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ABSTRACT

One of the advantages of statistical parametric speech synthesis is
the ability to alter some of the characteristics of the speech e.g.
change the speaker, expression etc. In this paper we present a tech-
nique to adapt an expressive single speaker deep neural network
(DNN) speech synthesis model to a new speaker, allowing for both
neutral and expressive speech in the new speaker’s voice. Experi-
ments show that the proposed adaptation technique achieves higher
MOS scores on both neutral and expressive speech, and higher
speaker similarity and slightly lower expression similarity scores on
the expressive speech when compared with another DNN speaker
adaptation technique.

Index Terms— DNN, expressive speech, expressive speaker
adaptation, expression transplantation

1. INTRODUCTION

Recently the success of DNNs in speech synthesis has been demon-
strated [13, 6, 4]. Furthermore, techniques for DNN TTS speaker
adaptation have been proposed. In [11], Swietojanski et al pro-
poses a model-based adaptation technique, known as Learning Hid-
den Unit Contributions (LHUC). While originally proposed in the
context of speaker adaptation for speech recognition, [12] success-
fully use LHUC for speaker adaptation for TTS. In [3, 10, 5], multi-
ple speakers are used to train a single network, with all speakers shar-
ing the hidden layers but having speaker specific outputs. [2, 7, 12]
use speaker codes to identify different speakers. In [14], a linear
adaptation layer (expressed as a product of two low rank matrices)
is inserted into the network and adapted to a new speaker.

Expression transplantation is an extension to speaker adaptation,
where the expressions from one speaker are transferred to a neutral
speaker. In [8], this is done by constructing an eigenvoice space
of neutral speech and the differences between neutral and expressive
speech. In [1], two distinct cluster adaptive training (CAT) subspaces
are created, one representing speakers and another representing ex-
pression. To transplant the expression from one speaker to another,
the expressive utterance is projected into the expression subspace
to obtain the appropriate expressive CAT weights while the neutral
utterance is then projected into the speaker subspace to obtain the
appropriate speaker CAT weights.

This work seeks to achieve the following: adapt an expressive
single speaker DNN TTS model to a new speaker using only neutral
speech, such that the adapted model will not only produce neutral
speech that sounds like the new speaker but also produce expres-
sive speech that sounds like the new speaker with appropriate ex-
pressiveness i.e. expression transplantation. Obtaining expressive
speech can be challenging and expensive, so it is useful to adapt
an expressive single speaker model. There are two challenges that

(a) DNN with neutral and expres-
sion outputs in parallel.

(b) DNN with expression outputs
following sequentially from neu-
tral output

Fig. 1: DNN regressing normalised linguistic features to normalised
acoustic features with different outputs for each expressive class

distinguish this task from works mentioned above. First, the adap-
tation is performed on a DNN that had only been trained on a sin-
gle speaker. In the above systems, models are trained on multiple
speakers, and therefore learn more generic feature detectors that are
useful for the speech of multiple speakers. Thus repurposing a single
speaker DNN to a new speaker is more challenging. Secondly, when
trained one expressive speech from a single speaker, the distinction
between what is specific to the speaker and what is specific to the
expression is unclear. This is in contrast to systems where there are
multiple speakers with each expression.

2. EXPRESSIVE SINGLE SPEAKER MODEL

2.1. Single speaker model

We begin with a single speaker model similar to that presented in [9],
a single speaker, expressive DNN-based model, refer to [9] for de-
tails. In short, linguistic features are extracted from the text, acoustic
features are extracted from the speech, these feature sets are nor-
malised and a DNN learns to maps linguistic features to acoustic
features. The DNN model has a separate output for each of the 6
expression classes, namely, angry, fearful, happy, neutral, sad and
tender. This is shown in Figure 1a. Significantly, the expressive out-
puts are in parallel to the neutral output. The results of this model
(albeit as part of a larger visual speech synthesis model) were eval-
uated in [9] and were shown to be superior to HMM models, with
clear, expressive speech.

2.2. Expression specific normalisation

Normalisation is performed separately for each of the expression
classes: µn and σn for the neutral speech and {µe1 , µe2 , . . . , µen}
and {σe1 , σe2 , . . . , σen} for each of the expressive speech classes.
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dices denote the speaker. Informal testing revealed that this greatly
enhanced the expressiveness of the adapted speaker.

3. ADAPTATION USING LHUC

3.1. Preliminary experiments and analysis

The first attempt to perform speaker adaptation was using LHUC,
refer to [11] for details. Because the adaptation data is labelled, it
is possible to optimise the LHUC weights using backprop to min-
imise the squared error over the adaptation set between the target
normalised acoustic features and the neutral output. The DNN was
adapted twice, in separate experiments, once with a British female
speaker and then with a British male speaker. 100 utterances of each
was used for adaptation.

An informal examination of the test utterances showed that the
algorithm was somewhat successful with neutral speech, however,
the performance on expressive speech was very poor with significant
artefacts and audible distortions.

3.2. Sequential Expression

With the understanding that the artefacts identified above were due to
a lack of disentanglement between speech modelling and transform-
ing neutral speech to expressive speech, the architecture is modified
by placing the expressive speech outputs sequentially after the neu-
tral speech output, as opposed to in parallel with it. A non-linearity
(sigmoid) is placed after the neutral speech output, with the input
to expressive speech layers coming from this non-linearity. This is
demonstrated in Figure 1b.

3.3. Preliminary experiments and analysis

Again, LHUC weights were applied to all hidden neurons and
trained using backprop. An informal comparison of the expressive
results between using parallel and sequential expressive outputs
shows that there is a significant decrease in the speech artefacts
and distortions. However, there is a significant difference in per-
formance of the expressive speech between the male and female
speakers, which stems from the fact that LHUC is being used to
adapt a single speaker model, trained on a female speaker, not an
average voice mode, trained on multiple speakers which is likely
to have more generic features for modelling the speech of different
speakers. However, LHUC “does not change the learned feature
detectors” [11, p. 173]. Thus if there are feature detectors that are
required by the new speaker that are not present in the pretrained
network, the performance of LHUC will degrade significantly. This
would seem to be the case where one speaker is male and the other
female.

4. ADAPTATION USING HIDDEN LAYER
AUGMENTATION

4.1. Hidden Layer Augmentation

We introduce a novel speaker adaptation technique designed to over-
come the shortcomings of LHUC. Furthermore, we combine this

(a) DNN schematic (b) Extension of the
weight matrices

Fig. 2: Hidden layer augmentation. Black elements are part of the
original network, while red elements are part of the augmentation.

speaker adaptation technique with two different techniques of mod-
elling expression. Instead of adjusting the contributions of the ex-
isting feature detectors, additional neurons are added to each hidden
layer of the network. This is called Hidden Layer Augmentation
(HLA). The additional neurons are fully connected to the preced-
ing and succeeding layers; they can therefore learn new features and
their activations are part of the receptive field of the succeeding layer.
This is illustrated in Figures 2a and 2b. During adaptation, only the
new weights, that is, the weights connected to the additional neurons
are trained.

Intuitively, the augmentation of the hidden layers allows them
to learn whatever the pretrained network has not already learnt, that
is, the new features represented by the new neurons are thus able to
capture that which the pretrained network does not. The pretrained
network will go some way to predicting the correct acoustic features,
but the new neurons will make up the difference between the original
and new speaker, thereby reducing the error rate over the adaptation
training set. In particular, this addresses the shortcomings outlined
above when attempting to adapt a DNN trained on a single speaker.
To perform speaker adaptation, backpropagation is used to train the
additional, speaker-specifc weights, while the rest of the weights of
the network are frozen.

4.2. Expression modelling

We combine this new method for speaker adaptation with two dif-
ferent techniques of modelling expression: using expression inputs
(EI) and expression specific neurons (ESN). In contrast to the model
of Sections 2.1 and 3.2, which models expression at the output, EI
uses expression information at the input, while ESN uses expression
information throughout the hidden layers of the model.

4.2.1. Expression Inputs

Using expression inputs simply means appending the linguistic fea-
tures with an expression flag, a one-hot vector denoting the expres-
sion class. This approach is similar to [7]. Informal testing showed
that the results when trained with the original expressive speaker
are indistinguishable from those of Section 2.1. Applying HLA for
speaker adaptation is as is described in Section 4.1. Typically the
speech of the new speaker is neutral and therefore the neutral flag is
set when performing speaker adaptation.

4.2.2. Expression Specific Neurons

In this technique the hidden neurons are divided into core and ex-
pression specific neurons. The core neurons behave as part of a stan-
dard DNN. However, each hidden layer has a set of neurons specific
to a particular expression class. This is shown in Figure 3.



(a) Expression specific neurons and associated weights

(b) Section of weight matrix specific to each expression class.

Fig. 3: Expression Specific Neurons. Different coloured neurons
and weights belong to different expression classes

Fig. 4: Augmenting HLA weights (in red) to ESN weights modelling
different expressions.

When data is propagated through the network, it will only pass
through the neurons that are associated with the expression class of
the data. Furthermore, the weights associated with the ESNs are only
modified with data from the appropriate expression. The weights as-
sociated with the core neurons are modified with all the neutral and
expressive speech data. By considering the case of two utterances
with the same speech, (i.e. same linguistic information), one neutral
and the other expressive, say “angry”, the expressive utterance will
pass through the same neurons as the neutral utterance, but will also
pass through the “angry” set of ESNs, while not passing through the
“neutral” set of ESNs. Therefore, replacing the neutral ESNs with
an expressive set of ESNs can be thought of as a transformation of
neutral speech to expressive speech. Informal testing showed that
the results when trained with the original expressive speaker are in-
distinguishable from those of Section 2.1

Applying HLA to this model is straightforward. Because the
speech of the new speaker is neutral, it uses the neutral ESNs. Once
the HLA weights have been trained using backprop to achieve neu-
tral speech, the HLA weights can be augmented to the ESN weights
to achieve expressive speech. This is shown in Figure 4.

5. EXPERIMENTS

5.1. Experimental setup

Three models are evaluated:

• A: The model of Section 3.2, which uses multiple outputs to
model different expressions and uses LHUC to adapt to a new
speaker.

• B: The model of Section 4.2.1, which uses a one-hot vector
representation of expressive class at the input to model differ-
ent expressions and uses HLA to adapt to a new speaker.

Baseline A B C
Mel-cepstra (dB) 5.20 5.93 5.68 5.53

F0 31.2 36.7 28.7 32.2
Band Aperiodicity 0.446 0.529 0.516 0.483
V/UV errors (%) 4.73 7.439 5.30 6.41

Table 1: Average measure of distortion for different acoustic fea-
tures on male and female neutral test utterances.

• C: The model of Section 4.2.2, which uses ESNs to model
different expressions and uses HLA to adapt to a new speaker.

The acoustic features used were 45 Mel-cepstral coefficients, loga-
rithmic fundamental frequency, 25-band aperiodicities, and their first
and second time derivatives, in addition to a voiced/unvoiced deci-
sion. The sampling rate of the speech recordings was 32kHz.

The base model is a DNN with six hidden layers, each with
1024 neurons, trained on 6591 utterances (735 angry, 696 fearful,
697 happy, 3078 neutral, 691 sad and 694 tender utterances) of a fe-
male native British English speaker. The neuron output nonlinearity
is sigmoid.

Adaptation on all three models is performed with two separate
experiments, one with adaptation to a female British English speaker
and one with a male British English Speaker, using 100 neutral ut-
terances for adaptation in each case.

The LHUC weights of model A are optimised using 25 iterations
of backprop at a learning rate of 0.1. The HLA weights of models B
and C are optimised using 25 iterations of backprop with a learning
rate of 0.001 and a large L2-norm weight penalty of 0.1.In model C,
960 core neurons and 64 expression specific neurons were used in
each hidden layer. For models B and C, in performing speaker adap-
tation, each hidden layer was extended by 128 neurons. Some speech
samples can be heard by visiting http://mi.eng.cam.ac.uk/~jwp37 .

5.2. Quantitative Evaluation

Table 1 shows the objective measures of distortion on some test data
between the original acoustic features are those synthesised by the
models in question. This can only be performed on neutral speech
as there is no expressive speech data for these speakers. These are
compared against a baseline results of a single-speaker DNN that is
trained on 1024 utterances of each speaker in turn. These results
suggest the superiority of HLA over LHUC in for neutral speaker
adaptation in this case of adapting a single speaker DNN.

5.3. Qualitative Evaluation

The neutral and expressive adapted speech is assessed in three qual-
itative experiments: mean opinion scoring, speaker similarity and
expression similarity.

5.3.1. Mean Opinion Scoring

Test subjects were presented with 10 neutral utterances and 20 ex-
pressive utterances (4 utterances from the 5 expression classes) from
each adapted speaker from each of the three models. Test subjects
were asked to assess the quality of the speech on a 1-5 scale. 8 test
subjects were used. Results are shown in box plots in Figure 5 and
the means are given in Table 2. As a reference, the baseline results
of the single speaker DNNs are included.



(a) Neutral speech (b) Female expressive speech (c) Male expressive speech. The box plot for sys-
tem C is flat because the 25-th and 75-th per-
centile are both 3.

Fig. 5: Box plots of the MOS

A B C
Neutral 2.369 2.907 3.325

Expressive - female 2.389 3.252 3.357
Expressive - male 1.892 3.200 2.993

Table 2: Mean score of each system for neutral and expressive
speech

A B C Neither
A vs B 30.4± 5.6 55.4± 6.0 - 14.2± 4.2
A vs C 33.3± 8.4 - 50.0± 9.0 16.7± 6.7

Table 3: Speaker Similarity (%). Which system did test subjects
find closer to the adapted speaker (with 95% confidence intervals).

These results show that the quality of the synthesised speech
from the models using HLA is consistently superior to those from
models using LHUC.

5.3.2. Speaker similarity

Test subjects were asked to compare the expressive speech results
from models A, B and C, in terms of their fidelity to the intended
speaker. This was done in an ABX test with two expressive utter-
ance from the different models being compared against a neutral ref-
erence. 20 expressive utterances (4 utterances from the 5 expression
classes) from each adapted speaker were used. 8 test subjects were
used. Models A and B are compared and models A and C are com-
pared. The results are given in Table 3.

These results suggest that the expressive speech from HLA mod-
els is closer to the intended speaker than that from LHUC models.

5.3.3. Expression

Evaluating expression is a difficult and ill-defined problem. To as-
sess the expressive speech results from models A, B and C, two ex-
pressive utterances from an adapted speaker from different models
are compared with the original expressive utterance from the corpus
used to train the original single speaker expressive model in an ABX
test. Again, 20 expressive utterances (4 utterances from the 5 expres-
sion classes) from each adapted speaker were used. 10 test subjects
were used. Models A and B are compared and models A and C are
compared. The results are given in Table 4.

A B C Neither
A vs B 56.0± 4.6 37.9± 4.5 - 6.2± 2.2
A vs C 50.4± 4.5 - 41.0± 4.4 8.5± 2.2

Table 4: Expression Similarity (%). Which system did test subjects
find closer to the desired expression (with 95% confidence intervals)

These results suggest that the expressive speech from LHUC
model is closer to the intended expression than that from HLA mod-
els. This result is surprising and contradicts the findings of informal
testing and is at odds with the result of Section 5.3 which indicated
that the HLA models produced higher quality speech. However, this
may be due to the difficulty that test subjects had in assessing the
similarity of expression of two samples or indeed ranking which of
two expressions is closer to a third expression. Therefore, different
tests, such as expression classification (testing whether test subjects
can correctly identify the expression in the synthetic speech), will
be conducted to see if the expressions in the LHUC model is really
closer to the desired expression than the HLA models. Furthermore,
more test subjects will used.

6. CONCLUSION

We have presented a novel speaker adaptation technique for neural
network based speech synthesis systems. We show that, in the case
of adapting an expressive single speaker network, it produces higher
quality neutral and expressive speech. Furthermore, the expressive
speech from the adapted speaker has higher fidelity to the speaker
but slightly lower fidelity to the expression. We think this is not a
reflection on the results but rather a reflection on the difficulty with
which people can judge the similarity of expressions. This merits
further investigation into the quality of the expressions of the output
speech. Furthermore, we intend on applying this technique to other
neural network based speech synthesis models.
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