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Abstract. We present Multi Scale Shape Index (MSSI), a novel feature
for 3D object recognition. Inspired by the scale space filtering theory
and Shape Index measure proposed by Koenderink & Van Doorn [6],
this feature associates different forms of shape, such as umbilics, saddle
regions, parabolic regions to a real valued index. This association is use-
ful for representing an object based on its constituent shape forms. We
derive closed form scale space equations which computes a characteristic
scale at each 3D point in a point cloud without an explicit mesh struc-
ture. This characteristic scale is then used to estimate the Shape Index.
We quantitatively evaluate the robustness and repeatability of the MSSI
feature for varying object scales and changing point cloud density. We
also quantify the performance of MSSI for object category recognition
on a publicly available dataset.

1 Introduction

The availability of cheap IR sensors have considerably lowered the cost of real
time 3D data acquisition [11] and has led to a renewed interest in 3D object
recognition [13, 5]. This has encouraged research into the development of a num-
ber of shape inspired features for 3D, several of which are extensions to popular
2D features [23, 12, 5] and do not directly operate on point cloud data, while
others [18, 17] are not robust enough to sensor noise. In this work, we propose a
novel feature called the Multi Scale Shape Index (MSSI) which is jointly moti-
vated by scale space filtering theory [21, 10] and the shape categorization work
of Koenderink [6]. Shape Index (SI) maps points on surfaces to a linear scale
[−1 : 1] and thus classifies them into categories such as Umbilics, Parabolics
and Saddle points. Fig. 1 shows a few canonical shapes and their corresponding
shape index. The proposed MSSI feature operates directly on a point clouds and
are robust to noise in the data.

The SI measure at a 3D point is a function of the principal curvatures at that
point. This measure was originally proposed for the continuous domain. However,
computing the principal curvatures at a point from noisy 2.5D or 3D data can
be erroneous if the characteristic scale at that point is not known (see Fig. 2 for
an example). In this work, we show how to compute the characteristic scale at
a point in a discrete domain (point cloud) and then estimate the shape index at
this scale. We then construct the MSSI feature at a point as a concatenation of its
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Fig. 1. Illustration of shape index measure mapping shapes to real number. From [6].

Fig. 2. Effects of computing Shape Index at an erroneous scale for a real world scene.
Shape Index computed at the characteristic scale (d) is more stable as compared to
one computed at a fine scale (b), which is sensitive to noise, or a coarse scale (c) which
blurs high curvature regions. Best viewed in colour.

characteristic scale, shape index and a measure of curvedness [6]. An example
of each of these features for a real world scene is shown in Fig. 3. The RGB
image and the corresponding depth map from a Kinect sensor is shown in Fig. 3
(a,b). The dummy’s head has a large scale and is classified as an umbilic (doubly
convex shape) in Fig. 3 (d). It also has low curvedness as seen in Fig. 3 (e). The
tip of the nose has low scale, and is an umbilic with high curvedness. The map
of the triplet of these three features is the MSSI map shown in Fig. 3 (c). To
show the efficacy of our proposed feature for category recognition we compare it
with the work of Lai et al. [7] using their publically available dataset.

The remainder of our paper is organised as follows. In Sec. 2 we discuss
relevant literature. The MSSI feature computation is described in Sec. 3. Our
experimental setting and results are elaborated in Sec. 4. We conclude in Sec. 5.

2 Literature Review
Their exist many 3D features in literature that try to capture local shape. Re-
cently, Zaharescu et al. [23] provided an extension of HOG features for meshes,
by bining the directional derivatives of the mean curvature. However, computing
the mean curvature in the discrete domain is not straight-forward as we show
in section 3. The Heat kernel signature proposed in [18] is based on the funda-
mental solution to the heat diffusion equation. However this method is sensitive
to noise and changes in the configuration of the original mesh. Furthermore,
although approaches for triangulating and generating surfaces/meshes from a
point cloud do exist, they are slow, noise sensitive or require dense point clouds
as pointed out in the survey in [3].
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Fig. 3. RGB image of an example scene (a), its depth map obtained from kinect sen-
sor(b). The shape index map (d) categorizes forehead and nose as umbilics, while the
nose bridge is estimated as a saddle. Background is correctly assigned as a flat region.
The characteristic scale map(e) assigns the nose tip to a fine scale, while the fore-
head has a relatively coarser scale. The Curvedness map (f) assigns the nose tip to a
very high curvedness value while the background has very low curvedness. The three
components together gives the MSSI feature map (c). Best viewed in colour.

Features that operate directly on 3D point clouds do exist [19, 5] and are
extensions of popular 2D features(SIFT,SURF). These methods however do not
assign stable canonical frames which are needed for them to be rotationally in-
variant. To address this issue, the authors of [12] provide a method to compute a
stable canonical frame. Unlike their previous approach [19] which worked directly
on point clouds, this method requires a mesh structure.

Many of the advances made in 2D Object Recognition in the past decade
have been adopted for 3D Object Recognition and have shown promising results.
Knopp et al. [5] extends the Implicit Shape Model (ISM) model proposed by [9]
to 3D Object Recognition. They use a Hessian-based interest point detector
that encodes an extension of 2D SURF features to 3D [2]. These interest points
are then clustered to form the ISM. Their method showed promising results
on clean meshed data. However, they do not report any results on real world
3D/2.5D point cloud data. Lai et al. combine colour and depth information
using pyramid Histogram Of Gradients(HOG) features [7, 4]. These features are
used with a linear Support Vector Machine(SVM) to perform sliding window
based object detection. They show competitive results using depth and colour
features individually, and improve it further by combining both features on one
of the largest publicly available 2.5D dataset. Both these methods concentrate
on a fusion of depth and intensity/colour features for recognition in real world
scenarios. However, there is no explicit attempt to capture shape for recognition.
In this work, we propose a local shape based feature (MSSI) to exploit depth data
and demonstrate that competitive results can be achieved with lesser training
data.
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Fig. 4. Scale space approximation for a synthesized dumbell shape. Our method ap-
proximates the original scale space while predictions from MSIR [20] are erroneous.

3 Proposed Multi-Scale Shape Index (MSSI) Feature

Shape index (SI) as proposed by Koenderink [6] is a function of the principal
curvatures(κ1, κ2)

1. Principal curvatures are primarily defined for a continuous
parameterization of the 3D surface. While their exist methods to approximate
them for discrete spaces (point clouds) [15] they require a support region to
compute them. However, the size of the support region itself is dependent on
the principal curvatures. This can be seen from Fig. 4; when the shape index
is computed at a fine scale, it is sensitive to noise thus falsely classifying noisy
low curvature (flat) regions as umbilics. On the other hand, at a coarser scale,
regions of high curvature get blurred out (nose) while low curvature regions are
classified correctly. To address this ambiguity in the size of the support region,
we propose to obtain a characteristic scale automatically by relating the effect of
blurring at different scales to the underlying local shape of the point clouds. Our
approach is motivated by Multi-Scale Interest Region (MSIR) [20] approach to
locate interest regions. However, the scale space model in their work is neither
accurate for basic shapes nor is stable as shown in Fig. 4 and Fig. 5. In the
remainder of this section we derive the relationship between characteristic scale
and principal curvature and compare it with MSIR.

Curves in 3D space We start by considering a continuous arc-length param-
eterized curve α(s) in R3, where s ∈ (−B, B). Here, B denotes extent of the
curve. We define A : R3 ×R+ → R3 as the family of curves obtained by filtering
the original curve at different scales. i.e,

A(α(s), σ) =

∫ B

−B

φ(s− u, σ)α(u) du, (1)

where, φ is the Gaussian kernel. We consider the evolution of a point x as it
is filtered. Without loss of generality, we take this point to be s = 0 and define

1 SI = 2
π
arctan

(

κ2+κ1

κ2−κ1

)

κ1 ≥ κ2,
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Fig. 5. a) Mean prediction error of the approximated scale space for the synthesized
dumbell shape in Fig 4. MSIR [20] is accurate only at lower scales but our fourth order
model approximates quite accurately the Gaussian scale space at all scales. b) Mean
estimation error of the computed shape index as we vary the scale for the head model,
Fig. 3. Due to the relatively coarser scale of the head a larger error is seen as the
scale is increased and a smaller error for lower scales. c) Mean estimation error of the
computed shape index as we vary point cloud density is smooth for smaller changes
in density. As the density decreases to low values very few points remain to correctly
estimate both the characteristic scale as well as the shape index.

x = α(0). Performing a Taylor series expansion of α around x up to fourth order
terms, we can approximate the integral as shown below:

A(x, σ) ≈
1

√
2πσ

∫ B

−B

e−
u2

2σ2

(

x+ uα′(0) +
u2

2!
α′′(0) +

u3

3!
α′′′(0) +

u4

4!
α′′′′(0)

)

du

(2)
For better readability we set x′ = α′(0), x′′ = α′′(0) and so on. Observing
that the second and fourth term in the equation go to zero and performing the
integration over the remaining terms we get:

A(x, σ) = Φ

(

B√
2σ

)(

x+ x
′′ σ

2

2
+ x

′′′′ σ
4

8

)

−
√

2

π
Bσe

− B2

2σ2

(

x′′

2
+B

2 x
′′′′

24
+ 3σ2 x

′′′′

24

)

(3)
Using results from differential geometry (see the supplementary material) the
above equation can be approximated as:

A(x, σ) ≈ Φ

(

B√
2σ

)(

x+ κN
σ2

2
+
(

3κ′
κT− κ

3
N
) σ4

8

)

− (4)

√

2

π
Bσe

− B2

2σ2

(

κN

2
+B

2

(

3κ′κT− κ3N
)

24
+ 3σ2

(

3κ′κT− κ3N
)

24

)

,

Note that functions κ, T, N are evaluated at x which is suppressed for better
readability. Here, κ, T, N are the curvature, tangent and normal to the curve
α and Φ is the error function. If σ ≪ B the error function can be approximated
to 1 and the second term → 0. This resulting equation is similar to the MSIR
model. However, for a bounded curve, as the scale of blurring increases(σ → B)
the contribution of the second term and the error function is significant and
cannot be ignored (see Fig. 5). We next extend these equations to surfaces in
3D space.
Extension to 3D Surfaces: Let x be a point on a surface M . Further, let the
normal at x be denoted as N and its tangent plane as Tx. There then exists
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Fig. 6. Computed shape index map on stanford dragon and happy buddha models.
Spikes on the back of dragon and the pointed tail are estimated as umbilics. Regions
where the dragons body twists are estimated as saddle. The intricate structure on
happy buddha produces more variations in the shape index. Best viewed in colour.

a family of planes Πθ that contain the normal N . The normals of these planes
lie in the tangent plane Tx. Let the angle subtended by these planes with the
first principal direction be θ [6]. These planes then intersect the surface to give
a family of curves αθ(s) which are called the normal sections. Now, the net
displacement of the point x = αθ(0), after blurring, will be equal to the average
displacement caused by each normal section. Using Eq.( 1) we have:

A(x, σ) =
1

2π

∫ 2π

0

A(αθ(0), σ) dθ =
1

2π

∫ 2π

0

(

∫ Bθ

−Bθ

φ(0 − u, σ)αθ(u) du

)

dθ.

(5)
Solving this equation is not trivial as both (Bθ) and (αθ) are functions of θ.
Moreover, we do not have any explicit form for Bθ which represents the extent
of the 3D surface in all directions. Using empirical evidence, we propose setting
Bθ to be a constant value B proportional to the average geodesic distance in all
directions. In practice, for a given point in a discrete point cloud, this is equal to
the average geodesic distance of that point to all other points. From Eqs.( 4),( 5)
we get (see supplementary material for further details):

Ã(x, σ) ,
A(x, σ)

Φ
(

B√
2σ

) ≈
(

x+HN
σ2

2
−

H

16
(5H2 − 3G)σ4N

)

, (6)

Again, note that functionsH ,G andN are evaluated at x which is suppressed for
better readability. Here,H , G andN are the mean curvature, Gaussian curvature
and normal to the surfaceM . Ã(x, σ) is the normalized family of surface obtained
from Gaussian blurring with scale σ. This can be further rearranged to give:
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D(x, σ) , ||Ã(x, σ)−x||2 =

(

H
σ2

2
− H

16
(5H2 − 3G)σ4

)

=
Hσ2

2

(

1− σ2H2

4

(

1 +
1.5

S2

))

,

where, S relates to the shape index via S = tan(2π × SI), and D(x, σ) can
be viewed as the approximate distance traveled by a point when blurred with
a kernel of scale σ. Inspired by the principle of automatic scale selection, as
defined by Lindeberg [10], we define the characteristic scale (σmax) as the max-

ima in the normalized distance (D(x,σ)
σ

) traveled by a point. This is given by

∂
(

D(x,σ)
σ

)

/∂σ = 0, which gives:

σ2
max =

4

3H2(1 + 1.5
S2 )

. (7)

This derivation can also be carried out in the discrete domain by assuming a
uniform point cloud sampling and approximating the integral by a sum.

Eq.( 7) relates the shape index to the characteristic scale and thus motivates
the term Multi-Scale Shape Index. The characteristic scale that we obtain is dif-
ferent from that proposed in MSIR due to two reasons: a) we explicitly consider
the curve to be bounded and b) we model the effect of blurring until the fourth
order of the Taylor series. Fig. 4 shows an example of a dumbell shaped point
cloud on which we demonstrate the effect of these changes. The actual scale space
obtained by Gaussian blurring is shown, along with the prediction obtained us-
ing our model and that of MSIR. Fig. 5 shows a quantitative comparison of the
mean error for the two models. MSIR is accurate only at lower scales but our
fourth order model approximates the Gaussian scale space accurately.

Algorithm 1 gives a stepwise procedure to compute the characteristic scale
from a point cloud. As input our algorithm requires the range of scales (σk) to
search over and an initial smoothing parameter (σs) before computing the scale
space. We set B to be proportional to the average geodesic distance and call
this as the bounding factor (Bfct) which is also an input for our algorithm. The
estimated characteristic scale is used as a support region to compute the shape
index. We only calculate the magnitude of the shape index and not its sign.
Fig. 6 shows the shape index map on some publically available 3D models.

We compare the robustness and repeatability of the computed shape index
against variations in scale and point cloud density. We use a 3D point cloud of
the head model used in Fig. 3 for these experiments. As we cannot establish the
ground truth, we treat the shape index computed at the original scale and cloud
density as the reference.
Change in Scale: We vary the scale from half the original scale to 1.5 times
the original scale. The left panel in Fig. 5 plots the resulting deviation from the
ground truth. All parameters (σk, σs, Bfct) are kept constant. Since the head is
of a relatively coarser scale and the initial smoothing is kept constant, a higher
rate of deviation from the ground truth is seen as we increase the size of the
head model. On the other hand, decreasing the scale of the model while keeping
the initial smoothing constant does not affect the coarser scale regions and thus
a lower deviation from the ground truth is observed in this case.
Change in Density: We vary the density from the original density to half its
density. The right panel in Fig. 5 plots the resulting deviation from the ground
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input : Point Cloud: X = {xi}, Range of Scales: σk, Bounding factor: Bfct,
intial smoothing: σs

output: Characteristic Scale for each point σmax(xi)

1. Compute a Disjoint Minimum Spanning Tree on X to form a graph G.
2. Using Dijkstra’s algorithm approximate the graph distance between points,

dG, as the geodesic distance.
3. Calculate the average geodesic distance for each point davg.

foreach xi do
4. x̂i ← 1

nxi

∑

j
exp

(

− d2
G
(xi,xj)

2σ2
s

)

xj , where nxi
is the normalizing factor.

// Intial Smoothing

foreach σk do
5. A(xi, σk)← 1

nxi

∑

j exp
(

− d2
G
(xi,xj)

2σ2

k

)

xj

6. Ã(xi, σk)← A(x, σ)×
(

Φ
(

Bfct∗davg(xi)√
2σk

))−1

7. D(xi, σk)← ||Ã(x, σ)− x||2
end
8. σmax(xi)← maxσk

D(xi, σk)
end

Algorithm 1: Computation of the characteristic scale for point clouds

truth averaged over 10 different trials. Once again σk, σs, Bfct are kept constant.
A smooth deviation form the ground truth is observed as the density is reduced
to 3/4 its original density. As the density decreases to low values very few points
remain to correctly estimate both the characteristic scale as well as the shape
index and thus a higher deviation from ground truth is observed at low densities.

3.1 Object Recognition with the MSSI feature
The shape index alone does not capture all the information about the underlying
shape [6]. Being a ratio of the principal curvatures, it does not provide any
information about the magnitude of the curvatures. For example, a tennis ball
and a football are both spherical, but have completely different size with the
tennis ball having a higher magnitude of the principal curvatures compared
to a football. This notion is captured by the curvedness measure proposed by
Koendrink2. The characteristic scale is used as another feature to capture the
scale and thus we form a triplet of features, which we call the Multi-Scale Shape
Index (MSSI) feature.

Detecting interest points, followed by a bag-of-visual-words approach is a
common strategy in 2D object recognition [1, 8]. However in 3D, as reported in
the survey by [22], corner detectors are relatively less robust to noise compared
to region based methods. We therefore follow a region based approach to object
shape encoding. We start by super-pixellizing the MSSI feature map. We use the
fast and efficient SLIC super-pixels [14]. Fig. 7 shows an example of super-pixels
for different viewpoints of the head model. As seen from the images, these super-
pixels are fairly stable across viewpoints. This empirical observation motivates us
to use super-pixels for category recognition. To further capture the variations of

2 curvedness =

√

κ2

1
+κ2

2

2
.
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Fig. 7. An illustration of the stability of MSSI feature based superpixels across view-
points. Super-pixels with similar MSSI features appear at approximately the same
relative location in both view points. See supplementary material for an example on
cluttered scenes. Best viewed in colour.

shape within a superpixel, we also include the angle between each pixel normal
and its corresponding superpixel normal3. Although this is correlated to the
variation in shape index, empirically we observed that it improves recognition
rate by introducing redundancy.

We cluster the concatenation of MSSI features and normals at each pixel into
a preset number of clusters4. The super-pixel descriptors are obtained by binning
the MSSI+normal features for each of their pixels. As these super-pixels using
MSSI features, the resulting super-pixel descriptors are very sparse. Therefore
to enrich the descriptor of a super-pixel, we compute a weighted average of
descriptors of super-pixels that are at most two hops away from it (1 and 2
neighbourhood in a graph sense). The weights used are proportional to the depth
difference between the super-pixels.

We train our super-pixel based recognition approach using an RBF kernel
SVM. We use a 1-vs-all setup. The super-pixel in the test set are classified
individually during testing. The resulting classification gives us an initial region
of interest for possible object locations. Thresholding on the number of connected
pixels within these region of interests gives the final object detection.

4 Experiments, Results and Discussion

Many 3D object recognition datasets have been introduced in the recent years [16,
13, 7]. Of these, one of the largest is the RGB-D dataset [7]. We compare our
recognition algorithm using MSSI features with the pyramid hog based depth
features of Lai et. al [7]. We used the original authors code to obtain their results.
Dataset: The RGB-D dataset [7] contains challenges for both instance level as
well as category level object recognition and detection. We perform our experi-
ments for the category level object detection. For the category case, five items
are ground truth-ed by the authors. Of these we choose four categories: cap,
coffee mug, flashlight and soda can. We do not choose the bowl category since
there is a large variation in the size of the bowl category. This results in a large
variation in the characteristic scale (and thus in MSSI feature) which is difficult
to capture with limited training instances per category. Each category has 4 or

3 Mean of normals of all pixels within it.
4 We empirically fixed this to 300.
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Fig. 8. Precision/Recall curves for our MSSI feature based category recognition and its
comparison with depth features based recognition of Lai et. al [7](shown as washigton
in plots). MSSI features based recognition clearly outperforms the method of Lai et.
al in the coffee mug and flashlight classes. For the cap class, we are only marginally
worse off in performance, and for the soda can category, although our performance is
relatively better than Lai et. al, both methods suffer due to small size of the object.

more instances and we train on only 2 instances. The training set contains about
600-1000 depth and RGB (which we do not use) images of 640x480 resolution
each captured on a turntable at 3 different angles. As mentioned earlier since
shape is fairly constant with small changes in viewing angles, we use only 1/3rd
of the training data. The test set contains 8 video sequences with 98-230 frames
per sequence. The number of objects in each sequence varies as does the clutter.
We currently use 320x240 resolution images to process this large dataset and
hence the results quoted in [7] are different from those computed here. At this
resolution, we consider minimum object size to be at least 1000 pixels. Varying
the threshold on the number of connected pixels we plot the resulting Precision-
Recall (P-R) curve in Fig. 8. The qualitative recognition results of our system
are shown in Fig.9.

We downsampled the dataset depth images by half to 320x240 resolution
to speed up computation. This particularly affects performance on small object
categories (soda can). We expect to perform better when our system is scaled
up to a larger resolution of images. From Fig. 8 we see that our MSSI features
based recognition easily outperforms the method of [7] in two classes (coffee
mug and flashlight). MSSI features cope better with reduced training data and
lower image resolution. For the soda can category, although our performance is
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Fig. 9. Sample results of our object recognition and segmentation system. Our methods
performs well in the presence of partial occlusion (cap), clutter and change in object
pose. More results can be found in the supplementary material. Best viewed in colour.

relatively better than [7], both methods suffer due to the small size of the object.
Only on the cap class, we are marginally worse off in performance.
We now discuss the effect of some of the influential parameters of our system:
Effect of Bounding Factor Bfct: Setting Bfct to a large value we obtain only
coarse scale changes and mask the effect of smaller scale objects in the scenes.
On the other hand by setting it to a small value we obtain small neighbourhood
scale changes which mostly originate from the sensor noise present in the data.
In general we found the average geodesic distance (or a fraction of it) to be a
good approximation.
Weighting of super-pixel neighbourhoods To form the final descriptor for a
super-pixel, we compute a weighted average of individual super-pixel descriptors
in its 2-neighbourhood. We found the performance to vary based on the weights
that were assigned to the neighbourhood super-pixels. In our experiments, we
used a Gaussian weighting, based on depth difference between the super-pixels.
We set the standard deviation for the 1-neighbours to 20 and 10 for the 2-
neighbours in our experiments.

The current algorithm is computationally expensive, for example it takes
about 15 minutes on the stanford dragon model on a single core CPU with our
unoptimized code.

5 Conclusions

In this work we presented a novel shape based feature called multi scale shape
index (MSSI). This feature is a triplet of shape index, curvedness and charac-
teristic scale. The shape index component of this feature assigns a real valued
index to shapes such as umbilics (double convex), parabolics (double concave)
and saddle points (convex-concave). We developed a scale-space method to com-
pute MSSI at each discrete point at its characteristic scale from noisy 2.5D data.
We studied the robustness and repeatability of this feature and demonstrated
its efficacy in category recognition. Our quantitative studies indicate that the
MSSI feature based recognition outperforms the current state-of-the-art method
and is better able to cope with lesser training data.
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