f = x. Of course, many such functions exist;
an obvious choice is

f(x, y) =

(
1
2x

2

0

)
. (30)

Thus (27) becomes an integral along the polygon P, which
itself becomes a sum over the linear segments of the poly-
gon. Let one such segment be (x1, y1) → (x2, y2). Pa-
rameterizing p(t) = (x1, y1) + t(∆x,∆y), with ∆x =
x2 − x1,∆y = y2 − y1 gives

f(p(t)) =

(
1
2 (x1 + t∆x)2

0

)
n(t) =

(
−∆y

∆x

)
so that the right hand side of (34) is∫ 1

0

1

2
(x1 + t∆x)2∆ydt = ∆y(x1x2 +

1

3
∆2
x) (31)

giving the expansion of (27) as∫∫
P

x =

nP∑
i=0

(yi+1 − yi)(xixi+1 +
1

3
(xi+1 − xi)2) (32)

where nP is the number of segments in P, and point 0 is
assumed identified with point nP.

B. Rdisc
The derivation of Rdisc from (7) is as follows.∫

ej

∣∣ul(x)− ur(x)
∣∣β (35)

=

∫
ej

∣∣∣utlj · φ(x)− utrj · φ(x)
∣∣∣β (36)

=

∫
ej

∣∣∣(utlj − utrj ) · φ(x)
∣∣∣β (37)



Box 1: Green’s theorem

We consider only the special case where the boundary of P
can be represented by a parametric curve. Let that curve be

∂P =
{
p(t) | 0 ≤ t < 1

}
(33)

where p(t) := [px(t), py(t)].
Given a vector function f : R2 7→ R2, Green’s theorem
states that ∫∫

P

(div f) dA =

∫ 1

0

f(p(t))>n(t)dt (34)

where div f = ∂f1
∂x + ∂f2

∂y and the curve normal n(t) is
defined as n(t) = [− d

dtpy(t), d
dtpx(t)]>

Let ∆j = utlj −utrj , and parameterize the integral along ej

as x(t) = tv1 + (1 − t)v2. Then, for linear elements,
φ(x) = [1; x] =: x̄, and the integral is

Rdisc(∆, v̄1, v̄2) = (38)

=

∫ 1

0

|t∆.v̄1 + (1− t)∆.v̄2|β dt (39)

=:

∫ 1

0

|tA+ (1− t)B|β dt (40)

=
1

(B −A)(β + 1)

[
|B|β B − |A|β A

]
(41)

=

[
|∆.v̄2|β ∆.v̄2 − |∆.v̄1|β ∆.v̄1

]
∆.(v̄2 − v̄1)(β + 1)

(42)

=
∆.(|∆.v̄2|β v̄2 − |∆.v̄1|β v̄1)

∆.(v̄2 − v̄1)(β + 1)
(43)

Note that if ∆.(v̄2 − v̄1) = 0, the first line is simply∫ 1

0
|∆.v̄2|β dt = |∆.v̄2|β = |∆.v̄1|β .

C. Derivatives
Although the paper is accompanied by code to perform

the various derivative calculations, is is valuable to detail
them here, largely to show that although somewhat tedious,
they are not much more demanding than conventional ap-
proaches. The first key term is the derivative of F(V),
which contains individual terms

∂fitk
∂vj

=
∂

∂vj

∫∫
Tt∩Qi

φk(x)dx, (44)

This will be nonzero only for triangles t which intersect Qi.
For triangles which do intersect, the derivative calculation
for each vertex is identical up to index bookkeeping, so is
illustrated for one vertex in figure 11.

Figure 11. Computing the derivative in (44). Equation references
are to [21].
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