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Abstract

3D reconstruction from shading information through
Photometric Stereo is considered a very challenging prob-
lem in Computer Vision. Although this technique can poten-
tially provide highly detailed shape recovery, its accuracy
is critically dependent on a numerous set of factors among
them the reliability of the light sources in emitting a con-
stant amount of light.

In this work, we propose a novel variational approach
to solve the so called semi-calibrated near field Photomet-
ric Stereo problem, where the positions but not the bright-
ness of the light sources are known. Additionally, we take
into account realistic modeling features such as perspec-
tive viewing geometry and heterogeneous scene composi-
tion, containing both diffuse and specular objects. Fur-
thermore, we also relax the point light source assumption
that usually constraints the near field formulation by ex-
plicitly calculating the light attenuation maps. Synthetic
experiments are performed for quantitative evaluation for
a wide range of cases whilst real experiments provide com-
parisons, qualitatively outperforming the state of the art.

1. Introduction
Extracting 3D clues from shading information in multi-

ple images has been known in the Computer Vision commu-
nity since Woodham [49] introduced the problem of Photo-
metric Stereo (PS). The goal is to reconstruct the 3D shape
of a static object knowing its shading under different illu-
mination conditions. First attempts employed several as-
sumptions in order to deal with a solvable problem; those
included diffuse reflectance, orthographic viewing geome-
try as well as uniform directional lighting. Up to now, most
of the literature regarding PS still relies on the same “fully
orthographic” set of assumptions.

Motivation PS approaches can be divided into two main
categories. The first one solves calibrated PS by requir-
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Figure 1. The first row shows two samples of near field images
acquired under different lighting and different exposure (both un-
known) and the computed albedo. Below it is the shape recon-
structed using the proposed semi-calibrated PS approach.

ing an a priori knowledge of the light source’s geometry,
position and brightness. The second category solves the
uncalibrated PS problem where the information about the
illumination of the scene is unknown. Recently, Cho et
al. [9] introduced the idea of semi-calibrated PS where the
brightness but not the positions of the light sources was
considered unknown. Indeed, accurate knowledge of the
brightness requires careful measurements with either spe-
cialized equipment (LUX meters) or reference objects with
known geometry. Moreover the brightness commonly tends
to vary from acquisition to acquisition, and this variation is
mainly caused by three important reasons. First of all, the
lighting status of a light source: most LEDs used as light
sources have a non-negligible ramp-up time when turned
on corresponding to constantly increasing brightness; this
is followed by a gradual decrease of brightness because of
heating-up that affects their electrical properties. This is es-
pecially relevant for high speed acquisitions performed with
high power emitters. Under these circumstances, electrical
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instabilities causing LED flickering are not uncommon [34].
The second reason is the deterioration of the light sources,
unavoidably happening across time. This imposes a light
calibration every time images have to be acquired over a
relatively long lapse of time. Finally, it may be desirable to
shoot images with auto-exposure settings in order to mini-
mize the number of underexposed and saturated pixels. If
this is the case, the effective brightness (i.e. brightness time
exposure) of the respective light source cannot be known a
priori.

Contribution In this work, we deal with the problem of
semi-calibrated near field PS so that the geometry of the
light sources is reasonably assumed to be point-wise and
their positions are assumed known.

Additionally, we consider the shading model in favor of
perspective viewing geometry and both diffuse and specular
reflectance presented in [27].

Finally we propose a robust step-wise variational numer-
ical solver where the lighting factors, shape and specular
coefficient are approximated sequentially. This allows to
relax the assumption that point light sources spread light
uniformly in all directions by computing the spatially vary-
ing maps of the light intensities.

The reliability of our method for providing highly ac-
curate 3D reconstructions and approximating lighting pa-
rameters is demonstrated quantitatively over a large set of
synthetic and real data. Regarding real world experiments,
our method is compared against other standard methods for
estimating the brightness of light sources (i.e. using a light
light-meter or reference objects).

2. Related Works

Starting from the seminal work of Woodham [49] where
the shape from PS problem relied on fully orthographic as-
sumptions, several approaches have been presented to make
this technique more reliable. To deal with actual physical
effects, perspective viewing geometry has been introduced
by Horn [19] and then adopted by Tankus and Kiryati [45]
in the PS context. Papadhimitri and Favaro [35] proposed
a new approach to the perspective viewing deriving a new
but substantially equivalent parameterization of the pinhole
camera modeling.

Calibrated near field In order to get a reliable recon-
struction when the field of view is wide, apart from hav-
ing an accurate pinhole camera parameterization, it be-
comes fundamental to model properly how light spreads
from the source. This brings into play the concept of non-
uniform light propagation and, most importantly, non neg-
ligible light dissipation.

The way the light spreads clearly depends on the shape of
the source. Several methods consider flat light sources [11]

mostly aiming at specific applications. However, the major-
ity of the literature in this field considers as the most rel-
evant parameterization the point light source initially pro-
posed by Iwahori et al. [20] and Clark [10]. More recently
Xie et al. [52] suggested incremental steps from fully or-
thographic assumptions to perspective near field context to
provide accurate reconstruction according to specific mesh
deformations.

For the near field scenario, when light sources are close
to the object, shadows appear frequently. There are several
works dealing with shadows, aiming to extract geometri-
cal information [44] or to avoid biased shading information
[18] especially when only a few light sources are consid-
ered. For example, Chandraker et al. [8] proposed a graph-
cut method to estimate the lighting visible pixels. Barsky
and Petrou [3] took into account both highlights and shad-
ows using only four light sources. However, different ap-
proaches for 3D shape recovery such as multi-view stereo
techniques including [47, 53] have employed direct visibil-
ity computation steps. This has the potential of higher reli-
ability than the heuristics presented above.

Image ratios Images acquired for PS reconstruction have
constant overlapping information due to the monocular pro-
cedure; this overlapping information allows for simplifica-
tion of the problem by considering ratios of images. Af-
ter being introduced by Davis and Soderblom [13], this ap-
proach has been often used [23, 24, 51, 26, 18, 48, 42, 30,
28]. Mecca et al. [29] proposed a novel approach embed-
ding the nonlinear parameterization of a point light source
into a differential problem of hyperbolic PDEs. Lately, this
approach has been further extended for colored surfaces
[39] including diffuse and specular reflectance [27] and for
acquisition in presence of ambient light [25]. Finally, Chan-
draker et al. [7] showed that the image ratio formulation can
provide level set information for any surface with isotropic
BRDF.

Photometric calibration Light calibration, intended as
an estimation of light positions/directions and intensities,
often requires specific equipment [14, 15] or a dedicated
procedure [50] that can differ depending on the scenario.
For example, PS for outdoor scenes generally uses in-
trinsic light calibration according to geo-position informa-
tion [43, 2, 21, 1] or triangulating with reflective spheres
[31]. Alternatively, in a dark environment, light calibra-
tion can be performed considering reference objects where
the shape and reflectance are known. Goldman et al. [17]
used spheres of the same materials of the object under ob-
servation, dealing with spatially varying BRDFs. Instead,
the variational formulation proposed by Quéau et al. [38]
needed additional information on the depth of the bound-
ary (Dirichlet boundary condition). Shi et al. [40] disam-
biguate the generalized bas-relief (GBR) ambiguity [4] and



provided radiometric calibration analyzing color/intensity
profiles in the RGB and irradiance-time domains. As most
of the previous works, Papadhimitri and Favaro [36] still
assumed diffuse reflectance only for the near field uncali-
brated PS. Very few attempts have been made to solve the
uncalibrated PS problem for heterogeneous surfaces. For
example, Georghiades [16] proposed an approach capable
of computing the depth up to a concave/convex ambigu-
ity. Shi et al. [41] parametrised general BRDF with bi-
polynomial retaining the low frequency part to the detriment
of the high component.

Finally, Cho et al. [9] tackled directly the semi-calibrated
problem proving that it has a closed-form solution for the
fully orthographic scenario that assumes purely diffuse re-
flection. To make the computation faster, they proposed an
alternating minimization scheme that extends the classic PS
problem with the joint estimation of constant light inten-
sities. With the aim to relax the semi-calibrated modeling
for both diffuse and specular surfaces for the near field sce-
nario, we propose a new approach able to deal with spa-
tially varying light intensities enhanced by the computation
of shadow maps.

3. Problem formulation

In order to deal with near field PS, multiple physical ef-
fects have to be modeled simultaneously. Most of them re-
quire non-linear parameterization and this yields irradiance
equations which are rather complicated to manage. This is
especially evident when taking into consideration the sys-
tem of equations that contains the information from multi-
ple images.

3.1. Irradiance equation

We assume to have Nimg images (i.e. light sources) hav-
ing Npx number of pixels.We exploit the monocular aspect
of the PS problem by considering image ratios. To do that,
we use the following single lobe irradiance equation for the
kth light source proposed in [27] unifying the Lambertian
shading model [22] with the Blinn-Phong one [37, 5]:

ik(x) = ρ(x)φkak(x, z)(N(x) ·Wk(x, z))
1

c(x) (1)

where lowercase letters indicate scalars, bold letters and
uppercase bold letters are vectors of R2 and R3 respec-
tively. The bar over a vector means that it is normalized
(i.e. N = N

|N| ).
The vector (x, z) is the prospective point of the sur-

face Σ ⊂ R3 (so that x is the image point and z is the
depth), φk is the brightness of the light source, ρ(x) is the
albedo and 0 < c(x) ≤ 1 is the shininess coefficient. The
weighted lighting vector Wk(x, z) averages the light di-
rection Lk(x, z) with the viewer direction V = (x, f) as

follows

Wk(x, z) = Lk(x, z) + min

{
1,
|1− c(x)|

ε

}
V(x) (2)

with f as focal length. The transition phase from the diffuse
(c(x) = 1) to the specular reflection is described by ε. The
direction of light is parametrized as the difference between
the surface point χ ∈ Σ and the position of the point light
source Pk both depending on the image point x, that is

Lk(x, z) = χ(x)−Pk(x). (3)

The perspective normal vector N(x) is parametrised ac-
cording to the notation provided in [35], that is

N(x)=
1

f

(
f∇z(x),−f−z(x)− x·∇z(x)

)
. (4)

Finally, instead of parametrizing analytically the radial
and distance dissipation of a point light source as in [27],
we relax the concept of point light source by considering
ak(x, z) and φk as an unknown attenuation map and light
source brightness respectively. In the next sections, we dis-
cuss how the irradiance equation can be manipulated in or-
der to calculate the unknowns: z, ρ, c and φk, ak ∀k.

3.2. Modeling with image ratios

Differently from the two-lobes based irradiance equa-
tions [33, 46, 12, 32], the single lobe formulation (1) allows
for a significant simplification of the mathematical model-
ing through the use of image ratios. Indeed, dividing equa-
tions for images h and k, and raising both side of the equa-
tion to the power of c(x) gives:(

ih(x, z)φkak(x, z)

ik(x, z)φhah(x, z)

)c(x)
=

N(x) ·Wh(x, z)

N(x) ·Wk(x, z)
. (5)

By substituting the parametrisation of the normal from
equation (4), we get the following albedo independent PDE:

bhk(x, z) · ∇z(x) = shk(x, z). (6)

By denoting the vector components with superscript in-
dexes and removing the dependencies for readability, the
vector function bhk and the scalar function shk can be writ-
ten as follows (see [27] for the details regarding the deriva-
tion)
bhk =

[
(φkakih)

c
(
fw1

k − x1w3
k

)
− (φhahik)

c
(
fw1

h − x1w3
h

)
,

(φkakih)
c
(
fw2

k − x2w3
k

)
− (φhahik)

c
(
fw2

h − x2w3
h

)]
and

shk = (f + z)
(

(φkakih)
c
w3
k − (φhahik)

c
w3
h

)
. (7)

In addition, the ratio equation (5) can be used to update
the shininess parameter c. Re-arranging it, we get:

c =
log(N ·Wh)− log(N ·Wk)

log(ih) + log(φkak)− log(ik)− log(φhah)
. (8)



3.3. Albedo and Light source brightness

We formulate the problem for computing the albedo, the
light source brightness and the light attenuation maps such
that they can be directly computed depending on the geom-
etry of the scene z and the reflectance coefficient c(x) of the
irradiance equation (1).

First of all, normals can be computed by numerically
differentiating the depth. The weighted lighting vector
Wk(x, z) is also trivially computed using the current es-
timate of the depth and the light source positions.

Rearranging the iradiance equation (1), we get the fol-
lowing relation for the albedo:

ρ(x) =
ik(x)

φkak(x, z)Dk(x, z)
(9)

where Dk(x, z) = (N(x) ·Wk(x, z))
1

c(x) .
We note that for each pixel x, there are Nimg equations

(9). All of them can be stacked into a matrix giving the
following (over-constrained) linear system: φ1a1(x, z)D1(x, z)

...
φNimgaNimg (x, z)DNimg (x, z)

 ρ(x) =
 i1(x)

...
iNimg (x)

 .
(10)

For the light source brightness, the equation (9) can be
equivalently re-arranged as:

φk = ρ(x)
ik(x)

ak(x, z)Dk(x, z)
. (11)

We note that for each light source k there are Npx equa-
tions (11), one per each pixel ordered as (x1, . . . ,xNpx).
Stacking these into a linear system, we get: ρ(x1)ak(x1, z)Dk(x1, z)

...
ρ(xNpx)ak(xNpx , z)Dk(xNpx , z)

φk =

 ik(x1)
...

ik(xNpx)

 .
(12)

3.4. Attenuation map

Most near field PS methods [20, 29, 10, 52] assume that
light attenuates radially due to the point shape of the light
source. However, in practice this assumption might not be
very realistic, providing deformation for the shape recov-
ered. Ideally, we would like to jointly calculate the light at-
tenuation at each pixel for each image considering ak(x, z)
as a pixel-wise unknown. This renders the PS problem
helplessly under-constraint with many more unknowns than
equations. To overcome this limitation, we employ the as-
sumption that the light attenuation ak(x, z) is locally con-
stant. Note that this is a much weaker assumption than
assuming that the lighting is locally directional. Indeed,

Lk(x, z) is expected to have a non-negligible variation even
between nearby pixels.

Thus, we seek to solve for ak(x, z) by assuming that it
has a constant value over a small patch of Npatch pixels
surrounding each pixel x. For every patch, each pixel in
each images provides one equations, thus the total number
of equations is NimgNpatch. The unknowns to be calcu-
lated are: Npatch albedos ρ(x),Npatch depths z(x),Npatch
shininess coefficients c(x) and Nimg attenuation ak(x, z).

Thus, for the number of equations to exceed the number
of unknowns, we require that:

NimgNpatch > 3Npatch+Nimg ⇐⇒ Npatch >
Nimg

Nimg − 3
.

(13)
The inequality (13) is easily satisfied forNpatch = 9 (i.e.

a 3x3 pixel patch) and 5 . Nimg . 50 (typical number of
images used in PS problems). Under this assumption estab-
lishing that the search for ak(x, z) is not under-constraint,
we re-arrange equation (1) to get:

ak(x, z) =
ik(x)

ρ(x)φkDk(x, z)
. (14)

Reusing the strategy followed in section 3.3, we note
that for each light source k and each patch, there are
Npatch equations (14), one per each pixel ordered as
(x1, . . . ,xNpatch). Stacking these into a linear system, we
get: ρ(x1)φkDk(x1, z)

...
ρ(xNpx)φkDk(xNpatch , z)

 ak(x, z) =

 ik(x1)
...

ik(xNpatch)

 .
(15)

3.5. Scale ambiguity

There is one issue that arises from the above-mentioned
discussion, which is a global two parameter ambiguity be-
tween the scale of φk, the scale of ak(x, z) and the scale
of ρ(x). Indeed, one can replace φk by m1φk, ak(x, z) by
m2ak(x, z) and ρ(x) by ρ(x)

m1m2
, for any scalarsm1,m2, and

the irradiance equation (1) is unchanged.
To overcome these ambiguities, we set ||Φ|| = 1, with

Φ = [φ1, . . . , φNimg ]T . We also set mean[ρ(x)] = 1. Al-
though this may seem counter intuitive with respect to the
usual definition of ρ(x) to be always between zero and one,
the irradiance equation is consistent with ρ(x) of any scale.

4. Computational Approach
In section 3 we presented how the irradiance equation (1)

can be manipulated so as to calculate the various unknowns.
Here we present a robust alternating optimization strategy
to jointly estimate depth, light source brightness, (scaled)
albedo, light attenuation maps and reflectance coefficients.



4.1. Depth Computation

We note that there are
(
Nimg

2

)
versions of equation (6),

one for each pair of images. By following a similar method
with [27], we add a zero-order Tikhonov regularizer that
constraints the mean z to be close to z0. This is essential
for ensuring that the differential problem based on (6) has a
unique solution. Hence, we seek to minimise:

min
z

∑
h,k

‖bh,k · ∇z − sh,k‖L1 + λ ‖z − z0‖L2 (16)

where the L1 norm is chosen for robustness to noise and
outliers.

Equation (16) is minimized by using the ADMM scheme
proposed in [27]. Furthermore, since b and s implicitly de-
pend on z, in the iterative process they are calculated by
using the current estimates of the depth values.

In section 4.4 we describe the steps of the alternating
optimization.

4.2. Shadow Map estimation

Most PS methods estimate normals locally and so it is
common to use heuristics to detect cast shadows. Since we
follow an iterative, global geometry refinement algorithm,
it is reasonable to calculate cast shadows directly through
ray-tracing using the previous estimate of the geometry. Al-
though this procedure is very expensive in terms of compu-
tational time, it ensures that the surface is globally consis-
tent with the light sources making the computation of the
lighting factors more reliable.

4.3. Pixel based selection strategy

As described in sections 3.3 and 3.4, the computation of
ρ(x) and all φk and ak(x, z) requires the solving the linear
equations (10), (12) and (15) respectively. With the aim to
gain robustness to outliers and noise, we solve these system
considering L1 relaxation [6]. In addition, a dynamic selec-
tion of reliable pixels is done by ignoring those pixels where
the normal is almost perpendicular to weighted lighting vec-
tor and thus very little light is expected to be reflected of the
surface. Hence, pixels where N(x) ·Wk(x, z) < 0.1 are
considered unreliable and the respective rows at equations
(10), (12) and (15) are removed. In addition, pixels found
to be in shadow (see section 4.2) or pixels with very low
image values (ik(x) < 0.05) or saturated (ik(x) > 0.99)
are also ignored1.

4.4. Alternating optimization

Up to this point, we have discussed how different sets of
variables can be used to easily calculate the rest. Of course,
in the beginning of the problem very little information about

1We assume normalized image values with 0 corresponding to black, 1
corresponding to white.

Algorithm 1: Semi-Calibrated PS
Input : Images, light source positions, rough mean

distance z0
Output: Depth map z, light source brightnesses Φ,

aldebo ρ, attenuation maps and shininess
parameter c

Initialization:
z0 = zmean, c0(x) = 1, ρ0(x) = 1, φk = 1√

Nimg

∀k ;

calculate fields L0
k(x, z0) ∀k;

set a0k(x, z) = 1
||L0

k(x,z
0)||2 ∀k;

while | zt+1 − zt |> 10−4× | zt | do
if t > 1 compute shadow maps. endif ;
calculate fields Wt

k(x, zt) ∀k;
compute Φt+1 solving (12);
for every pair ih and ik, calculate fields
bhk(zt, ath, a

t
k, φ

t+1
h , φt+1

k ,Wt
h,W

t
k),

shk(zt, ath, a
t
k, φ

t+1
h , φt+1

k ,Wt
h,W

t
k) ;

and then approximate zt+1 solving (16);
ρt+1(x) solving (10);
at+1
k (x, zt+1) solving (15) ∀k;
ct+1(zt+1, at+1

h , at+1
k ,Wt

h,W
t
k) solving (8);

end

the geometry and the photometric properties of the scene is
known and all the unknowns have to be jointly estimated.
In addition, as each step depends on the results of the pre-
vious steps, the order of these steps is very crucial so as to
converge to an acceptable solution at a reasonable rate.

First of all, we perform the Φ update step according
to (12). A single scalar per image is calculated using the
whole image data, thus this step is very robust to outliers
and errors. The dependence of the system (12) on z is over-
come by initializing z0 = zmean, the mean distance be-
tween the camera and the object. The albedo is initialized
to ρ0(x) ≡ 1, the attenuation using the point source model
a0k(x) = 1

‖Lk(x,z0)‖2
and φk = 1√

Nimg

, ∀k. Finally, we ini-

tialize c(x) = 1 which corresponds to diffuse reflectance.
The next step updates the z values using (16). The vari-

ational solver is very robust to noise and other forms of
sparse corruptions but cannot deal with the systematic er-
ror coming from using wrong Φ. Indeed, this is exactly
the core purpose of the paper; inaccurate estimates for Φ
can lead to substantial deformation of the recovered shape.
This is demonstrated experimentally in section 5 with the
comparison with [27]. Furthermore, the main equation for
this step (6) is albedo independent hence it is reasonable to
precede this computation to the albedo’s computation.

Next step is the attenuation map calculation. This is a lo-
cal operation and much more sensitive to inaccuracies. For
each pixel, we choose 3x3=9=Npatch sized patches contain-



ing all of its neighbors to estimate the attenuation. As the
patches are overlapping, continuity is implicitly enforced.

Finally we perform the c(x) update at the end. This is
the most numerically unstable step as it involves a ratio of
differences of logarithms (8) thus it is essential to have as
good estimates of the rest of the parameters as possible.

The whole alternating optimisation procedure is summa-
rized in Algorithm 1.

5. Experiments
We evaluated our algorithm with synthetic and real data

covering a range of different situations. Firstly, in order to
make our approach comparable with the state of the art on
semi-calibrated PS [9] (by using our own implementation
of their alternating minimisation method), we adapted it to
the easier, fully orthographic and diffuse scenario. This was
easily achieved by fixating c = 1, ak = 1 and f = ∞
(106 in practice). Secondly, in order to test the reliability of
our approach, we considered synthetic data generated with
the Cook and Torrance reflection model [12]. Furthermore,
we compared it to [27] (using code and a data set available
online2) which is the most similar in terms of irradiance
model. Although [27] does not focus on solving the semi-
calibrated PS, the comparison with this work provides clues
regarding shape deformation occurring when reasonable but
incorrect brightness is used.

Our algorithm was implemented in MATLAB and run on
a server machine with an AMD Opteron CPU. The compu-
tation time for the 2 MPixel x 9 images datasets was about
one hour with peak memory usage of around 30GB. Around
90% of the computation maps was spent on shadow and at-
tenuation maps.

5.1. Synthetic Data

We generated three synthetic data sets with eight images
using the “Armadillo” model from The Stanford 3D Scan-
ning Repository3 where the “Lena” image was used for the
albedo, see Figure 2. The first dataset was made under the
classic PS assumptions having directional lighting, ortho-
graphic projection and diffuse reflection, in order to pro-
vide a fair comparison to [9]. The second dataset was a
near-field, diffuse reflection scenario where the object had
a size of 2cm and is placed 4cm away from a virtual pin-
hole having focal length of 12mm. The light sources were
symmetrically distributed around the camera at two circles
of radius 3 and 5 cm respectively. To apply [9] to the near-
field scenario, we used as lighting directions the Lk at the
center of the object. As a result, the errors grew towards
the boundaries of the image (Figure 3). Finally, our third

2researchgate.net/publication/310310648_A_
Single_Lobe_Photometric_Stereo_Approach_for_
Heterogeneous_Material

3http://graphics.stanford.edu/data/3Dscanrep

(a) Samples (b) Ground truth

Figure 2. Synthetic data. Left column is sample images for the 3
cases examined having “Lena” as albedo. From top to bottom: far
field diffuse, near field diffuse, near field Cook and Torrance.

dataset had the same arrangement as the near field scenario
but the object was rendered by using the Cook and Torrance
reflection model. This created specular highlights inconsis-
tent with our irradiance equation (1) thus the robustness of
our method was tested with more physical derived synthetic
data. To stress all compared algorithms to their limits, we
chose the brightness of the light sources Φ with significant
variation. In fact, the brightest light source was 5 times
brighter than the dimmest (see Figure 4).

The quantitative evaluation of the algorithms was
achieved through the mean error between the obtained nor-
mals vs the ground truth showed by the bottom line of Fig-
ure 3. The evaluation of the predicted light source inten-
sities is shown in Figure 4. It was achieved by finding the
angle between Φ and the ground truth Φgt. As Φ is always
a unit vector (section 3.5), we get EΦ = arccos(Φ ·Φgt).

The proposed approach significantly outperforms the
competitors in both near field cases and gets a slightly
higher error than [9] in the classic PS scenario. That is be-
cause our z estimation step propagates errors around the oc-
clusion boundaries at the face of the Arnadillo in contrast to
[9] which recovers normals directly.

5.2. Real Data

We evaluated our algorithm on several real datasets
shown in Figure 1 and Figure 5. To make the tests as
challenging as possible, we combined multiple objects with
various reflections including a plastic baseball player fig-
urine, a marble statue, a 3D printed plastic version of the
Armadillo and a shell.

Our capture setup consists of a FL3-U3-20E4C camera
of Point Grey mounting a 12mm lens. Our light sources
are 9 OSRAM Platinum DRAGON (white) LEDs placed

researchgate.net/publication/310310648_A_Single_Lobe_Photometric_Stereo_Approach_for_Heterogeneous_Material
researchgate.net/publication/310310648_A_Single_Lobe_Photometric_Stereo_Approach_for_Heterogeneous_Material
researchgate.net/publication/310310648_A_Single_Lobe_Photometric_Stereo_Approach_for_Heterogeneous_Material
http://graphics.stanford.edu/data/3Dscanrep


Orthographic scenario, diffuse reflection Near field, diffuse reflection Near field, Cook and Torrance

[9]E = 2.5o [27]E = 13.7o OurE = 4.5o [9]E = 20.9o [27]E = 13.5o OurE = 5.0o [9]E = 22.8o [27]E = 18.5o OurE = 13.0o

Figure 3. From top line to bottom: reconstructions, normals and angular error for normals.

Figure 4. Comparison of proposed method vs [9] for calculating Φ for all three synthetic datasets (Figure 2).

in a circular and symmetric disposition over three concen-
tric rings of radius 3.5, 4.5 and 5.5cm respectively. The
mean depth is estimated using a ruler. For scenes at roughly
10-20cm away from the camera, the 1mm limit of preci-
sion translates to around 0.5-1% uncertainty. To have a re-
liable ground truth estimate of the light source brightness,
we followed very slow acquisition sequences where each
LED was given around 100ms to reach the end of its rump
up time. Between capturing from different LEDs we had a
delay of a few seconds to avoid overheating.

To simulate significant variation of light source bright-
ness in order to stretch our algorithm to its full potential,
we shot images with varying exposure.

Qualitative comparison with competitors is shown in
Figures 6 and 7. The performance of the proposed ap-
proach can be qualitatively appreciated for the computation
of the light source brightness Φ showed in Figure 9. For
this purpose we evaluated the actual brightness considering
two approaches that provided equivalent results. The first
approach involved placing the sensor of a LUX meter in the
middle of the field of view at a known distance. The sec-
ond and more reliable approach was image based. For each
LED, we took a picture of a planar surface perfectly aligned
to the image plane painted with a water based barium sul-

fate coating formulated to yield paint with high diffuse re-
flection. Then, the Φ estimation was done by ignoring the
z and c update steps on our algorithm (known geometry &
reflectance on the reference object).

Figure 5. Darkest (Left) and brightest (middle) samples of our real
datasets and the computed albedos (Right). Note that the coloring
of the albedos is done by noting each pixel’s position on the Bayer
pattern of the raw data.



(a) [9] (b) [27] (c) Proposed

Figure 6. Reconstructions: head of a Buddha statue, plastic base-
ball player.

Figure 7. Reconstructions: Top [9], middle [27], bottom Proposed.

Figure 8. Close-up views of the textured reconstructions obtained
using the proposed method.

(a) Hand (b) Mother child Armadillo

Figure 9. Calculated Φ vs ground truth. (left) hand data set, use
both LUX meter and reference object as GT (they agree). (right).
Mother-child- Armadillo data set shot with variable exposures.
The GT Φ is the LUX meter’s reading times the exposure.

6. Conclusion and Further Work
In this work we approached the semi-calibrated near field

PS by presenting a robust variational solver approximating
the spatially varying light attenuation as well as recover-
ing the shape, the shininess parameter and the light source’s
intrinsic brightness. Beside assuming perspective viewing
geometry, our approach considers the irradiance equation
presented in [27] that deals with both diffuse and specular
reflectance having a heuristic single lobe formulation that
yields a twofold benefit. First of all, simplifications due to
image ratio can be exploited in the variational solver. Sec-
ondly, objects made of heterogeneous materials can be re-
constructed. We proved our method over both synthetic and
real world data showing its actual functionality in compari-
son with state of the art approaches and devices capable of
providing light measurements.

The main limitation of our approach is its inability to
deal with surfaces with a vastly different reflectance from
the Blinn-Phong specular model or the Lambertian (diffuse)
model. In addition, the light attenuation map recovery has
a high computational cost requiring around half an hour of
processing on top end server hardware.

In the same context of semi-calibrated near field PS, an
important future work would be to consider non-negligible
ambient light. This makes the problem much harder to solve
since the photometric parallax is reduced by the presence of
an additional offset. Finally, we foresee the applicability
of our light attenuation method estimation in the case of a
significantly attenuating medium such as water.
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