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Abstract— We introduce SceneNet, a framework for gener-
ating high-quality annotated 3D scenes to aid indoor scene
understanding. SceneNet leverages manually-annotated datasets
of real world scenes such as NYUv2 to learn statistics about
object co-occurrences and their spatial relationships. Using a
hierarchical simulated annealing optimisation, these statistics
are exploited to generate a potentially unlimited number of
new annotated scenes, by sampling objects from various existing
databases of 3D objects such as ModelNet, and textures such
as OpenSurfaces and ArchiveTextures. Depending on the task,
SceneNet can be used directly in the form of annotated 3D
models for supervised training and 3D reconstruction bench-
marking, or in the form of rendered annotated sequences of
RGB-D frames or videos.

I. INTRODUCTION

Indoor scene understanding is a crucial step in enabling

an artificial agent to navigate autonomously and interact with

the objects comprising its environment. Such complex tasks

require knowledge about the 3D geometry of the scene, its

semantics, and the object poses. Although systems for large-

scale 3D reconstruction and SLAM are available [1]–[3] and

object recognition has made impressive progress in recent

years due to advances in deep learning [4], the task of full

3D scene understanding for robotics applications remains an

open challenge. One key reason for this is the difficulty of

obtaining training data with the scale and variety required for

training deep networks. Since most of the current state-of-

the-art deep learning systems operate in a supervised regime,

successful training would require a large amount of annotated

video sequences or annotated 3D models in the case of a

navigating agent. Existing annotated datasets limit their focus

to 3D objects rather than scenes [5], [6], or images rather

than videos [7], [8].

In this paper we propose SceneNet, a framework that

attempts to bridge this gap by learning object co-occurrences

and spatial relationships from annotated real-world datasets

and then generating new annotated scenes by sampling

objects from existing CAD repositories. Following the recent

successful results of using synthetic data in training deep

networks, [11]–[15] and in the context of SLAM [16], [17],

our work targets the automatic generation of new scenes from

synthetic individual objects. However, the same framework

can be applied to scanned object models as in BigBIRD [6].

Our work is summarised by two contributions. Firstly, we

introduce and make public a set of 57 scenes over 5 indoor
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(a) Sample basis scene from SceneNet.

(b) Examples of per-pixel semantically labelled views from the scene.

Fig. 1. Annotated 3D models allow the generation of per-pixel
semantically labelled images from arbitrary viewpoints, such as
from a floor-based robot or a UAV. Just as the ImageNet [9]
and ModelNet [5] datasets have fostered recent advances in im-
age classification [4] and 3D shape recognition [10], we propose
SceneNet as a valuable dataset towards the goal of indoor scene
understanding.

scene categories, which we designate as the SceneNet Basis

Scenes. These scenes are created by human designers and

manually annotated at an object instance level. We anticipate

that they will be useful as a standalone scene dataset for tasks

such as benchmarking the performance of RGB-D SLAM

algorithms.

Secondly, we propose a method to automatically generate

new physically realistic scenes. We frame the scene gener-

ation problem as an optimisation task, and propose solving

it using hierarchical simulated annealing. To parametrise the

problem, we learn statistics such as object co-occurrence and

spatial arrangement from our basis scenes and the NYUv2

dataset [7]. To provide object intra-class variability, we

sample from a broader library of objects e.g. ModelNet [5]

and groups of objects such as Stanford Database [18]. To

provide textural variability, objects are textured automatically

by sampling from OpenSurfaces [19] and ArchiveTextures

[20]. We apply our method to generate a very large set of

synthetic scenes at a scale suitable for training data-driven

large scale learning algorithms.

It is important to stress that the use of such synthetic

3D scenes can go beyond supervised machine training and

benchmarking SLAM systems. They can enable dynamic



scene understanding where objects can move, disappear and

reappear, a scenario that can be difficult to realise in real-

world datasets. Moreover, SceneNet could also be integrated

with a physics engine [21] and any robotics simulation

engine [22] to allow further understanding of scenes beyond

geometry and semantics.

II. RELATED WORK

SceneNet is inspired by efforts primarily from the graphics

community that aim to automatically generate configurations

of 3D objects from individual synthetic 3D models of objects.

In [18], the authors use a simulated annealing approach to

generate furniture arrangements that obey specific feasibility

constraints e.g. support relationships and visibility. Similarly,

[23] propose an interactive furniture layout system built on

top of simulated annealing that recommends different layouts

by sampling from a density function which incorporates

layout guidelines. Our work takes these to the next level

by generating full scenes in a hierarchical fashion, imposing

constraints first at the object level and then at groups-of-

objects level. The hierarchical approach helps the otherwise

non-linear optimisation to converge to meaningful configu-

rations when targeting more cluttered scenes.

Past work has also focused on proposing tools to facilitate

the annotation of meshes or 3D point clouds by human

labellers, e.g. [24]. In addition, free software like Blender1

or CloudCompare2 can be used to manually annotate the

objects present in the scene. The Basis Scenes included in our

framework were manually labelled using Blender. Although

these tools can help with the annotation process, this still

remains a tedious and time-consuming task.

Finally, our work is related to methods for label propa-

gation across video sequences [25], which, combined with

the appropriate tools for 3D reconstruction [1], [2], could

generate the sought-after annotated 3D models. For example,

the NYUv2 dataset provides a large number of videos,

together with one annotated frame per video. In theory, these

could lead to 3D annotated scenes. However, since the video

sequences can include objects that do not appear in the anno-

tated frame, and moreover, they are taken without having in

mind the limitations specific to 3D reconstruction systems,

this approach fails in generating accurate 3D reconstructions

or annotations, as observed from our own experiments.

III. SCENENET BASIS SCENES

We build an open-source repository of annotated synthetic

indoor scenes — the SceneNet Basis Scenes (SN-BS) —

containing a significant number of scenes downloaded from

various online repositories and manually labelled. Given an

annotated 3D model, it becomes readily possible to render

as many high-quality annotated 2D views as desired, at

any resolution and frame-rate. In comparison, existing real

world datasets are fairly limited in their size, e.g. NYUv2

[7] provides only 795 training images for 894 classes and

SUN RGB-D [26] provides 5,825 RGB-D training images

1http://www.blender.org
2http://www.danielgm.net/cc/

with 800 object classes. Considering the range of variability

that exists in real world scenes, these datasets are clearly

limited by their sample sizes. To add variety in the shapes

and categories of objects, we augment our basis scenes by

generating new scenes from models sampled from various

online 3D object repositories.

Category Number of 3D models Number of objects

Bedrooms 11 428

Office Scenes 15 1203

Kitchens 11 797

Living Rooms 10 715

Bathrooms 10 556

TABLE I

DIFFERENT SCENE CATEGORIES AND THE NUMBER OF

ANNOTATED 3D MODELS FOR EACH CATEGORY IN SN-BS.

SN-BS contains 3D models from five different scene

categories illustrated in Fig. 2, with at least 10 anno-

tated scenes per category that are compiled together from

various online 3D repositories e.g. crazy3dfree.com

and www.3dmodelfree.com, and manually annotated.

Importantly, all the 3D models are in metric scale. Each

scene is composed of up to around 15–250 objects and

the complexity can be controlled algorithmically. The mod-

els are provided in .obj format, together with the code

and camera settings needed to set up the rendering. An

OpenGL based GUI allows users to place virtual cameras

in the synthetic scene at desired locations to generate a

possible trajectory for rendering at different viewpoints. All

the labelled annotated 3D models are hosted at http:

//robotvault.bitbucket.org. Fig. 1 shows samples

of rendered annotated views of a living room. Since the

annotations are directly in 3D, objects can be replaced at

their respective locations with similar objects sampled from

existing 3D object databases to generate variations of the

same scene with larger intra-class shape variation. Moreover,

objects can be perturbed from their positions and new objects

added to generate a wide variety of new scenes.

Although our main focus is to offer a framework to gener-

ate data with ground truth annotations suitable for supervised

learning, SN-BS is also very useful for benchmarking SLAM

algorithms in the spirit of Handa et al. [16], [17] and [27],

[28]. We also provide two very large scale 3D scenes (see

Fig. 3) combining scenes from each category. Such scenes

may be valuable for benchmarking the large scale SLAM

systems that have been developed in recent years [2], [29].

IV. SCENE GENERATION WITH SIMULATED ANNEALING

In this section, we describe how to extract meaningful

statistics from datasets of man-made scenes e.g. NYUv2

and SN-BS, and use them to automatically generate new

realistic configurations of objects sampled from large object

or groups-of-objects datasets e.g. ModelNet and Stanford

Database. Table II describes concisely the characteristics of

the datasets used in our work. It is worth mentioning that

although Stanford Database appears to have more scenes



(a) Living room (b) Office (c) Bedroom (d) Kitchen (e) Bathroom

Fig. 2. Snapshots of scenes for each category in SceneNet Basis Scenes (SN-BS), hosted at http://robotvault.bitbucket.org

Fig. 3. Scenes from SceneNet can be composed together to
create very large scale scenes. The dimensions of this scene are
27×25×2.7m3.

than SN-BS, their configurations are obtained using only 17

different layouts, and contain only small scale parts of a

scene (e.g. a regular desk and commonly observed objects

supported by it: computer, lamp, books), unlike SN-BS in

which all scenes have a unique layout and cover an entire

room configuration.

Repository Objects Scenes Texture

SceneNet Basis Scenes 4,250 57 Yes

ModelNet [5] 151,128 0 No

Archive3D 45,000 0 No

Stanford Database [18] 1,723 131 Yes

TABLE II

3D REPOSITORIES USED IN OUR SCENE GENERATIVE PROCESS.

Inspired by the work of [23] and [30], we formulate

automatic scene generation from individual objects as an

energy optimisation problem where the weighted sum of

different constraints is minimised via simulated annealing. To

facilitate understanding, different constraints and notations

for the associated weights and functions are summarised in

Table III.

Bounding box intersection A valid configuration of

objects should obey the very basic criterion of feasibility

observed in the real world scenes, i.e. the object bounding

boxes should not intersect with each other. We denote the

bounding box distance bbo,n to be the sum of half diagonals

of the bounding boxes of the respective objects o and n.

The distance between two objects for any given placement

do,n is the Euclidean distance between the centres of their

bounding boxes. Naturally, do,n must be greater than or equal

Constraint Weight Function

Bounding box intersection wbb max(0, bbo,n − do,n)
Pairwise distance wpw ρ(bbo,n, do,n,Mo,n, α)
Visibility wo,n,m ν(vo, vn, vm)
Distance to wall wo,w ψ(do,w − d′o,w)
Angle to wall wθ,w ψ(θo,w − θ′o,w)

TABLE III

CONSTRAINTS AND NOTATIONS USED FOR THE ASSOCIATED

WEIGHTS AND FUNCTIONS (SEE TEXT FOR DETAILS).

to bbo,n for a placement to be feasible. Any deviation from

this constraint is penalised by max(0, bbo,n − do,n).
Pairwise distances Using statistics extracted from NYUv2

and SN-BS (see Fig. 4), objects that are more likely to co-

occur are paired together, e.g. nightstands are likely to appear

next to beds, chairs next to tables, monitors on the desk etc.

The pairwise constraint captures the contextual relationships

between objects. We use a slight variation of the pairwise

term used in [23]

ρ(bbo,n, do,n,Mo,n, α) =











(
bbo,n
do,n

)α if do,n < bbo,n

0 if bbo,n < do,n < Mo,n

(
do,n

Mo,n
)α if do,n > Mo,n

where M is the maximum recommended distance. In our ex-

periments we have used α = 2. Different pairwise constraints

that frequently appear in our experiments are between beds

and cupboards, beds and nightstands, chairs and tables, sofa

and tables, tables and TV, and desks and chairs.

Visibility constraint This constraint ensures that one

object is fully visible from the other along the ray joining

their centres. It is defined as in [30], where bbon,m is the

sum of the half diagonal of the bounding box of m and

the diagonal of the bounding box surrounding both o and n,

while don,m is the Euclidean distance between the centroid

of the object m and the centroid of this overall bounding

box.

ν(vo, vn, vm) =

N
∑

m=1

won,m max(0, bbon,m − don,m)

Distance and angle with wall Many objects in the indoor

scenes are more likely to be positioned against walls e.g.

beds, cupboards and desks. We add another prior term

to increase the likelihood of such objects satisfying this

behaviour. The distance to wall is the Euclidean distance

between the centre of the bounding box of the object and

the wall. Our distance and angle penalties are standard L2

2

terms ψ(x) = x2.
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Fig. 4. Co-occurrence statistics for bedrooms scenes in NYUv2,
for condensed 40 class labels. Warmer colours reflect higher co-
occurrence frequency.

The overall energy function is then the weighted sum of

all the constraints:

E =
∑

o∈O

{

∑

n∈O

{

wbb max(0, bbo,n − do,n)

+ wpwρ(bbo,n, do,n,Mo,n, α)

+ wθψ(θo,n − θ
′
o,n)

+
∑

m∈O

wo,n,m max(0, bbon,m − don,m)
}

+ wo,w(do,w − d
′
o,w)

+ wθψ(θo,w − θ
′
o,w)

}

(1)

with an equivalent probabilistic interpretation for any pro-

posal as

p(P) =
1

Z
exp(−βE(P)) (2)

where P = {vi, θi} denotes the set of proposal variables that

are optimised, with vi being the centroid of the bounding box

projected on the relevant 2D plane and θi being the corre-

sponding orientation, and β is the annealing constant that

is decreased with each iteration according to an annealing

schedule.

Note that all the distances used in our constraints are actu-

ally the projections on the plane corresponding to the ground

floor (XY ) of the actual 3D distances. The pseudocode of

the optimisation is outlined in Algorithm 1.

We initialise our optimisation with all objects centered

at the origin. At each iteration, the variables corresponding

to randomly selected objects are locally perturbed until a

maximum number of iterations is reached, corresponding to

one epoch. We check for any bounding boxes and visibility

(a) No pairwise/visibility (b) No visibility (c) All constraints

Fig. 5. Effect of different constraints on the optimisation. With no
pairwise or visibility constraints, objects appear scattered at random
(a). When pairwise constraints are added, the sofa, table and TV
assume believable relative positions but with chair and vacuum
cleaner occluding the view (b). With all constraints, occlusions are
removed.

constraint violation after each epoch and start the algorithm

again to find a feasible configuration. In all our experiments,

we have found that generally 1-3 epochs are enough to

converge for reasonably cluttered rooms. Fig. 5 shows the

solutions returned by the optimiser with different constraints

activated. It is important to mention that the algorithm is

not able to always find a realistic scene as convergence is

dependent on the scene complexity and room space.

Although we have shown examples of only rectangular

floor plans, irregular and complicated polygonal floor plans

can be used by changing the orientation of walls [30] and

effectively sampling the room area. Because we need axes-

aligned 3D models to impose orientation constraints, all

our individual 3D models need to be pre-aligned with the

axes. Fortunately, this is already the case for the models in

ModelNet10 [5]. However, the models in Archive3D are only

aligned with the gravity axis and require axes alignment.

Algorithm 1 Scene generator

1: function PLACEOBJECTS(P , nobjects)

2: Eold ← E(P)
3: Ebest ← E(P)
4: for i = 1 to Imax do

5: β = 1

i2
⊲ Annealing Schedule

6: robjects = rand uni(1, nobjects)
7: P∗ ← perturb random objects(P, robjects)
8: Enew ← E(P

∗)
9: if Enew < Ebest then

10: P ← P∗ ⊲ Accept the new move

11: Ebest ← Enew
12: continue

13: end if

14: α∗ = exp(Eold−Enew

β
)

15: if Enew < Eold or α∗ > rand uni(0, 1) then

16: P ← P∗ ⊲ Accept the new move

17: Eold ← Enew
18: end if

19: end for

20: end function



Fig. 6. Top: living room with desk, sofa, TV and cupboard set;
bottom: large room with tables and chairs. The scenes contain
98 and 27 objects respectively and their layouts appear realistic.
Hierarchical groups are shown by the bounding boxes. Attempting
optimisation of all the objects without hierarchical grouping rarely
succeeds in realistic arrangements.

V. HIERARCHICAL SCENE GENERATION

Although simulated annealing is very efficient at generat-

ing simple and small scale scenes, generating large scale and

cluttered scenes quickly becomes difficult — optimisation

becomes slow and modelling support constraints becomes

quickly intractable. Therefore, we propose to hierarchically

group the objects and the associated constraints into new big

objects and move them together as a whole. This allows us to

create bigger and cluttered scenes by grouping objects from

SN-BS and Stanford Database. Examples of hierarchically

generated scenes are shown in Fig. 6. The simulated anneal-

ing started from scratch would most likely not converge for

these complex arrangements. Since there is no limit to the

layers of grouping one can consider, this approach is able to

create arbitrarily cluttered scenes.

VI. MODEL SCALING

Before running the optimisation process, we need to

ensure that the scales of the objects being placed in the

same scene are compatible with each other. Realistic scale is

crucial for object recognition or any other scene understand-

ing task. Therefore, an appropriate scaling of the models is

needed to match the statistics of the physical units in the

real world. We use the results from [31] to scale our models

appropriately.

VII. AUTOMATIC TEXTURING

Since most of the objects in SN-BS, ModelNet, and

Archive3D are not textured, we combined OpenSurfaces [19]

and ArchiveTextures [20] to automatically texture the gen-

erated 3D scenes. OpenSurfaces contains textures extracted

from natural images, tagged with material meta-data and

scene category; e.g. an image patch could be tagged as wood,

chair, or kitchen. However, image patches in OpenSurfaces

are not always rectified, and have lighting effects, often lead-

ing to poor quality texturing. To prevent this, we created a li-

brary of standard materials sourced mainly from ArchiveTex-

tures, relying on OpenSurfaces to map from object and scene

category to texture. The library contains 218 categories of

textures with 6,437 images. Fig. 7 shows some example

textures. To apply the texture for each object, we perform

UV-mapping of the model and the chosen texture via Blender

scripting. Our Blender scripts for automatic UV-mapping

and other conversions are publicly available at https:

//github.com/ankurhanda/blender_scripts.

Fig. 7. Samples of different textures. From left to right: Wood,
Tile, Painting, Granite and Pillow.

Some examples of the final outputs are shown in Fig. 9.

While the results are satisfactory, the lack of part-based

decomposition in our object models means that textures are

not as realistic as those observed in natural scenes. However,

such texturing still allowed standard reconstruction pipelines

such as VisualSfM [3] to work smoothly. Our experiments

show that the texturing provide enough appearance features

for frame-to-frame matching and loop closure as shown in

the reconstruction of a bedroom and a living-room scene

illustrated in Fig. 8.

VIII. RENDERING PIPELINE

To generate pixel-wise ground truth annotations at any

given viewpoint in the scene, we use the OpenGL engine and

render the model, colouring each model vertex according to

the annotation of the object containing it; see Fig. 1(b).

While it is possible to place virtual cameras with arbitrary

poses in the scene to render depth maps with associated

ground truth, for specific robotic applications is it desir-

able to simulate the movement of a robot when choosing

the locations of the virtual cameras, i.e. generate smooth

trajectories. An example of an annotated video generated

using such a trajectory for a bedroom scene is available at

http://bit.ly/1gi642J. We add noise to the clean

rendered depth as well as RGB images with the distributions

as suggested in [17] and [16]: RGB camera noise is added via

a camera response function, while depth noise is dependent

on the viewing angle and depth value.

Obtaining a highly realistic rendering of a scene requires

the use of a ray-tracing engine. However, ray-tracing render-

ing is time consuming particularly for this large amount of



Fig. 9. Result of automatic texturing of different scenes in SN-BS.

Fig. 8. RGB reconstruction from images of a SceneNet synthetic
bedroom and living-room using VisualSfM [3] and [32].

data and we leave it as future work. Although realism in the

scenes is certainly desirable, we did not strive for this in our

rendering pipeline, sacrificing some realism in favour of data

volume and variation.

IX. CONCLUSION

In this paper, we introduced SceneNet – a framework for

generating high-quality annotated 3D scenes of indoor envi-

ronments. We proposed a hierarchical model generator using

object relationship priors learned from existing indoor scene

datasets and solved via simulated annealing. We presented

compelling qualitative results of the generated models. We

plan to publicly release the full generation and rendering

pipeline along with all of our data, to allow researchers to

generate simple to highly cluttered scenes. It should also be

noted that this pipeline is not limited to synthetic models –

real world models can be scanned and assembled to create

new scenes using the same framework. We hope SceneNet

will assist researchers in creating large-scale RGB-D datasets

and thus accelerate progress on the challenging problem of

indoor scene understanding.

REFERENCES

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-Time Dense Surface Mapping and Tracking,” in
Proceedings of the International Symposium on Mixed and Augmented

Reality (ISMAR), 2011.

[2] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. B. McDon-
ald, “Robust real-time visual odometry for dense RGB-D mapping,”
in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2013.



[3] C. Wu, “Towards linear-time incremental structure from motion,” in
3D Vision-3DV 2013, 2013 International Conference on, pp. 127–134,
IEEE, 2013.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in neural

information processing systems, pp. 1097–1105, 2012.
[5] Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao, “3D ShapeNets for

2.5D object recognition and next-best-view prediction,” Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015.
[6] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “BigBIRD:

A large-scale 3D database of object instances,” in ICRA, pp. 509–516,
IEEE, 2014.

[7] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmen-
tation and support inference from RGBD images,” in Proceedings of

the European Conference on Computer Vision (ECCV), 2012.
[8] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman, “The pascal visual object classes challenge:
A retrospective,” International Journal of Computer Vision, vol. 111,
pp. 98–136, Jan. 2015.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 248–255, IEEE, 2009.
[10] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view

convolutional neural networks for 3d shape recognition,” in Proceed-

ings of the International Conference on Computer Vision (ICCV),
2015.

[11] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2011.
[12] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic, “Seeing

3D chairs: exemplar part-based 2D-3D alignment using a large dataset
of CAD models,” in CVPR, 2014.

[13] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik, “Learning Rich Fea-
tures from RGB-D Images for Object Detection and Segmentation,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2014.
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