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Abstract

While most approaches to semantic reasoning have fo-
cused on improving performance, in this paper we argue
that computational times are very important in order to en-
able real time applications such as autonomous driving. To-
wards this goal, we present an approach to joint classifi-
cation, detection and semantic segmentation via a unified
architecture where the encoder is shared amongst the three
tasks. Our approach is very simple, can be trained end-to-
end and performs extremely well in the challenging KITTI
dataset, outperforming the state-of-the-art in the road seg-
mentation task. Our approach is also very efficient, taking
less than 100 ms to perform all tasks.

1. Introduction

Current advances in the field of computer vision have
made clear that visual perception is going to play a key role
in the development of self-driving cars. This is mostly due
to the deep learning revolution which begun with the in-
troduction of AlexNet in 2012 [23]. Since then, the accu-
racy of new approaches has been increasing at a vertiginous
rate. Causes of this are the existence of more data, increased
computation power and algorithmic developments. The cur-
rent trend is to create deeper networks with as many layers
as possible [17].

While performance is extremely high, when dealing with
real-world applications, running times become important.
New hardware accelerators as well as compression, reduced
precision and distillation methods have been exploited to
speed up current networks.

In this paper we take an alternative approach and de-
sign a network architecture that can very efficiently per-
form classification, detection and semantic segmentation si-
multaneously. This is done by incorporating all three task

Figure 1: Our goal: Solving street classification, vehicle
detection and road segmentation in one forward pass.

into a unified encoder-decoder architecture. We name our
approach MultiNet. The encoder consists of the convolu-
tion and pooling layers from the VGG network [45] and
is shared among all tasks. Those features are then utilized
by task-specific decoders, which produce their outputs in
real-time. In particular, the detection decoder combines the
fast regression design introduced in Yolo [38] with the size-
adjusting ROI-Pooling of Fast-RCNN [14], achieving a bet-
ter speed-accuracy ratio.

We demonstrate the effectiveness of our approach in the
challenging KITTI benchmark [13] and show state-of-the-
art performance in road segmentation. Importantly, our
ROI-Pooling implementation can significantly improve de-
tection performance without requiring an explicit proposal
generation network. This gives our decoder a significant
speed advantage compared to Faster-RCNN. Our approach
is able to benefit from sharing computations, allowing us to
perform inference in less than 100 ms for all tasks.

2. Related Work

In this section we review current approaches to the tasks
that MultiNet tackles, i.e., detection, classification and se-
mantic segmentation. We focus our attention on deep learn-
ing based approaches.
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Figure 2: MultiNet architecture.

Classification: After the development of AlexNet [23],
most modern approaches to image classification utilize deep
learning. Residual networks [17] constitute the state-of-the-
art, as they allow to train very deep networks without prob-
lems of vanishing or exploding gradients. In the context
of road classification, deep neural networks are also widely
employed [31]. Sensor fusion has also been exploited in
this context [43]. In this paper we use classification to guide
other semantic tasks, i.e., segmentation and detection.

Detection: Traditional deep learning approaches to object
detection follow a two step process, where region propos-
als [25, 20, 19] are first generated and then scored using
a convolutional network [15, 40]. Additional performance
improvements can be gained by using convolutional neural
networks (CNNs) for the proposal generation step [8, 40]
or by reasoning in 3D [5, 4]. Recently, several methods
have proposed to use a single deep network that is trainable
end-to-end to directly perform detection [44, 38, 39, 27].
Their main advantage over proposal-based methods is that
they are much faster at both training and inference time,
and thus more suitable for real-time detection applications.
However, so far they lag far behind in performance. In this
paper we propose an end-to-end trainable detector which
reduces significantly the performance gap. We argue that

the main advantage of proposal-based methods is their abil-
ity to have size-adjustable features. This inspired our zoom
layer that as shown in our experience results in large im-
provements in performance.

Segmentation: Inspired by the successes of deep learn-
ing, CNN-based classifiers were adapted to the task of se-
mantic segmentation. Early approaches used the inherent
efficiency of CNNs to implement implicit sliding-window
[16, 26]. Fully Convolutional Networks (FCNs) were pro-
posed to model semantic segmentation using a deep learn-
ing pipeline that is trainable end-to-end. Transposed con-
volutions [50, 6, 21] are utilized to upsample low resolution
features. A variety of deeper flavors of FCNs have been pro-
posed since [1, 34, 41, 36]. Very good results are archived
by combining FCNs with conditional random fields (CRFs)
[52, 2, 3]. [52, 42] showed that mean-field inference in
the CRF can be cast as a recurrent net allowing end-to-end
training. Dilated convolutions were introduced in [48] to
augment the receptive field size without losing resolution.
The aforementioned techniques in conjunction with resid-
ual networks [17] are currently the state-of-the-art.

Joint Reasoning: Multi-task learning techniques aim at
learning better representations by exploiting many tasks.



Several approaches have been proposed in the context of
CNNs [30, 28] but applications have mainly been focussed
on face recognition tasks [51, 47, 37]. [18] reasons jointly
about classification and segmentation using an SVM in
combination with dynamic programming. [46] proposed to
use a CRF to solve many tasks including detection, segmen-
tation and scene classification. In the context of deep learn-
ing, [7] proposed a model which is able to jointly perform
pose estimation and object classification. To our knowledge
no unified deep architecture has been proposed to solve seg-
mentation, classification and detection.

3. MultiNet for Joint Semantic Reasoning

In this paper we propose an efficient and effective feed-
forward architecture, which we call MultiNet, to jointly rea-
son about semantic segmentation, image classification and
object detection. Our approach shares a common encoder
over the three tasks and has three branches, each imple-
menting a decoder for a given task. We refer the reader
to Fig. 2 for an illustration of our architecture. MultiNet
can be trained end-to-end and joint inference over all tasks
can be done in less than 100ms. We start our discussion by
introducing our joint encoder, follow by the task-specific
decoders.

The task of the encoder is to process the image and ex-
tract rich abstract features [49] that contain all necessary in-
formation to perform accurate segmentation, detection and
image classification. The encoder of MultiNet consists of
the first 13 layers of the VGG16 network [45], which are
applied in a fully convolutional manner to the image pro-
ducing a tensor of size 39 x 12 x 512. This is the output
of the 5" pooling layer, which is called pool5 in the VGG
implementation [45].

3.1. Classification Decoder

The classification decoder is designed to take advantage
of the encoder. Towards this goal, we apply a 1 X 1 con-
volution followed by a fully connected layer and a softmax
layer to output the final class probabilities.

3.2. Detection Decoder

FastBox, our detection decoder, is designed to be a re-
gression based detection system. We choose such a decoder
over a proposal based one because it can be train end-to-
end, and both training and inference can be done very effi-
ciently. Our approach is inspired by Relnspect [39], Yolo
[38] and Overfeat [44]. In addition to the standard regres-
sion pipeline, we include an ROI pooling approach, which
allows the network to utilize features at a higher resolution,
similar to the much slower Faster-RCNN.

The first step of our decoder is to produce a rough esti-
mate of the bounding boxes. Towards this goal, we first pass
the encoded features through a 1 x 1 convolutional layer

Figure 3: Visualization of our label encoding. Blue grid:
cells, Red cells: cells containing a car, Grey cells: cells in
don’t care area. Green boxes: ground truth boxes.

with 500 filters, producing a tensor of shape 39 x 12 x 500,
which we call hidden. This tensor is processed with another
1 x 1 convolutional layer which outputs 6 channels at res-
olution 39 x 12. We call this tensor prediction, the values
of the tensor have a semantic meaning. The first two chan-
nels of this tensor form a coarse segmentation of the image.
Their values represent the confidence that an object of inter-
est is present at that particular location in the 39 x 12 grid.
The last four channels represent the coordinates of a bound-
ing box in the area around that cell. Fig. 3 shows an image
with its cells.

Such prediction, however, is not very accurate. In this
paper we argue that this is due to the fact that resolution has
been lost by the time we arrive to the encoder output. To
alleviate this problem we introduce a rezoom layer, which
predicts a residual on the locations of the bounding boxes by
exploiting high resolution features. This is done by concate-
nating subsets of higher resolution VGG features (156 x 48)
with the hidden features (39 x 12) and applying 1 x 1 con-
volutions on top of this. In order to make this possible, a
39 x 12 grid needs to be generated out of the high resolu-
tion VGG features. This is achieved by applying ROI pool-
ing [40] using the rough prediction provided by the tensor
prediction. Finally, this is concatenated with the 39 x 12 x 6
features and passed through a 1 x 1 convolution layer to pro-
duce the residuals.

3.3. Segmentation Decoder

The segmentation decoder follows the FCN architecture
[29]. Given the encoder, we transform the remaining fully-
connected (FC) layers of the VGG architecture into 1 x 1
convolutional layers to produce a low resolution segmenta-
tion of size 39 x 12. This is followed by three transposed
convolution layers [6, 21] to perform up-sampling. Skip
layers are utilized to extract high resolution features from
the lower layers. Those features are first processed by a
1 x 1 convolution layer and then added to the partially up-
sampled results.



4. Training Details

In this section we describe the loss functions we employ
as well as other details of our training procedure including
initialization.

Label encoding: We use one-hot encoding for classifica-
tion and segmentation. For the detection, we assigned a pos-
itive confidence if and only if it intersects with at least one
bounding box. We parameterize the bounding box by the x
and y coordinate of its center and the width w and height
h of the box. Note that this encoding is much simpler than
FasterRCNN or Relnspect.

Loss Functions: We define our loss function as the sum
of the loss functions for classification, segmentation and de-
tection. We employ cross-entropy as loss function for the
classification and segmentation branches, which is defined
as

1
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where p is the prediction, ¢ the ground truth and C' the set
of classes. We use the sum of two losses for detection:
Cross entropy loss for the confidences and an L1 loss on
the bounding box coordinates. Note that the L1 loss is only
computed for cells which have been assigned a positive con-
fidence label. Thus

1
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where p is the prediction, g the ground truth, C' the set of
classes and [ is the set of examples in the mini batch.
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Combined Training Strategy: Joint training is per-
formed by merging the gradients computed by each loss on
independent mini batches. This allows us to train each of
the three decoders with their own set of training parameters.
During gradient merging all losses are weighted equally.
In addition, we observe that the detection network requires
more steps to be trained than the other tasks. We thus sam-
ple our mini batches such that we alternate an update using
all loss functions with two updates that only utilize the de-
tection loss.

Initialization: The encoder is initialized using pretrained
VGG weights on ImageNet. The detection and classifica-
tion decoder weights are randomly initialized using a uni-
form distribution in the range (—0.1,0.1). The convolu-
tional layers of the segmentation decoder are also initial-
ized using VGG weights and the transposed convolution

Experiment max steps  eval steps [k]
Segmentation 16,000 100
Classification 18,000 200
Detection 180,000 1000
United 200,000 1000

Table 1: Summary of training length.

layers are initialized to perform bilinear upsampling. The
skip connections on the other hand are initialized randomly
with very small weights (i.e. std of 1e — 4). This allows us
to perform training in one step (as opposed to the two step
procedure of [29]).

Optimizer and regularization: We use the Adam opti-
mizer [22] with a learning rate of le — 5 to train our Multi-
Net. A weight decay of 5e — 4 is applied to all layers and
dropout with probability 0.5 is applied to all (inner) 1 x 1
convolutions in the decoder.

5. Experimental Results

In this section we perform our experimental evaluation
on the challenging KITTI dataset.

5.1. Dataset

We evaluate MultiNet in he KITTI Vision Benchmark
Suite [12]. The Benchmark contains images showing a
variety of street situations captured from a moving plat-
form driving around the city of Karlruhe. In addition to
the raw data, KITTI comes with a number of labels for
different tasks relevant to autonomous driving. We use
the road benchmark of [10] to evaluate the performance of
our semantic segmentation decoder and the object detec-
tion benchmark [13] for the detection decoder. We exploit
the automatically generated labels of [3 1], which provide us
with road labels generated by combining GPS information
with open-street map data.

Detection performance is measured using the average
precision score [9]. For evaluation, objects are divided into
three categories: easy, moderate and hard to detect. The
segmentation performance is measured using the MaxF1
score [10]. In addition, the average precision score is given
for reference. Classification performance is evaluated by
computing accuracy and precision-recall plots.

5.2. Performance evaluation

Our evaluation is performed in two steps. First we build
three individual models consisting of the VGG-encoder and
the decoder corresponding to the task. Those models are
tuned to achieve highest possible performance on the given
task. In a second step MultiNet is trained using one encoder



Metric ‘ Result
MaxF1 95.83 %
Average Precision | 92.29 %
Speed (msec) 94.6 ms
Speed (fps) 10.6 Hz

Table 2: Validation performance of the segmentation de-
coder.
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Figure 4: Convergence behavior of the segmentation de-
coder.

and three decoders in a single network. We evaluate both
settings in our experimental evaluation. We report a set of
plots depicting the convergence properties of our networks
in Figs. 4, 6 and 8. Evaluation on the validation set is per-
formed every k iterations during training, where k for each
tasks is given in Table 1. To reduce the variance in the plots
the output is smoothed by computing the median over the
last 50 evaluations performed.

Segmentation: Our Segmentation decoder is trained us-
ing the KITTI Road Benchmark [10]. This dataset is very
small, providing only 289 training images. Thus the net-
work has to transfer as much knowledge as possible from
pre-training. Note that the skip connections are the only
layers which are randomly initialized and thus need to be
trained from scratch. This transfer learning approach leads
to very fast convergence of the network. As shown in Fig. 4
the raw scores already reach values of about 95 % after only
about 4000 iterations. Training is conducted for 16,000 it-
erations to obtain a meaningful median score.

Table 2 shows the scores of our segmentation decoder
after 16,000 iterations. The scores indicate that our seg-
mentation decoder generalizes very well using only the data
given by the KITTI Road Benchmark. No other segmenta-
tion dataset was utilized. As shown in Fig. 5, our approach
is very effective at segmenting roads. Even difficult areas,

Method | MaxF1 AP | Place
FCN_LC [32] 90.79% 85.83% | 5™
FTP [24] 91.61% 90.96% | 4®
DDN [33] 93.43% 89.67% | 3™
Up_Conv_Poly [35] | 93.83% 90.47% | 24
MultiNet 94.88% 93.71% | 1%

Table 3: Summary of the URBAN_ROAD scores on the
public KITTIRoad Detection Leaderboard [11].
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Figure 6: Validation scores of the detection decoder. Perfor-
mance of FastBox with and without rezoom layer is shown
for comparison.

corresponding to sidewalks and buildings are segmented
correctly. In the confidence plots shown in top two rows
of Fig. 5, it can be seen that our approach has confidence
close to 0.5 at the edges of the street. This is due to the
slight variation in the labels of the training set. We have
submitted the results of our approach on the test set to the
KITTI road leaderboard. As shown in Table 3, our result
achieve first place.

Detection: Our detection decoder is trained and evaluated
on the data provided by the KITTI object benchmark [13].
Fig. 6 shows the convergence rate of the validation scores.
The detection decoder converges much slower than the seg-
mentation and classification decoders. We therefore train
the decoder up to iteration 180,000.

FastBox can perform evaluation at very high speed: an
inference step takes 37.49 ms per image. This makes Fast-
Box particularly suitable for real-time applications. Our re-
sults indicate further that the computational overhead of the
rezoom layer is negligible (see Table 5). The performance
boost of the rezoom layer on the other hand is quite sub-
stantial (see Table 4), justifying the use of a rezoom layer in
the final model. Qualitative results are shown in Fig. 7 with
and without non-maxima suppression.

MultiNet: We have experimented with two versions of
MultiNet. The first version is trained using two decoders,
(detection and segmentation) while the second version is



Figure 5: Visualization of the segmentation output. Top rows: Soft segmentation output as red blue plot. The intensity of the

plot reflects the confidence. Bottom rows hard class labels.

Figure 7: Visualization of the detection output. With and without non-maximal suppression applied.

Task: Metric ‘ moderate easy hard

FastBox with rezoom 83.35% 92.80% 67.59 %
FastBox no rezoom 77.00% 86.45% 60.82 %

‘ FastBox FastBox (no rezoom)

Table 4: Detection performance of FastBox.

trained with all three decoders. Training with additional
decoders significantly lowers the convergence speed of all
decoders. When training with all three decoders it takes

speed [msec] 37.49 ms 35.75 ms
speed [fps] 26.67Hz 27.96 Hz
post-processing | 2.10ms 2.46 ms

Table 5: Detection speed of FastBox. Results are measured
on a Pascal Titan X.

segmentation more than 30.000 and detection more than



Task: Metric seperate 2 losses 3 losses
Segmentation: MaxF1 95.83% 94.98% 95.13%
Detection: Moderate 83.35% 83.91% 84.39%
Classification: Accuracy | 92.65 % —  94.38%

Table 6: MultiNet performance: Comparison between
united and seperate evaluation on the validation set.

MultiNet ‘ Segmentation Detection Classification
98.10 ms 94.6 ms 37.5ms 35.94ms
10.2Hz 10.6Hz 27.7Hz 27.8Hz

Table 7: MultiNet inference speed: Comparision between
united and seperate evaluation.

150.000 iterations to converge, as shown in Fig. 8. Fig. 8
and Table 6 also show, that our combined training does not
harm performance. On the contrary, the detection and clas-
sification tasks benefit slightly when jointly trained. This
effect can be explained by transfer learning between tasks:
relevant features learned from one task can be utilized in a
different task.

MultiNet is particularly suited for real-time applications.
As shown in Table 7 computational complexity benefits sig-
nificantly from a shared architecture. Overall, MultiNet is
able to solve all three task together in real-time.

6. Conclusion

In this paper we have developed a unified deep archi-
tecture which is able to jointly reason about classification,
detection and semantic segmentation. Our approach is very
simple, can be trained end-to-end and performs extremely
well in the challenging KITTI, outperforming the state-of-
the-art in the road segmentation task. Our approach is also
very efficient, taking 98.10 ms to perform all tasks. In the
future we plan to exploit compression methods in order
to further reduce the computational bottleneck and energy
consumption of MutiNet.
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