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Abstract

We introduce a precise deterministic approach for pixel-
wise change detection in images taken of a scene of in-
terest over time. Our motivation is for applications such
as artefact condition monitoring and structural inspection,
where a common problem is the need to efficiently and ac-
curately identify subtle signs of damage and deterioration.
The approach we describe is designed to compensate for
the three most common sources of nuisance variation en-
countered when tackling the problem of change detection,
namely: viewpoint variation due to camera motion between
images, photometric variation due to lighting differences,
and changes in image resolution/focal settings.

To tackle viewpoint variation, particularly in areas of
low texture, we propose the use of the generalised Patch-
Match (PM) correspondence algorithm to compute a dense
flow field. The flow field is regularized using a Thin Plate
Spline (TPS) model which assumes a smooth underlying ge-
ometry and allows registration to be interpolated precisely
through areas of low texture or uncertain flow. To com-
pensate for low-frequency lighting variation, we fit a sec-
ond TPS model to the photometric differences between reg-
istered images. Finally, to account for changes in focal set-
tings, we estimate and apply a blurring kernel via optimisa-
tion over image differences.

We provide a thorough evaluation of the performance of
our method on an illustrative toy dataset and on two re-
cent, real-world inspection datasets. Our approach per-
forms favourably versus state-of-the-art baselines in both
cases, while remaining relatively transparent to understand
and simple to compute.

1. Introduction
Image-based change detection is a fundamental low-

level vision problem with application in areas as diverse
as artefact monitoring, remote sensing, urban management,
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(a) Reference image (b) Query image

(c) Estimated flow field (d) Est. photometric change

(e) Transformed reference (f) Change map (red)

Figure 1: Illustration of our method on an image pair (a,b)
from [3]. To counteract viewpoint variation, we estimate
sub-pixel flow using the generalised PatchMatch correspon-
dence algorithm (c). To counteract lighting differences,
we fit a low-frequency photometric change mask (d). To
counteract lens/focal differences, we perform a gradient ad-
justment (not shown). A registered image (e) is produced
in which these three nuisances (viewpoint, lighting, focal)
are attenuated. The resulting change map (f) highlights
fine-grained changes (red) that may otherwise be hard to
spot. Our approach is widely applicable, from the condition
monitoring of high-value artefacts to the inspection of civil
structures and human skin.



tamper detection, medical imaging and industrial inspec-
tion [3, 5, 6, 7, 10, 11]. The problem involves the esti-
mation of a change map between two images or sets of
images of a scene, taken at different times. In real-world
datasets, precise change map estimation is complicated by
“nuisance” changes caused by varying illumination condi-
tions, image capture characteristics (focal, lens, sensor),
and camera viewpoints. When the true changes are rela-
tively fine-grained compared to the nuisances, discounting
the nuisances to reveal the true signal is especially challeng-
ing.

In this work we make one key assumption so as to tackle
the problem efficiently: we assume that the unknown scene
geometry can be modelled as a collection of smooth, con-
tinuously differentiable surfaces. The advantage of this as-
sumption is that two of the largest sources of change –
those of viewpoint variation and illumination – may then be
robustly modelled and discounted. While the assumption
restricts our approach to smooth surfaces, such scenarios
abound in practice [3, 10, 11].

Fig. 1 illustrates our approach on the example of high-
value artefact monitoring, using an example image pair
from the Statues dataset of [3]. The reference image (a)
and query image (b) are taken some time apart with approx-
imate but inexact alignment and changing lighting. Our ap-
proach is designed to directly compensate for three common
sources of “nuisance” change: registration error, lighting
changes and focal variation. First, we warp the reference
image according to a dense flow field (c), estimated using
the generalised PatchMatch correspondence algorithm [1]
and a Thin Plate Spline (TPS) model. Next, low-frequency
photometric variation (d) is estimated using a second TPS.
Finally, focal differences between the images are accounted
for by smoothing one image to minimise the sum of abso-
lute difference in the gradients. The combination of these
three processes results in a transformed reference image (e)
in which changes due to geometry, lighting and focus have
been attenuated. Panel (f) shows the detected change, over-
laid on the reference image (a). This change map has the
same resolution as the reference image and highlights fine-
grained changes that may otherwise be hard to spot.

In addition to artefact monitoring, our PatchMatch - Thin
Plate Spline (PM-TPS) approach is motivated by its pos-
sible application to structural inspection, since many large
concrete structures such as tunnels, bridges and dams must
be routinely inspected for fine-grained changes such as hair-
line cracks on a regular basis [11]. A further possible ap-
plication is the monitoring of skin lesions to provide early
warning or tracking of melanocytic skin cancers [14].

2. Background
Let I = Itc and I ′ = It

′

c′ be two images of a scene,
taken with different cameras, c and c′, at different times t

and t′. Assuming a Lambertian reflectance model with uni-
form diffuse lighting and ignoring the camera’s point spread
function, the formation of the initial image at a pixel x may
be modelled by:

I(x) =

∫
R(x, λ)Lt(λ)Sc(λ)dλ (1)

where R(x, λ) is the scene reflectance, Lt(λ) the illumi-
nation spectrum at time t, and Sc(λ) the spectral sensitiv-
ity of camera c. A second image, captured from a differ-
ent position, under different illumination and with unknown
changes in the scene is then formed by:

I ′(x′) =

{∫
R(τ(x), λ)Lt

′
(x′, λ)Sc′(λ)dλ if x′ /∈ C∫

Ru(x
′, λ)Lt

′
(x′, λ)Sc′(λ)dλ if x′ ∈ C

(2)

where τ represents a geometric mapping from x to x′ due
to viewpoint change, Ru is the spectral reflectance of an
unknown object and C is the unknown set of changed pixel
positions in the image. Detecting changes requires the esti-
mation of the probability P(x′ ∈ C|I, I ′), but this is chal-
lenging since none of the functions τ , Lt, Lt

′
, R, Ru or S

can be known with certainty.

Related Work. Most change detection approaches start
by estimating the geometric mapping, τ . A common as-
sumption, which holds true in many remote sensing and
CCTV scenarios [4], is to assume static or purely rotating
cameras [6] or planar scenes, reducing τ to a homography
or simple model whose parameters can be efficiently esti-
mated using standard feature-based techniques.

It is common to decompose the calculation of τ into the
estimation of the camera perspective projection matrices Pc
and Pc′ and the scene geometry d(x), since a pixel x in I
can be projected into I ′ via the reprojection equation:

[x′, 1]T = sPc′
(
P̂−1c [xT , 1, d]T

)
(3)

where P̂c denotes the matrix obtained by squaring Pc with
a 1 on the diagonal and s is an unknown scale factor. The
main difficulty lies in estimating the pixel-wise scene depth
d; other parameters can be determined more robustly since
evidence can be accumulated across the entire image. The
structural inspection work of [12] models d using piecewise
quadric surfaces, estimated over a wider field of view using
structure-from-motion. The works of [2] and [13] use more
general multi-view stereo methods to estimate d. In all such
cases, the achievable accuracy is generally not sufficient for
very fine-grained change detection, since the models do not
hold well in practice. Recently, [8] propose a change detec-
tion approach which avoids the explicit determination of d,
by integrating for change over depth uncertainties. The au-
thors show this improves change detection in sparsely tex-



tured scenes where geometry is difficult to estimate. How-
ever their method is expensive to compute for applications
requiring high precision.

In our approach, we avoid concerning ourselves with
camera calibration or pose estimation by estimating τ di-
rectly, firstly by aggregating evidence for it where available
using the efficient generalised PatchMatch correspondence
algorithm [1] and secondly by propagating the evidence via
a TPS model. This achieves a natural trade-off in reliance
between local high-frequency flow data where available and
the smooth spline model in sparsely textured or changed re-
gions.

Following the estimation of τ , a common approach
is then to compare registered images using patch-based
similarity methods such as Normalized Cross Correlation
(NCC), census transform or mutual information [6]. Re-
cently, [7] and [11] showed the effectiveness of using deep
learned features for this comparison; such approaches may
learn invariance to L, S and even errors in τ , but their
patch-based nature reduces their ability to detect and lo-
calise changes very precisely.

Instead of building such invariance into our similarity
function, we explicitly model illumination, again using a
TPS for illumination estimation [9]. Our final cost is a sim-
ple pixel-differencing. Unlike [7] and [11], our method is
deterministic, requires no parameter learning with labelled
datasets and maintains the same resolution of output change
map as the input image, thus making it ideal for very precise
change detection.

Finally, a recent method that is closely related to ours in
spirit is that of [3], who jointly optimize over geometry cor-
rection, lighting difference and a change mask in a coarse-
to-fine manner and apply rank minimization to achieve a
final change decision. Unlike our approach, this requires
redundancy in the capture set up; images must be captured
under multiple illuminations with rough alignment between
lighting and capture points. Such redundancy is impracti-
cal in many settings, such as large-scale infrastructure in-
spection, where capture time and cost may be critical. We
compare directly with [3] on their dataset in section 4.

3. PM-TPS Method
Our PatchMatch - Thin Plate Spline method is composed

of three deterministic steps: geometric registration, pho-
tometric matching and gradient compensation. A key as-
sumption underlying our method is that of local smooth-
ness. Without any form of regularization, eqn. 2 could be
trivially satisfied for every x′ ∈ C by an arbitrary trans-
formation τ , while accounting for any difference through
functions Lt

′
, R, and S. For this reason, we impose lo-

cal smoothness on the estimated geometric and photometric
mappings.

This assumption may be violated by edges, sharp geom-

etry or illumination, and in general by any discontinuity in
an underlying physical parameter, such as a material with an
uneven bidirectional reflectance distribution function. How-
ever, local smoothness is one of the defining characteristics
of natural images and is prevalent in human-made environ-
ments. In practice, this assumption holds for a large range
of real-world scenarios. In the following, we describe each
step of our method in more detail.

3.1. Geometric Registration

Geometric registration accounts for image differences
arising from extrinsic properties of the scene such as shape,
camera position or perspective effects. The combination of
all these factors, under the assumption of a local smooth-
ness, creates a continuously differentiable flow field be-
tween the images.

Such a transformation, if we are not to rely on any scene
or geometry priors, can only be modelled by a non-rigid
mapping between 2D images. The task must be resilient to
untextured regions, outliers, illumination and scale changes.
Because of all of these reasons and in the absence of a
global motion or transfer model, our choice is to compute
sub-pixel, semi-dense correspondences and densify them
using an interpolating spline.

3.1.1 Semi-dense correspondences

Semi-dense correspondences are computed with the gener-
alized PatchMatch (PM) [1] correspondence algorithm. PM
is an efficient randomized approach to find, for every pixel
in image I , the approximate nearest neighbour pixel in im-
age I ′, by minimising a matching cost between local im-
age patches. We modify our implementation to search for
sub-pixel correspondences over displacement, rotation and
scale. We employ Normalized Cross Correlation (NCC) as
our cost function, since the locations to be matched could
still be affected by absolute and relative biases due for ex-
ample to illumination variations.

NCC(x,x′) =
1

N

N∑
i

(xi − µx) · (x′i − µx′)

σxσx′
(4)

In the above equation, µ and σ indicate respectively the
mean and variance of the vectors x and x′. Fig. 2 shows
the intermediate results computed during this stage, on the
example of Fig. 1. Panels (a-c) show the flow fields for x
displacement, y displacement and rotation while (d) shows
the NCC cost map of the final PM solution after three com-
plete iterations (one iteration includes 4 diagonal scans, one
from each corner). Each map shows gross errors in the pres-
ence of change or discontinuities.



3.1.2 Dense flow field inference

To create a continuously varying displacement field, we
compute the gradient (e) of the NCC cost map, in which
we find the largest candidate set of regions with smoothly
varying gradients (f). This region is discretised for compu-
tational efficiency over a sampling grid (g), which adapts
to fit the boundaries of the region with the aim of reduc-
ing extrapolation error. The nodes selected are used to fit
an interpolating spline in order to create a smoothly varying
sub-pixel flow field (h,i).

The choice of the interpolating spline is not critical to the
overall performance of the system; we employ Thin Plate
Splines (TPS) due to their well-defined behaviour regard-
ing surface continuity and tendency not to introduce sharp
creases. TPSs explicitly minimise the energy:

E(τ) =

N∑
i=1

NCC
(
I(xi), I

′(τ(xi))
)
+ ατEbend(τ) (5)

where N is the number of samples in the grid, NCC is the
normalised cross-correlation matching cost (adjusted from
its usual definition to vary between 0 for positive and 1
for negative correlation), ατ is a smoothing parameter and
Ebend is the bending energy:

Ebend(τ) =

∫∫ (
∂2τ(x)

∂x2

)2

dx (6)

In all experiments, we set ατ equal to the average of the
diagonal entries of the matrixA, withA+ατ1(m) the coef-
ficient matrix of the linear system for the m coefficients of
the spline to be determined. This ensures a balance between
the freely bending least squares solution and the constrained
TPS energy and is found to work well in practice. For the
NCC sampling pattern, we adopt a circular pattern of 1,025
uniformly sampled points. We oversample the pixel grid in
order to reduce aliasing errors; the choice of the absolute
pattern size is problem specific, but was set to a disk of ra-
dius 10 pixels for all our experiments. The same value was
used for the resolution of our TPS sampling grid.

3.2. Photometric Matching

From the previous step, we obtain a sub-pixel displace-
ment map τ for the registration of the input image pair. We
next account for illumination variation between them.

As with geometric registration, bias and scale variations
in colour can occur for several, independent reasons such as
differences in ambient illumination, camera transfer func-
tions or surface geometry. Without resorting to scene or
image priors, we again model the variation in bias as a con-
tinuous per-channel TPS, sampling the difference between
the registered images over the same nodes as in fig. 2(g).

(a) x disp. field (b) y disp. field (c) Rot. field

(d) Cost map (e) Gradient map (f) Connected comp.

(g) Sampling grid (h) Smooth x flow (i) Smooth y flow

Figure 2: Intermediate stages of geometric registration. See
Section 3.1 for further details.

Taking as an example the red channel r, the TPS energy of
the bias of that channel, br, may be expressed:

E(br) =

N∑
i=1

∥∥∥Gσ(r(xi))− (r′(τ(xi)))− br(xi)∥∥∥2
+ αcolEbend(br)

(7)

where r = rtc is the value of the red channel of image I and
Gσ is a Gaussian filter with standard deviation σ, applied on
I to compensate for the smoothing caused by interpolating
I ′(τ(x)). We set σ to 0.5 pixels and assign αcol with the
same method as ατ in all experiments.

Photometric registration does not explicitly account for
nuisances like cast shadows and highlights, but can model
them if they conform to the local smoothness assumption
(similarly, geometric registration does not account for cer-
tain image variations like foreshortening and perspective,
but can model them). Note that in our approach we only ex-
plicitly address bias (and not scale) illumination variation.
A simple approach to do so could be to to capture it explic-
itly could be to use a scale illumination TPS in sequence
with the existing bias illumination TPS. We will make this
clear in the final version.

Fig. 1(d) illustrates the resulting photometric bias that
minimises the colour difference between the registered in-
put couple, shown in fig. 1(b) and 1(e).



3.3. Gradient Compensation

The major source of differences left after geometric and
photometric alignment are due to sharp gradients in the im-
ages. The magnitude of gradients can vary depending on
the camera position and transfer function. Different lenses
or zoom levels can make gray-level transitions non-uniform
across images. The procedures described in subsection 3.1
and 3.2 may also affect gradient magnitudes, resulting in
the appearance of artificial differences around sharp edges.

We perform a gradient compensation step to minimise
gradient mismatch by applying appropriate low-pass filter-
ing to one of the input images. The optimal amount is se-
lected by energy minimisation with gradient descent, where
the energy is calculated as the sum of squared gradient
differences computed over the set of candidate regions, S
(fig. 2(f)):

E(σ) =

M∑
xi∈S

∥∥∥∂Gmax(0,σ)(I)

∂x
−
∂Gmax(0,-σ)(J

′)

∂x

∥∥∥2 (8)

where J ′(xi) = I ′(τ(xi)) + b(xi) is the geometrically and
photometrically corrected image, |σ| is the standard devia-
tion of the Gaussian blurring kernel and sign(σ) determines
which image to blur.

3.4. Change Detection

Finally, we output a change map by simple absolute dif-
ferencing with the final corrected image from its partner:

m(x) = |Gσ(I(x))−Gσ(J ′(x))| (9)

3.5. Implementation

The bottleneck of our approach is the correspondence
computation; to accelerate this we implement PatchMatch
in CUDA and achieve further gains using the jump flood-
ing technique of [15]. Our final implementation takes ap-
proximately 0.8 seconds for an NVIDIA Titan X GPU on a
pair of 720 × 515 px images. The main parameter affect-
ing the computational complexity is the conservative size
of the sampling pattern (1, 025 sample points over a 10 px
radius circle) used for geometric registration, chosen in or-
der to keep the same parameters across all experiments for
exposition of a general working method. For time-critical
applications, reducing the density of the sampling pattern
(for both PatchMatch and spline fitting) would accelerate
the method with little or no loss in performance, depend-
ing on the dataset. PatchMatch could be further acceler-
ated by initialisation using sparse feature matches (rather
than random). This is possible in applications where feature
matches have already been computed during an earlier ap-
proximate registration step, which is true for both datasets
examined [3, 11].

4. Experiments
4.1. Performance Analysis Using Control Dataset

We evaluate our method on a real-world dataset taken in
a controlled environment. Using this dataset, we perform a
qualitative performance breakdown of our method to justify
the inclusion of each of the three steps - geometric regis-
tration, photometric matching and gradient compensation
- in our approach. Fig. 3 illustrates a set of results from
this analysis. The progressive improvement in change map
estimation with each additional step of our method is evi-
dent. Even after geometric corrections are applied, changes
can be very hard to detect in certain scenarios such as se-
quence S3, becoming more evident only after photometric
correction is applied, and even more so once high frequency
artefacts are attenuated via the gradient compensation step.

The image pairs here were chosen to reflect the possible
application of the method to useful tasks. In sequence S1,
PM-TPS is successful in registering the images despite the
relative lack of skin texture, and providing a highly accu-
rate measurement of the growth of a dark mole. Sequence
S2 illustrates change detection in a scenario where it is dif-
ficult to determine scene change by eye due to the presence
of strongly distracting texture. Finally, sequence S4, which
shows a strand of hair against the blank page of a book, il-
lustrates that it is possible to precisely detect, for example,
the growth of a hairline crack in an environment with lim-
ited texture. Such a scenario may be of particular interest to
the structural health monitoring community [16], where the
rate of crack evolution is often a more informative indicator
of structural health than crack detection.

4.2. Evaluation on Real-world Datasets

We next demonstrate the performance of our method on
two recent, real-world change detection datasets: the struc-
tural inspection dataset of [11] and the artefact inspection
dataset of [3].

4.2.1 Structural Inspection Dataset

The large-scale dataset of [11] contains 45 realistic cracks
and other subtle changes spread over 61 high-resolution im-
age mosaics, each of typical size 34, 000 × 9, 000 pixels,
taken inside a concrete tunnel. The dataset breaks down
into Dshort and Dlong , where the latter contains images
captured over a longer time period and hence more severe
visual change. Due to the scale of the dataset, we subdivide
each mosaic into overlapping 1, 024 × 1, 024 pixel patches
to be processed independently, piecing them back together
during evaluation.

Using the same evaluation methodology as [11], we
present a quantitative comparison versus their CNN-based
approach in Fig. 4. While our method performs slightly



SEQ. REF. IMAGE QUERY IMAGE (1) NO
CORRECTION

(2) GEOMETRIC
(3) GEOMETRIC +

PHOTO
(4) GEOMETRIC +
PHOTO + FOCAL

GROUND TRUTH

S1

S2

S3

S4

Figure 3: Illustration on control dataset examples showing the effect of sequential stages of our method, from (1) the raw
image difference between reference and query image, to (2) difference after geometric compensation, to (3) difference after
geometric and photometric compensation, to (4) final output following gradient compensation. All three corrective steps
are necessary to produce a precise change map. The sequence pairs show, in row order: human skin; strong texture which
distracts from the change; fabric with loose thread; the change in length of a strand of hair against the blank page of a book.

(a) (b)

Figure 4: Change detection performance on a structural in-
spection dataset from [11] on (a) Dshort (b) Dlong . Our
method performs comparably with the CNN approach of
[11], despite being entirely deterministic, not requiring any
training (time or data), and the significant disadvantage of
not being taught what constitutes a change of interest as de-
scribed in section 4.2.

worse in both Dshort and Dlong datasets, this is expected
since the provided ground truth only labels changes which
are considered “interesting” to the inspector, while other
changes are unlabelled. In this scenario, a learning-based

method such as [11] has an advantage, since it can be taught
to detect the former and be invariant to the latter. The ef-
fect is particularly strong in Dlong, where many real but
uninteresting changes are detected by our method but are
unlabelled and therefore penalised by the performance met-
ric. Our method being entirely physically based, does not
try to estimate the importance of change from its appear-
ance. One possibility for future work could be to combine
the two methods by, for example, using a CNN-based simi-
larity metric to perform the final change map estimation.

Fig. 5 shows that our method provides a significant qual-
itative improvement. The compared approaches of [12] and
[11] both suffer from being patch-based, and therefore in-
capable of producing precise change masks. In addition,
since our method is not learning-based, it is not suscepti-
ble to design factors such as training set sizes and model
sizes, which may be the cause of errors in the CNN change
mask, in row 2 for example. The accuracy of PM-TPS sug-
gests that it may be a useful tool to monitor and specify the
evolution in crack width over time - an application of great
interest to structural engineers.



SEQ. REF. IMAGE QUERY IMAGE ABS. DIFF NCC [12] CNN [11] PM-TPS (OURS) GROUND TRUTH

T1

T2

T3

T4

T5

Figure 5: Example changes from the tunnel dataset. Each row represents a different change. Columns from left to right:
reference image; query image; ground truth change mask; absolute difference image; NCC-based difference image [12];
CNN-based difference image [11]; PM-TPS difference image (our method). Note that images have been rescaled for the
purpose of illustration, so the granularity of the ground truth labelling appears to vary greatly. Note that some of the changes
are quite fine and are best viewed on screen.

4.2.2 Artefact Monitoring Dataset

Finally, we examine the recently released artefact condi-
tion monitoring datasets of [3]: the Statues dataset, Ds,
containing images taken of 4 small statues and artefacts;
the Palace dataset, Dp, of two outdoor sculpture scenes;
and the Briquettes dataset, Db, a sequence of 10 sets of
laboratory images simulating the deterioration of a mural
over time. Since each image set provides 7 approximately
aligned image pairs – 1 environment lighting (EL) and 6 di-
rectional side lighting (DSL) pairs – we display results from
our method using a single pair (EL), 3 pairs (EL + 2 DSL),
and 7 (EL + 6 DSL) pairs. We combine results across pairs
for a given set using a simple approach: we normalise the
change map per image pair to sum to 1 and average the re-
sults. Note also that for each dataset, we report quantitative
figures with a fixed change threshold over the entire dataset.
Designing an adaptive threshold mechanism is expected to
improve our results further and is a topic for future work.
As in [4], we use the same 7 metrics for comparison: F1-
measure (F1), recall (Re), precision (Pr), specificity (Sp),
false positive rate (FPR), false negative rate (FNR) and per-
centage of wrong classifications (PWC).

Table 1 and Fig. 6 illustrate our quantitative and quali-
tative performance respectively. Our method outperforms

competing approaches on the Statues dataset for F1 score,
precision and percentage of wrong classification (first three
rows of Fig. 6), and performs close to the state-of-the-art on
the remaining two datasets. Inspecting the change masks
reveals that in the majority of cases, our method produces
less noisy masks than [3], with a few failure cases such as
that shown in the bottom row of Fig. 6. This occurs with
greater frequency in the Sculpture and Briquette datasets,
where local smoothness assumptions may be violated more
frequently. However, we believe that an adaptive change
threshold will boost our method’s performance noticeably.
A final point of note is that our method requires only a sin-
gle approximately aligned image pair. In Table 1(c), the
addition of extra pairs makes performance slightly worse,
since the additional available (DSL) images are taken un-
der quite diverse illumination settings. The speed of our
approach in terms of both image acquisition and processing
time makes it attractive for any inspection task requiring
large volumes of data.

5. Discussion

In this work we have introduced PM-TPS, an efficient,
effective approach to precise change detection over smooth
surfaces. We have illustrated the performance of our



FGCD [3] PM-TPS (OURS) GROUND TRUTH

Figure 6: Qualitative comparison with [3]. We superim-
pose changes in red over whitened versions of the original
images.

method both visually and quantitatively over a variety of
applications and highlighted in particular its potential use
for the structural inspection of engineering structures and
the condition monitoring of high-value artefacts. One limi-
tation of our approach is that the assumption of smooth sur-
faces restricts the number of suitable applications. In the

Table 1: Performance comparison with alternative ap-
proaches on three artefact monitoring datasets from [3]. Un-
like the method of [3] which uses 7 image pairs per test, we
show our results using 1, 3 and 7 pairs of images.

(a) Average results on Statues dataset Ds

Method F1 Re Pr Sp FPR FNR PWC
FGCD (D&T) [3] 0.53 0.78 0.43 1.00 0.00 0.22 0.28
FGCD (SVM) [3] 0.51 0.86 0.39 1.00 0.00 0.14 0.29
Ours (EL) 0.65 0.66 0.76 1.00 0.00 0.34 0.08
Ours (EL+2DSL) 0.76 0.74 0.79 1.00 0.00 0.26 0.06
Ours (EL+6DSL) 0.79 0.76 0.84 1.00 0.00 0.24 0.05

(b) Average results on Briquettes dataset Db

Method F1 Re Pr Sp FPR FNR PWC
FGCD (D&T) [3] 0.45 0.40 0.56 1.00 0.00 0.60 1.23
FGCD (SVM) [3] 0.53 0.62 0.48 0.99 0.01 0.38 1.41
Ours (EL) 0.40 0.49 0.39 0.99 0.01 0.51 1.40
Ours (EL+2DSL) 0.45 0.56 0.43 0.99 0.01 0.44 1.24
Ours (EL+6DSL) 0.45 0.56 0.45 0.99 0.01 0.44 1.13

(c) Average results on Palace dataset Dp

Method F1 Re Pr Sp FPR FNR PWC
FGCD (D&T) [3] 0.34 0.28 0.52 1.00 0.00 0.72 0.92
FGCD (SVM) [3] 0.51 0.53 0.47 0.99 0.01 0.47 1.02
Ours (EL) 0.37 0.38 0.66 1.00 0.00 0.62 0.96
Ours (EL+2DSL) 0.32 0.33 0.68 1.00 0.00 0.67 0.98
Ours (EL+6DSL) 0.28 0.24 0.76 1.00 0.00 0.76 0.97

future, relaxing this assumption and investigating joint ge-
ometric and photometric registration may help to improve
precision in harder cases.
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