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Abstract

This paper presents a complete system for expressive vi-
sual text-to-speech (VTTS), which is capable of producing
expressive output, in the form of a ‘talking head’, given an
input text and a set of continuous expression weights. The
face is modeled using an active appearance model (AAM),
and several extensions are proposed which make it more
applicable to the task of VTTS. The model allows for nor-
malization with respect to both pose and blink state which
significantly reduces artifacts in the resulting synthesized
sequences. We demonstrate quantitative improvements in
terms of reconstruction error over a million frames, as well
as in large-scale user studies, comparing the output of dif-
ferent systems.

1. Introduction
This paper presents a system for expressive visual text-

to-speech (VTTS) that generates near-videorealistic output.
Given an input text, a visual text-to-speech system gener-
ates a video of a synthetic character uttering the text. Ex-
pressive VTTS allows the text to be annotated with emo-
tion labels which modulate the expression of the generated
output. Creating and animating talking face models with
a high degree of realism has been a long-standing goal, as
it has significant potential for digital content creation and
enabling new types of user interfaces [16, 19, 27]. It is be-
coming increasingly clear that in order to achieve this aim,
one needs to draw on methods from different areas, includ-
ing computer graphics, speech processing, and computer vi-
sion. While systems exist that produce high quality anima-
tions for neutral speech [6, 16, 25], adding controllable, re-
alistic facial expressions is still challenging [1, 5]. Currently
the most realistic data-driven VTTS systems are based on
unit selection, splitting up the video into short sections and
subsequently concatenating and blending these sections at
the synthesis stage, e.g. [16, 25]. Due to the high degree of
variation in appearance during expressive speech, the num-
ber of units required to allow realistic animation becomes
excessive.

In our approach we draw on recent progress from the
area of audio-only text-to-speech (TTS), which also has to
deal with coarticulation, whereby phonemes are affected by
other nearby phonemes. The most successful approach to
solving this task currently is to model tri- or quinphones us-
ing hidden Markov models (HMM) with three or five emit-
ting states, respectively [29]. Concatenating the HMMs and
sampling from them produces a set of parameters which can
then be synthesized into a speech signal. In order to extend
this approach to visual TTS, a parametric face model is re-
quired. In this paper we propose using the established active
appearance model (AAM) to model face shape and appear-
ance [7]. While AAMs have been used in VTTS systems
for neutral speech in the past [10, 23], there are a number
of difficulties when applying standard AAMs to the task of
expressive face modeling. The most significant problem is
that AAMs capture a mixture of expression, mouth shape
and head pose within each mode, making it impossible to
model these effects independently. Due to the large varia-
tion of pose and expression in expressive VTTS this leads
to artifacts in synthesis as spurious correlations are learned.
AAMs are also inherently poor at modeling very localized
actions such as blinking, without introducing artifacts else-
where in the model when used for synthesis. In this paper
we propose a number of extensions that allow AAMs to be
used for synthesis tasks with a higher degree of realism. In
summary, the contributions of this paper are:

1. a complete visual text-to-speech system allowing syn-
thesis with a continuous range of emotions, introduced
in section 4,

2. extensions to the standard AAM that allow the separa-
tion of modes for global and local shape and appear-
ance deformations, detailed in section 3, and

3. large-scale, crowd-sourced user studies, allowing a di-
rect comparison of the proposed system with the state
of the art, see section 5. The experiments demonstrate
a clear improvement in synthesis quality in expressive
VTTS.
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2. Prior Work
This section gives an overview of recent approaches to

visual text-to-speech, grouping them based on their genera-
tive model.

Physics based methods model face movement based on
simulating the effects of muscle interaction, thereby al-
lowing anatomically plausible animation [1, 20]. However
building accurate models requires significant effort and re-
sults are currently not videorealistic.

Unit selection methods allow videorealistic synthesis
as they concatenate examples actually seen in a training
set [16, 25]. The type of unit can be a single frame for
each phoneme [12] or a sequence of frames [5] which are
blended with their temporal neighbors. The advantage of
longer units is that they better model coarticulation, how-
ever more units are required in this case to handle all
phoneme combinations. The main drawback of unit se-
lection approaches is their lack of flexibility, as they can-
not easily be extended to handle new expressions without
greatly increasing the number of units.

Statistical modeling approaches use a training set to
build models of the speech generation process. HMMs
are currently the most popular approach [4, 8]. Statistical
models are able to generate high quality results which are
sometimes over-smoothed compared to unit selection ap-
proaches. The main advantages of these methods are the
flexibility they provide in dealing with coarticulation and
their ability to handle expression variation in a principled
manner.

2.1. Face models for VTTS

A number of different face models have been proposed
for videorealistic VTTS systems.

Image based models use complete or partial images
taken directly from a training set, concatenating them using
warping or blending techniques. The resulting appearance
is realistic, but this technique limits the synthesis method to
unit selection [16, 26].

Data-driven 3D models use captured 3D data to gen-
erate controllable 3D models. Their main advantages are
their invariance to 3D pose changes and their ability to ren-
der with an arbitrary pose and lighting at synthesis time.
Currently a limiting factor is the complexity of the cap-
ture and registration process. While computer vision tech-
niques continue to drive progress in this area [3, 17], un-
til now only relatively small training sets have been ac-
quired, insufficient in size to generate realistic expressive
models [5, 24]. Good results have been achieved animating
3D models that do not attempt to appear videorealistic, this
avoids the uncanny valley and produces visually appealing
synthesis such as that in [21].

Data-driven 2D models can be created from video data,
thereby simplifying the capture process of large training

corpora. The most common 2D models used are AAMs [10,
23] and Multidimensional Morphable Models (MMMs) [6].
Both of these models are linear in both shape and appear-
ance, but while AAMs represent shape using the position
of mesh vertices, MMMs use flow fields to represent 2D
deformation.

2.2. Active appearance models

In this paper we use AAMs as they produce good re-
sults for neutral speech while the low-dimensional para-
metric representation enables their combination with stan-
dard TTS methods. There have been many modifications
to the standard AAM designed to target specific applica-
tions, see [13] for an overview. The specific requirements
for our system are that the model must be able to track ro-
bustly and quickly over a very large corpus of expressive
training data and that it must be possible to synthesize vide-
orealistic renderings from statistical models of its parame-
ters. There has been extensive work on tracking expressive
data, for example the work of De la Torre and Black [9]
in which several independent AAMs representing different
regions of the face are created by hand are linked together
by a shared affine warp. Modifications for convincing syn-
thesis from AAMs on the other hand are much less well
explored. When AAMs have been used for VTTS in the
past, small head pose variations have been removed by sub-
tracting the mean AAM parameters for each sentence from
all frames within that sentence [10] however this approach
works for small rotations only and leads to a loss of expres-
siveness. Bilinear AAMs that factor out pose from other
motion have been proposed, but the amount of training data
required for a VTTS system makes their use prohibitive in
our application [14]. The most similar approach to dealing
with pose to the method that we propose is that of Edwards
et al. [11] in which canonical discriminant analysis is used
to find semantically meaningful modes and a least squares
approach is used to remove the contributions of these modes
from training samples. However this approach is not well
suited to modeling local deformations such as blinking and
the least squares approach to removing the learned modes
from training samples can give disproportionate weighting
to the appearance component.

3. Extending AAMs for Expressive Faces
This section first briefly introduces the standard AAM

with its notation and then details the proposed extensions
to improve its performance in the expressive VTTS set-
ting. As a baseline we use the AAM proposed by Cootes
et al. [7] in which a single set of parameters controls both
shape and appearance. Throughout this paper we assume
that the number of shape and appearance modes is equal
but the techniques are equally applicable if this is not the
case; modes with zero magnitude can be inserted to en-
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Figure 1: Pose invariant AAM modes. The first two modes of a
standard AAM (left) encode a mixture of pose, mouth shape and
expression variation. (right) The first two modes of a pose invari-
ant AAM encode only rotation, allowing head pose to be decoupled
from expression and mouth shape.

sure that the number of modes is equal. An AAM is de-
fined on a mesh of V vertices. The shape of the model,
s = (x1, y1, x2, y2, ...xV , yV )

T , defines the 2D position
(xi, yi) of each mesh vertex and is a linear model given by

s = s0 +

M∑
i=1

cisi, (1)

where s0 is the mean shape of the model, si is the
ith mode of M linear shape modes and ci is its cor-
responding parameter. We include color values in the
appearance of the model, which is given by a =
(r1, g1, b1, r2, g2, b2, ...rP , gP , bP )

T , where (ri, gi, bi) is
the RGB representation of the ith of the P pixels which
project into the mean shape s0. Analogous to the shape
model, the appearance is given by

a = a0 +

M∑
i=1

ciai, (2)

where a0 is the mean appearance vector of the model, and
ai is the ith appearance mode. Since we use a combined
appearance model the weights ci in equations 1 and 2 are
the same and control both shape and appearance.

3.1. Pose invariant AAM modes

The global nature of AAMs leads to some of the modes
handling variation which is due to both 3D pose change as
well as local deformation, see figure 1 left. Here we propose
a method for finding AAM modes that correspond purely
to head rotation or to other physically meaningful motions.
More formally, we would like to express a face shape s as a

combination of pose components and deformation compo-
nents:

s = s0 +

K∑
i=1

cis
pose
i +

M∑
i=K+1

cis
deform
i . (3)

We would also like to obtain the equivalent expression for
the appearance. The coupling of shape and appearance in
AAMs makes this a difficult problem. We first find the
shape components that model pose {sposei }Ki=1, by record-
ing a short training sequence of head rotation with a fixed
neutral expression and applying PCA to the observed mean
normalized shapes ŝ = s − s0. We then project ŝ into the
pose variation space spanned by {sposei }Ki=1 to estimate the
weights {ci}Ki=1 in (3):

ci =
ŝTsposei

||sposei ||2 . (4)

Having found these weights we remove the pose compo-
nent from each training shape to obtain a pose normalized
training shape s∗:

s∗ = ŝ−
K∑
i=1

cis
pose
i . (5)

If shape and appearance were indeed independent then we
could find the deformation components by principal com-
ponent analysis (PCA) of a training set of shape samples
normalized as in (5), ensuring that only modes orthogonal
to the pose modes are found, in the same way as [11]. How-
ever, there is no guarantee that the weights calculated using
(4) are the same for the shape and appearance modes, which
means that we may not be able to reconstruct the training
examples using the model. This can be problematic, for ex-
ample if the original AAM tracking method proposed in [7]
or the method introduced in section 3.4 are to be used, as
these require the AAM descriptors for each training sam-
ple. To overcome this problem we compute the mean of
each {ci}Ki=1 of the appearance and shape weights:

ci =
1

2

(
ŝTsposei

||sposei ||2 +
âTaposei

||aposei ||2
)
. (6)

The model is then constructed by using these weights in
(5) and finding the deformation modes from samples of the
complete training set. Note that this decomposition does not
guarantee orthogonality of shape or appearance modes, but
we did not find this to be an issue in our application.

3.2. Local deformation modes

In this section we propose a method to obtain modes
for local deformations such as eye blinking. This can be
achieved by a modified version of the method described in



the previous section. Firstly shape and appearance modes
which model blinking are learned from a video containing
blinking with no other head motion. Directly applying the
method in section 3.1 to remove these blinking modes from
the training set introduces artifacts. The reason for this is
apparent when considering the shape mode associated with
blinking in which the majority of the movement is in the
eyelid. This means that if the eyes are in a different position
relative to the centroid of the face (for example if the mouth
is open, lowering the centroid) then the eyelid is moved to-
ward the mean eyelid position, even if this artificially opens
or closes the eye. Instead of computing the weights of abso-
lute coordinates in (6) we therefore propose to use relative
shape coordinates using a Laplacian operator:

cblinki =
1

2

(
L(ŝ)TL(sblinki )

||L(sblinki )||2 +
âTablinki

||ablinki ||2
)
. (7)

The Laplacian operator L() is defined on a shape sample
such that the relative position, δi of each vertex i within the
shape can be calculated from its original position pi using

δi =
∑
j∈N

pi − pj

||dij ||2
, (8)

where N is a one-neighborhood defined on the AAM mesh
and dij is the distance between vertices i and j in the mean
shape. This approach correctly normalizes the training sam-
ples for blinking, as relative motion within the eye is mod-
eled instead of the position of the eye within the face.

3.3. Segmenting AAMs into regions

Different regions of the face can be moved nearly inde-
pendently, a fact that has previously been exploited by seg-
menting the face into regions, which are modeled separately
and blended at their boundaries [2, 9, 22]. While this ap-
proach tends to be followed in 3D models, it is difficult to
apply to synthesizing with AAMs as these are not invariant
to 3D pose, and mixing components could result in implau-
sible instances where different regions have different pose.

The decomposition into pose and deformation compo-
nents in (3) allows us to further separate the deformation
components according to the local region they affect. We
split the model into R regions and model its shape accord-
ing to:

s = s0 +

K∑
i=1

cis
pose
i +

R∑
j=1

∑
i∈Ij

cis
j
i , (9)

where Ij is the set of component indices associated with
region j. The modes for each region are learned by only
considering a subset of the model’s vertices according to
manually selected boundaries marked in the mean shape.
Modes are iteratively included up to a maximum number,

by greedily adding the mode corresponding to the region
which allows the model to represent the greatest proportion
of the observed variance in the training set. The analogous
model is used for appearance. Linear blending is applied
locally near the region boundaries.

We use this approach to split the face into an upper and
lower half. The advantage of this is that changes in mouth
shape during synthesis cannot lead to artifacts in the upper
half of the face. Since global modes are used to model pose
there is no risk of the upper and lower halves of the face
having a different pose.

3.4. Extending the domain of an existing AAM

This section describes a method to extend the spatial do-
main of a previously trained AAM without affecting the ex-
isting model. In our case it was employed to extend a model
that was trained only on the face region to include hair and
ear regions in order to add more realism.

The set of N training images for the existing AAM
is known, as are the original model coefficient vectors
{cj}Nj=1, cj ∈ RM for these images. We proceed by la-
beling the regions to be included in the model, resulting
in a new set of N training shapes {s̃extj }Nj=1 and appear-
ances {ãextj }Nj=1. Given the original model with M modes,
the new shape modes, {si}Mi=1, should satisfy the following
constraint[

s̃ext1 . . . s̃extN

]
=
[
s1 . . . sM

] [
c1 . . . cN

]
, (10)

which states that the new modes can be combined, using
the original model coefficients, to reconstruct the extended
training shapes s̃extj . Assuming that the number of training
samples N is larger than the number of modes M the new
shape modes can be obtained as the least-squares solution.
New appearance modes are found analogously.

3.5. Adding regions with static texture

Since the teeth and tongue are occluded in many of the
training examples, the synthesis of these regions contains
significant artifacts when modeled using a standard AAM.
To reduce these artifacts we use a fixed shape and texture for
the upper and lower teeth. The displacements of these static
textures are given by the displacement of a vertex at the
center of the upper and lower teeth respectively. The teeth
are rendered before the rest of the face, ensuring that the
correct occlusions occur. A visual comparison is provided
in figure 4(h).

4. Synthesis framework

Our synthesis model takes advantage of an existing TTS
approach known as cluster adaptive training (CAT). The
AAM described in the previous section is used to express



each frame in the training set as a low dimensional vec-
tor. The audio and video data are modeled using separate
streams within a CAT model, a brief overview of which is
given next.

4.1. Cluster adaptive training (CAT)

Cluster adaptive training (CAT) [28] is an extension to
hidden Markov model text-to-speech (HMM-TTS). HMM-
TTS is a parametric approach to speech synthesis [29]
which models quinphones using HMMs with five emitting
states. Concatenating the HMMs and sampling from them
produces a set of parameters which can then be resynthe-
sized into synthetic speech. Typically, a decision tree is
used to cluster the quinphones to handle sparseness in the
training data. For any given quinphone the means and vari-
ances to be used in the HMMs may be looked up using the
decision tree.

The key addition of CAT is the use of multiple decision
trees to capture speaker- or emotion-dependent information.
Figure 2 shows the structure of the CAT model. Each clus-
ter has its own decision tree and the means of the HMMs are
determined by finding the mean for each cluster and com-
bining them using the formula

µexpr
m = Mmλexpr, (11)

where µexpr
m is the mean for a given expression, m is the

state of the HMM, Mm is the matrix formed by combining
the means from each cluster and λexpr is a weight vector.

Each cluster in CAT may be interpreted as a basis defin-
ing an expression space. To form the bases, each clus-
ter is initialized using the data of one emotion (by setting
the λ’s to zero or one as appropriate). The Maximum-
Likelihood criterion is used to update all the parameters
in the model (weights, means and variances, and decision
trees) iteratively. The resulting λ’s may interpreted as co-
ordinates within the expression space. By interpolating be-
tween λexpr1 and λexpr2 we can synthesize speech with an
expression between two of the originally recorded expres-
sions. Since the space is continuous it is possible to synthe-
size at any point in the space and generate new expressions.
For more details the reader is referred to [15].

5. Experiments
We collected a corpus of 6925 sentences, divided be-

tween 6 emotions; neutral, tender, angry, afraid, happy and
sad. From the data 300 sentences were held out as a test
set and the remaining data was used to train the speech
model. The speech data was parameterized using a stan-
dard feature set consisting of 45 dimensional Mel-frequency
cepstral coefficients, log-F0 (pitch) and 25 band aperiod-
icities, together with the first and second time derivatives
of these features. The visual data was parameterized using

decision trees

cluster 1

cluster 2

cluster P

HMM state mean

cluster mean 1

cluster mean 2

cluster mean P

1=1

Figure 2: Cluster adaptive training (CAT). Each cluster is
represented by a decision tree and defines a basis in expres-
sion space. Given a position in this expression space defined by
λexpr = [λ1 . . . λP ] the properties of the HMMs to use for syn-
thesis can be found as a linear sum of the cluster properties.

the AAMs described below. We trained different AAMs in
order to evaluate the improvements obtained with the pro-
posed extensions. In each case the AAM was controlled by
17 parameters and the parameter values and their first time
derivatives were used in the CAT model.

The first model used, AAMbase, is a standard AAM as
described in [7], built from 71 training images in which
47 facial keypoints were labeled by hand. Additionally,
contours around both eyes, the inner and outer lips, and
the edge of the face were labeled and points were sam-
pled at uniform intervals along their length. The second
model, AAMdecomp, separates both 3D head rotation (mod-
eled by two modes) and blinking (modeled by one mode)
from the deformation modes as described in sections 3.1
and 3.2. The third model, AAMregions, is built in the same
way as AAMdecomp expect that 8 modes are used to model
the lower half of the face and 6 to model the upper half,
see section 3.3. The final model, AAMfull, is identical to
AAMregions except for the mouth region which is modified
as described in section 3.5. Please see the supplementary
video for samples of synthesis.

5.1. Evaluating AAM reconstruction

In the first experiment we quantitatively evaluate the re-
construction error of each AAM on the complete data set
of 6925 sentences which contains approximately 1 million
frames. The reconstruction error was measured as the L2

norm of the per-pixel difference between an input image
warped onto the mean shape of each AAM and the gen-
erated appearance. Figure 3(a) shows how reconstruction
errors vary with the number of AAM modes. It can be seen
that while with few modes, AAMbase has the lowest recon-
struction error, as the number of modes increases the differ-
ence in error decreases. In other words, the flexibility that
semantically meaningful modes provide does not come at
the expense of reduced tracking accuracy. In fact we found
the modified models to be more robust than the base model,
having a lower worst case error on average, as shown in fig-
ure 3(b). This is likely due to AAMregions and AAMdecomp

being better able to generalize to unseen examples as they
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Figure 3: AAM reconstruction errors. (a) Average errors vs. number of AAM modes. It can be seen that the average errors of all models
converge as the number of modes increases. (b) Cumulative number of sentences remaining below a given tracking error (for models using
17 modes). It can be seen that the proposed AAM extensions of AAMregions and AAMdecomp reduce the maximum errors compared to
the standard AAMbase. (c) An example of tracking failure for AAMbase since this combination of mouth shape and expression did not
appear in the training set.

do not overfit the training data by learning spurious corre-
lations between different face regions. An example where
this causes AAMbase to fail is given in figure 3(c).

5.2. User studies

We carried out a number of large-scale user studies in
order to evaluate the perceptual quality of the synthesized
videos. The experiments were distributed via a crowd
sourcing website, presenting users with videos generated by
the proposed system.

5.2.1 Preference studies

To determine the qualitative effect of the choice of AAM on
the final system we carried out preference tests on systems
built using the different AAMs. For each preference test 10
sentences in each of the six emotions were generated with
two models rendered side by side. Each pair of AAMs was
evaluated by 10 users who were asked to select between the
left model, right model or having no preference (the order
of our model renderings was switched between experiments
to avoid bias), resulting in a total of 600 pairwise compar-
isons per preference test. In this experiment the videos were
shown without audio in order to focus on the quality of the
face model.

From table 1 it can be seen that AAMfull achieved the
highest score, and that AAMregions is also preferred over
the standard AAM. This preference is most pronounced for
expressions such as angry, where there is a large amount of
head motion and less so for emotions such as neutral and
tender which do not involve significant movement of the
head. This demonstrates that the proposed extensions are
particularly beneficial to expressive VTTS.

5.2.2 Comparison with other talking heads

In order to compare the output of different VTTS systems
users were asked to rate the realism of sample synthesized
sentences on a scale of 1 to 5, with 5 corresponding to ‘com-
pletely real’ and 1 to ‘completely unreal’. Sample sentences
that were publicly available were chosen for the evaluation,
and scaled to a face region height of approximately 200 pix-
els. The degree of expressiveness of the systems range from
neutral speech only to highly expressive. The results in Ta-
ble 2 show that the system by Liu et al. was rated most
realistic among the systems for neutral speech and with a
small degree of expressiveness. The proposed system per-
forms comparably to other methods in the neutral speech
category, while for larger ranges of expression it achieved a
significantly higher score than the system by Cao et al. In
this study each system was rated by 100 users.

5.2.3 Emotion recognition study

In the final study we evaluated the ability of the proposed
VTTS system to express a range of emotions. Users were
presented either with video or audio clips of a single sen-
tence from the test set and were asked to identify the emo-
tion expressed by the speaker, selecting from a list of six
emotions. The synthetic video data for this evaluation was
generated using the AAMregions model. We also com-
pared with versions of synthetic video only and synthetic
audio only, as well as cropped versions of the actual video
footage. In each case 10 sentences in each of the six emo-
tions were evaluated by 20 people, resulting in a total sam-
ple size of 1200. Example frames showing each emotion
are given in figure 4.

The average recognition rates are 73% for the captured
footage, 77% for our generated video (with audio), 52%
for the synthetic video only and 68% for the synthetic au-
dio only. These results indicate that the recognition rates



AAM AAM AAM AAM Orig. No
base decomp region full video pref.

36 37 28

34 48 18

34 53 13

35 39 25

33 51 16

30 50 20

14 82 4

AAM AAM AAM AAM Orig. No
base decomp region full video pref.

40 36 24

37 47 15

45 41 14

42 35 22

38 48 13

28 46 26

11 83 6

AAM AAM AAM AAM Orig. No
base decomp region full video pref.

33 45 22

20 75 5

22 72 6

29 52 19

31 49 19

33 43 24

12 84 4

Table 1: Pairwise preference tests between different models. Scores shown as percentages of all votes for: (left) all emotions, (middle)
neutral, and (right) angry. There is a preference for the refined models for the average score over all emotions, this is mostly due to the
emotions with a large amount of movement, such as angry. The preference for the proposed model over other AAMs is particularly clear
for emotions with significant head motion, such as angry shown in the right table.

Method Expressions Realism Score
Chang and Ezzat [6] neutral 3.3 (4.5)
Deena et al. [10] neutral 3.4 (3.7)
Wang et al. [26] male neutral 4.0
Wang et al. [26] fem. neutral 3.9
Liu et al. [16] neutral 4.3 (4.6)
this paper neutral 3.7 (4.4)

Liu et al. [16] small range 3.6
Melenchon et al. [18] small range 3.1
Cao et al. [5] small range 2.6

Cao et al. [5] large range 2.7
this paper large range 3.8 (4.4)

Table 2: Comparative user study. Users rated the realism of
sample sentences generated using different VTTS systems where
higher values correspond to more realistic output. Scores for ac-
tual footage are shown in the last column for systems where data
was available. It can be seen that for high expressiveness the pro-
posed system achieves a higher score than that by Cao et al.

for synthetically generated results are comparable, or even
slightly higher than for the real footage. This may be due
to the stylization of the expression in the synthesis. Confu-
sion matrices between the different expressions are shown
in figure 5. Tender and neutral expressions are most eas-
ily confused in all cases. While some emotions are better
recognized from audio only, the overall recognition rate is
higher when using both cues.

6. Conclusions and future work
In this paper we have demonstrated a complete visual

text-to-speech system which is capable of creating near-
videorealistic synthesis of expressive text. We have carried
out user studies showing that its performance is state of the
art by comparing directly to other current VTTS systems.
To improve performance of our system we have adapted ac-
tive appearance models to reduce the main artifacts result-

ing from using a person specific active appearance model
for rendering. In the future we plan to extend the system
so that the identity of the speaker is controllable as well as
their expression.
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