
POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK 1

Fast-SCNN: Fast Semantic Segmentation
Network

Rudra P K Poudel1

rudra.poudel@crl.toshiba.co.uk

Stephan Liwicki1

stephan.liwicki@crl.toshiba.co.uk

Roberto Cipolla1,2

rc10001@cam.ac.uk

1 Toshiba Research Europe
Cambridge, UK

2 University of Cambridge
UK

Abstract

The encoder-decoder framework is state-of-the-art for offline semantic image seg-
mentation. Since the rise in autonomous systems, real-time computation is increasingly
desirable. In this paper, we introduce fast segmentation convolutional neural network
(Fast-SCNN), an above real-time semantic segmentation model on high resolution im-
age data (1024×2048px) suited to efficient computation on embedded devices with low
memory and power. We introduce a ‘learning to downsample’ module which computes
low-level features for multiple resolution branches simultaneously. Our network com-
bines spatial detail at high resolution with deep features extracted at lower resolution,
yielding an accuracy of 68.0% mean intersection over union at 123.5 frames per second
on full scale images of Cityscapes. We also show that large scale pre-training is unneces-
sary. We thoroughly validate our experiments with ImageNet pre-training and the coarse
labeled data of Cityscapes. Finally, we show even faster computation with competitive
results on subsampled inputs, without any network modifications.

1 Introduction

Fast semantic segmentation is particular important in autonomous systems, where input is to
be parsed quickly to facilitate responsive interactivity with the environment. It is therefore
evident that recently the research into real-time semantic segmentation has gained in popular-
ity [15, 17, 18, 20, 27, 30]. We emphasize, faster than real-time performance is in fact often
necessary, since semantic labeling is usually employed only as a preprocessing step of other
time-critical tasks. Furthermore, real-time semantic segmentation on embedded devices may
enable many additional applications, such as augmented reality for wearables.

State-of-the-art semantic segmentation deep convolutional neural networks (DCNNs)
combine two separate modules: the encoder and the decoder. The encoder module uses a
combination of convolution and pooling operations to extract DCNN features. The decoder
module recovers the spatial details from the sub-resolution features, and predicts the object
labels (i.e. the semantic segmentation) [24]. Later, inspired by global image-level context
prior to DCNNs [11, 14], the pyramid pooling module of PSPNet [29] and atrous spatial

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Paszke, Chaurasia, Kim, and Culurciello} 2016

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Romera, Álvarez, Bergasa, and Arroyo} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Shelhamer, Long, and Darrell} 2016

Citation
Citation
{Lazebnik, Schmid, and Ponce} 2006

Citation
Citation
{Lucchi, Li, Bosch, Smith, and Fua} 2011

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017



2 POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK

+

Input SoftmaxConv2D DSConv BottleneckDWConv UpsamplePyramid Pooling

Learning to Down-sample Global Feature Extractor Feature Fusion Classifier

Figure 1: Fast-SCNN shares the computations between branches (encoders) to build faster
real-time semantic segmentation network.

pyramid pooling (ASPP) of DeepLab [3] are employed to utilize global context. However,
none of them run in real-time.

Recent interest in real-time application, speed and memory became important factors in
image segmentation system design [18, 27]. Common techniques include network quanti-
zation, network compression, factorization of standard convolution and efficient redesign of
DCNNs.

Network Quantization: Since floating point multiplications are costly compared to in-
teger or binary operations, runtime can be further reduced using quantization techniques for
DCNN filters and activation values [9, 19, 26].

Network Compression: Pruning is applied to reduce the size of a pre-trained network,
resulting in faster runtime, a smaller parameter set, and smaller memory footprint [7, 12, 18].
Network quantization and compression are orthogonal to proposed model in this paper.

Factorization of Convolution: MobileNet [8] decomposes a standard convolution into a
depthwise convolution and a 1×1 pointwise convolution, together known as depthwise sepa-
rable convolution. Such a factorization reduces the floating point operations and parameters,
hence the computational cost and memory requirement of the model is reduced.

Efficient Redesign of DCNNs: Building on fully convolutional network (FCN), SegNet
[2] introduced a joint encoder-decoder model. Following SegNet, ENet [17] also design
an encoder-decoder with few layers to reduce the computational cost. More recently, two-
branch and multi-branch models were introduced to achieve real-time performance. ICNet
[30], ContextNet [18], BiSeNet [27] and GUN [15] learned global context with reduced-
resolution input in a deep branch, while boundaries are learned in a shallow branch at full
resolution. Even though the initial layers of the multiple branches extract similar features
[16, 28], they do not leverage this. In this paper we propose learning to downsample module
to address the issue.

Further, state-of-the-art real-time semantic segmentation remains challenging, and typi-
cally requires high-end GPUs. Hence, in this paper we aim for an above real-time semantic
segmentation model on high resolution image data.

1.1 Contributions
Currently, semantic segmentation is typically addressed by a DCNN [2, 18, 24, 30]. Further,
we observe that (i) a larger receptive field is important to learn complex correlations among
object classes (i.e. global context) [29], (ii) spatial detail in images is necessary to preserve
object boundaries [21], and (iii) initial DCNN layers extract low-level features [16, 28].

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2016

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Hubara, Courbariaux, Soudry, El-Yaniv, and Bengio} 2016

Citation
Citation
{Rastegari, Ordonez, Redmon, and Farhadi} 2016

Citation
Citation
{Wu, Li, Chen, and Shi} 2018

Citation
Citation
{Han, Mao, and Dally} 2016

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2017

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Paszke, Chaurasia, Kim, and Culurciello} 2016

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Olah, Mordvintsev, and Schubert} 2017

Citation
Citation
{Zeiler and Fergus} 2014

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Shelhamer, Long, and Darrell} 2016

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Olah, Mordvintsev, and Schubert} 2017

Citation
Citation
{Zeiler and Fergus} 2014



POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK 3

Consequently, we propose fast segmentation convolutional neural network (Fast-SCNN),
an above real-time semantic segmentation algorithm, merging the two-branch setup of prior
art [15, 18, 27, 30]. Building on the observation that initial DCNN layers extract low-level
features [16, 28], we share the computations of the initial layers in the two-branch approach.
We call this technique learning to downsample. The effect is similar to a skip connection in
the encoder-decoder model, but the skip is only employed once to retain runtime and memory
efficiency, and the module is kept shallow to ensure validity of feature sharing. Finally, our
Fast-SCNN adopts efficient depthwise separable convolutions [8, 25], and inverse residual
blocks [23].

Applied on Cityscapes [5], Fast-SCNN yields a mean intersection over union (mIoU) of
68.0% at 123.5 frames per second (fps) on a modern GPU (Nvidia Titan Xp (Pascal)) using
full (1024× 2048px) resolution, which is twice as fast as prior art BiSeNet [27] and Con-
textNet [18]. While we use 1.11 million parameters, most offline segmentation methods (e.g.
DeepLab [3] and PSPNet [29]), and some real-time algorithms (e.g. GUN [15] and ICNet
[30]) require much more than this. The model capacity of Fast-SCNN is kept specifically
low. The reason is two-fold: (i) lower memory enables execution on embedded devices,
and (ii) better generalisation is expected. In particular, pre-training on ImageNet [22] is
frequently advised to boost accuracy and generality [29]. In our work, we study the effect
of pre-training on the low capacity Fast-SCNN. Contradicting the trend of high-capacity
networks, we find that results only insignificantly improve with pre-training or additional
coarsely labeled training data (+0.5% mIoU on Cityscapes [5]). Instead, aggressive data
augmentation and more number of epochs provide similar results. In summary our contribu-
tions are:

1. We propose Fast-SCNN, a competitive (68.0%) and above real-time semantic segmen-
tation algorithm (123.5 fps on 1024×2048px), which is twice as fast as prior art.

2. We propose a learning to downsample module for efficient multi-branch low-level
feature extraction.

3. We specifically design Fast-SCNN to be of low capacity, and we empirically validate
that running training for more epochs is equivalently successful to pre-training with
ImageNet or training with additional coarse data in our small capacity network.

Moreover, we employ Fast-SCNN to subsampled input data, achieving state-of-the-art per-
formance without the need for redesigning our network. Additionally, network quantization
and network compression can be applied orthogonally, and is left to future work.

2 Proposed Fast-SCNN
Figure 1 and Table 1 present the layout of Fast-SCNN. In the following we discuss our
motivation and describe our building blocks in more detail.

2.1 Motivation
Current state-of-the-art semantic segmentation methods that run in real-time are based on
networks with two branches, each operating on a different resolution level [15, 18, 27].
They learn global information from low-resolution versions of the input image, and shallow
networks at full input resolution are employed to refine the precision of the segmentation

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Olah, Mordvintsev, and Schubert} 2017

Citation
Citation
{Zeiler and Fergus} 2014

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Sifre} 2014

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2016

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018



4 POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK

Input Block t c n s
1024×2048×3 Conv2D - 32 1 2
512×1024×32 DSConv - 48 1 2
256×512×48 DSConv - 64 1 2
128×256×64 bottleneck 6 64 3 2
64×128×64 bottleneck 6 96 3 2
32×64×96 bottleneck 6 128 3 1
32×64×128 PPM - 128 - -
32×64×128 FFM - 128 - -
128×256×128 DSConv - 128 2 1
128×256×128 Conv2D - 19 1 1

Table 1: Fast-SCNN uses standard convolution (Conv2D), depthwise separable convolu-
tion (DSConv), inverted residual bottleneck blocks (bottleneck), a pyramid pooling module
(PPM) and a feature fusion module (FFM) block. Parameters t, c, n and s represent expansion
factor of the bottleneck block, number of output channels, number of times block is repeated
and stride parameter which is applied to first sequence of the repeating block. The horizontal
lines separate the modules: learning to down-sample, global feature extractor, feature fusion
and classifier (top to bottom).

results. Since input resolution and network depth are main factors for runtime, these two-
branch approaches allow for real-time computation.

It is well known that the first few layers of DCNNs extract the low-level features, such
as edges and corners [16, 28]. Therefore, rather than employing a two-branch approach with
separate computation, we introduce learning to downsample, which shares feature computa-
tion between the low and high-level branch in a shallow network block.

2.2 Network Architecture

Our Fast-SCNN uses a learning to downsample module, a coarse global feature extractor, a
feature fusion module and a standard classifier.

Learning to Downsample: In our learning to downsample module, we employ only
three layers to ensure low-level feature sharing is valid, and efficiently implemented. The
first layer is a standard convolutional layer (Conv2D) and the remaining two layers are depth-
wise separable convolutional layers (DSConv). Here we emphasize, although DSConv is
computationally more efficient, we employ Conv2D since the input image only has three
channels, making DSConv’s computational benefit insignificant at this stage.

All three layers in our learning to downsample module use stride 2, followed by batch
normalization [10] and ReLU. The spatial kernel size of the convolutional and depthwise
layers is 3× 3. Following [4, 18, 23], we omit the nonlinearity between depthwise and
pointwise convolutions.

Global Feature Extractor: The global feature extractor module is aimed at capturing
the global context for image segmentation. In contrast to common multi-branch methods
which operate on low-resolution versions of the input image, our module directly takes the
output of the learning to downsample module (which is at 1

8 -resolution of the original input).
The detailed structure of the module is shown in Table 1. We use an efficient bottleneck
residual block introduced by MobileNet-V2 [23] (Table 2). In particular, we employ residual

Citation
Citation
{Olah, Mordvintsev, and Schubert} 2017

Citation
Citation
{Zeiler and Fergus} 2014

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Chollet} 2016

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018



POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK 5

Input Operator Output
h×w× c Conv2D 1/1, f h×w× tc
h×w× tc DWConv 3/s, f h

s ×
w
s × tc

h
s ×

w
s × tc Conv2D 1/1,− h

s ×
w
s × c′

Table 2: The bottleneck residual block transfers the input from c to c′ channels with expan-
sion factor t. Note, the last pointwise convolution does not use non-linearity f . The input is
of height h and width w, and x/s represents kernel-size/stride of the layer.

Higher resolution X times lower resolution
- Upsample × X
- DWConv (dilation X) 3/1, f

Conv2D 1/1,− Conv2D 1/1,−
add, f

Table 3: Features fusion module (FFM) of Fast-SCNN. Note, the pointwise convolutions are
of desired output, and do not use non-linearity f . Non-linearity f is employed after adding
the features.

connection for the bottleneck residual blocks when the input and output are of the same size.
Our bottleneck block uses an efficient depthwise convolution, resulting in less number of
parameters and floating point operations. Also, a pyramid pooling module (PPM) [29] is
added at the end to aggregate the different-region-based context information.

Feature Fusion Module: We prefer simple addition of the features to ensure efficiency.
Alternatively, more sophisticated feature fusion modules (e.g. [27]) could be employed at
the cost of runtime performance, to reach better accuracy. The detail of the feature fusion
module is shown in Table 3.

Classifier: In the classifier we employ two depthwise separable convolutions (DSConv)
and one pointwise convolution (Conv2D). We found that adding few layers after the feature
fusion module boosts the accuracy. The details of the classifier module is shown in Table 1.

Softmax is used during training, since gradient decent is employed. During inference we
may substitute costly softmax computations with argmax, since both functions are monoton-
ically increasing. We denote this option as Fast-SCNN cls i.e. classification. On the other
hand, if a standard DCNN based probabilistic model is desired, softmax is used, denoted as
Fast-SCNN prob i.e. probability.

3 Experiments
We evaluated our proposed Fast-SCNN on the validation set of the Cityscapes dataset [5],
and report its performance on the Cityscapes test set, i.e. the Cityscapes benchmark server.

3.1 Implementation Details
Implementation detail is as important as theory when it comes to efficient DCNNs. Hence,
we carefully describe our setup here. We conduct experiments on the TensorFlow machine
learning platform using Python. Our experiments are executed on a workstation with either
Nvidia Titan X (Maxwell) or Nvidia Titan Xp (Pascal) GPU, with CUDA 9.0 and CuDNN

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016



6 POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK

Model Class Category Params
DeepLab-v2 [3]* 70.4 86.4 44.–
PSPNet [29]* 78.4 90.6 65.7_
SegNet [2] 56.1 79.8 29.46
ENet [17] 58.3 80.4 00.37
ICNet [30]* 69.5 - 06.68
ERFNet [20] 68.0 86.5 02.1_
BiSeNet [27] 71.4 - 05.8_
GUN [15] 70.4 - -
ContextNet [18] 66.1 82.7 00.85
Fast-SCNN (Ours) 68.0 84.7 01.11

Table 4: Class and category mIoU of the proposed Fast-SCNN compared to other state-of-
the-art methods on the Cityscapes test set. Number of parameters is listed in millions.

ro
ad

si
de

w
al

k

bu
ild

in
g

w
al

l

fe
nc

e

po
le

tr
af

fic
lig

ht

tr
af

fic
si

gn

ve
ge

ta
tio

n

te
rr

ai
n

sk
y

pe
rs

on

ri
de

r

ca
r

tr
uc

k

bu
s

tr
ai

n

m
ot

or
cy

cl
e

bi
cy

cl
e

ContextNet 97.6 79.2 88.7 43.8 42.8 37.9 52.0 58.8 90.0 66.8 91.9 72.1 53.9 91.6 54.0 66.4 58.3 48.9 61.0
Fast-SCNN 97.9 81.5 89.6 46.3 48.6 48.3 53.0 60.5 90.7 67.1 94.3 73.9 54.5 92.9 57.4 65.4 58.2 50.0 61.2

Table 5: Detailed class-level mIoU of the proposed Fast-SCNN compared with ContextNet.

v7. Runtime evaluation is performed in a single CPU thread and one GPU with batch-size
one to measure the forward inference time. We use 100 frames for burn-in and report average
of 100 frames for the frames per second (fps) measurement.

We use stochastic gradient decent (SGD) with momentum 0.9 and batch-size 12. In-
spired by [3, 8, 29] we use ‘poly’ learning rate with the base one as 0.045 and power as
0.9. Similar to MobileNet-V2 we found that `2 regularization is not necessary on depthwise
convolutions, for other layers `2 is 0.00004. Since training data for semantic segmentation
is limited, we apply various data augmentation techniques: random resizing between 0.5 to
2, translation/crop, horizontal flip, color channels noise and brightness. Our model is trained
with cross-entropy loss. We found that auxiliary losses at the end of learning to downsample
and the global feature extraction modules with 0.4 weights are beneficial.

Batch normalization [10] is used before every non-linear function. Dropout is used only
on the last layer, just before the softmax layer. Contrary to MobileNet [8] and ContextNet
[18], we found that Fast-SCNN trains faster with ReLU and achieves slightly better accuracy
than ReLU6, even with the depthwise separable convolutions that we use throughout our
model.

We found that the performance of DCNNs can be improved by training for higher number
of iterations, hence we train our model for 1,000 epochs unless otherwise stated, using the
Cityescapes dataset [5]. It is worth noting here, Fast-SCNN’s capacity is deliberately very
low, as we employ 1.11 million parameters. Later we show that aggressive data augmentation
techniques make overfitting unlikely.

3.2 Evaluation on Cityscapes
We evaluate our proposed Fast-SCNN on Cityscapes, the largest publicly available dataset
of urban roads [5]. This dataset contains a diverse set of high resolution images (1024×
2048px) captured from 50 different cities. It has 5,000 images with high label quality: a

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2016

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Paszke, Chaurasia, Kim, and Culurciello} 2016

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Romera, Álvarez, Bergasa, and Arroyo} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2016

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016



POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK 7

1024×2048 512×1024 256×512
SegNet [2] 1.6 - -
ENet [17] 20.4 76.9 142.9
ICNet [30] 30.3 - -
ERFNet [20] 11.2 41.7 125.0
ContextNet [18] 41.9 136.2 299.5
Fast-SCNN prob (Ours) 62.1 197.6 372.8
Fast-SCNN cls (Ours) 75.3 218.8 403.1
BiSeNet [27]* 57.3 - -
GUN [15]* 33.3 - -
Fast-SCNN prob (Ours)* 106.2 266.3 432.9
Fast-SCNN cls (Ours)* 123.5 285.8 485.4

Table 6: Runtime (fps) on Nvidia Titan X (Maxwell, 3,072 CUDA cores) with Tensor-
Flow [1]. ‘*’ represent results on Nvidia Titan Xp (Pascal, 3,840 CUDA cores). Two versions
of Fast-SCNN are shown: softmax output (our prob), and object label output (our cls).

training set of 2,975, validation set of 500 and test set of 1,525 images. The label for the
training set and validation set are available and test results can be evaluated on the evalua-
tion server. Additionally, 20,000 weakly annotated images (coarse labels) are available for
training. We report results with both, fine only and fine with coarse labeled data. Cityscapes
provides 30 class labels, while only 19 classes are used for evaluation. The mean of inter-
section over union (mIoU), and network inference time are reported in the following.

We evaluate overall performance on the withheld test set of Cityscapes [5]. The compar-
ison between the proposed Fast-SCNN and other state-of-the-art real-time semantic segmen-
tation methods and offline methods is shown in Table 4. Fast-SCNN achieves 68.0% mIoU,
which is slightly lower than BiSeNet (71.5%) and GUN (70.4%). ContextNet only achieves
66.1% here. Further, Table 5 compares detailed class-level mIoU of the Fast-SCNN with
ContextNet. The results of Fast-SCNN are displayed in Figure 2 for qualitative analysis.

Table 6 compares runtime at different resolutions. Here, BiSeNet (57.3 fps) and GUN
(33.3 fps) are significantly slower than Fast-SCNN (123.5 fps). Compared to ContextNet
(41.9 fps), Fast-SCNN is also significantly faster on Nvidia Titan X (Maxwell). Therefore we
conclude, Fast-SCNN significantly improves upon state-of-the-art runtime with minor loss
in accuracy. At this point we emphasize, our model is designed for low memory embedded
devices. Fast-SCNN uses 1.11 million parameters, that is five times less than the competing
BiSeNet at 5.8 million.

Ablation Study In our ablation study of learning to downsample module, we zero-out
the contribution of the skip connection and measure Fast-SCNN’s performance. The mIoU
reduced from 69.22% to 64.30% on the validation set. The qualitative results are compared
in Figure 3. As expected, Fast-SCNN benefits from the skip connection, especially around
boundaries and objects of small size.

3.3 Lower Input Resolution

Since we are interested in embedded devices that may not have full resolution input, or access
to powerful GPUs, we conclude our evaluation with the study of performance at half, and
quarter input resolutions (Table 7).

At quarter resolution, Fast-SCNN achieves 51.9% accuracy at 485.4 fps, which signif-

Citation
Citation
{Badrinarayanan, Kendall, and Cipolla} 2017

Citation
Citation
{Paszke, Chaurasia, Kim, and Culurciello} 2016

Citation
Citation
{Zhao, Qi, Shen, Shi, and Jia} 2018

Citation
Citation
{Romera, Álvarez, Bergasa, and Arroyo} 2018

Citation
Citation
{Poudel, Bonde, Liwicki, and Zach} 2018

Citation
Citation
{Yu, Wang, Peng, Gao, Yu, and Sang} 2018

Citation
Citation
{Mazzini} 2018

Citation
Citation
{Abadi and et. al.} 2015

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016



8 POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK

Figure 2: Qualitative results of Fast-SCNN on Cityscapes [5] validation set. First column:
input RGB images; second column: ground truth labels; and last column: Fast-SCNN out-
puts. Fast-SCNN obtains 68.0% class level mIoU and 84.7% category level mIoU.

Input Size Class FPS
1024×2048 68.0 123.5
512×1024 62.8 285.8
256×512 51.9 485.4

Table 7: Evaluation of Fast-SCNN at differ-
ent input resolutions on Cityscapes’ test set.

Model Class
Fast-SCNN 68.62
Fast-SCNN + ImageNet 69.15
Fast-SCNN + Coarse 69.22
Fast-SCNN + Coarse + ImageNet 69.19

Table 8: Class mIoU of different Fast-SCNN
settings on the Cityscapes validation set.

icantly improves on (anonymous) MiniNet with 40.7% mIoU at 250 fps [5]. At half reso-
lution, a competitive 62.8% mIoU at 285.8 fps is reached. We emphasize, without modi-
fication, Fast-SCNN is directly applicable to lower input resolution, making it suitable for
embedded devices.

3.4 Pre-training and Weakly Labeled Data
High capacity DCNNs, such as R-CNN [6] and PSPNet [29], have shown that performance
can be boosted with pre-training through different auxiliary tasks. As we specifically design
Fast-SCNN to have low capacity, we now want to test performance with and without pre-
training, and in connection with and without additional weakly labeled data. To the best of
our knowledge, the significance of pre-training and additional weakly labeled data on low
capacity DCNNs has not been studied before. Table 8 shows the results.

We pre-train Fast-SCNN on ImageNet [22] by replacing the feature fusion module with
average pooling and the classification module now has a softmax layer only. Fast-SCNN
achieves 60.71% top-1 and 83.0% top-5 accuracies on the ImageNet validation set. This
result indicates that Fast-SCNN has insufficient capacity to reach comparable performance to
most standard DCNNs on ImageNet (>70% top-1) [8, 23]. The accuracy of Fast-SCNN with
ImageNet pre-training yields 69.15% mIoU on the validation set of Cityscapes, only 0.53%

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2013

Citation
Citation
{Zhao, Shi, Qi, Wang, and Jia} 2017

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2015

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018



POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK 9

Figure 3: Visualization of Fast-SCNN’s segmentation results. First column: input RGB
images; second column: outputs of Fast-SCNN; and last column: outputs of Fast-SCNN
after zeroing-out the contribution of the skip connection. In all results, Fast-SCNN benefits
from skip connections especially at boundaries and objects of small size.

0 1 2 3 4 5 6 7

Iterations 10
5

0

20

40

60

80

A
c
c
u
ra

c
y

Fast-SCNN

Fast-SCNN + ImageNet

Fast-SCNN + Coarse

Fast-SCNN + Coarse + ImageNet

0 200 400 600 800 1000

Epochs

0

20

40

60

80

A
c
c
u
ra

c
y

Fast-SCNN

Fast-SCNN + ImageNet

Fast-SCNN + Coarse

Fast-SCNN + Coarse + ImageNet

Figure 4: Training curves on Cityscapes. Accuracy over iterations (left), and accuracy over
epochs are shown (right). Dash lines represent ImageNet pre-training of the Fast-SCNN.

improvement over Fast-SCNN without pre-training. Therefore we conclude, no significant
boost can be achieved with ImageNet pre-training in Fast-SCNN.

Since the overlap between Cityscapes’ urban roads and ImageNet’s classification task is
limited, it is reasonable to assume that Fast-SCNN may not benefit due to limited capacity
for both domains. Therefore, we now incorporate the 20,000 coarsely labeled additional
images provided by Cityscapes, as these are from a similar domain. Nevertheless, Fast-
SCNN trained with coarse training data (with or without ImageNet) performs similar to each
other, and only slightly improve upon the original Fast-SCNN without pre-training. Please
note, small variations are insignificant and due to random initializations of the DCNNs.

It is worth noting here that working with auxiliary tasks is non-trivial as it requires archi-
tectural modifications in the network. Furthermore, licence restrictions and lack of resources
further limit such setups. These costs can be saved, since we show that neither ImageNet
pre-training nor weakly labeled data are significantly beneficial for our low capacity DCNN.

Figure 4 shows the training curves. Fast-SCNN with coarse data trains slow in terms of
iterations because of the weak label quality. Both ImageNet pre-trained versions perform



10 POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK

better for early epochs (upto 400 epochs for training set alone, and 100 epochs when trained
with the additional coarse labeled data). This means, we only need to train our model for
longer to reach similar accuracy when we train our model from scratch on reasonable size
dataset, confirming similar finding by [13].

4 Conclusions
In this work we proposed a fast segmentation network for above real-time scene understand-
ing. Proposed ‘learning to downsample’ module computes low-level features for multiple
resolution branches simultaneously. Sharing the computational cost of the multi-branch net-
work yields run-time efficiency. In experiments our skip connection is shown beneficial for
recovering the spatial details. We also demonstrate that if trained for long enough, large-
scale pre-training of the model on an additional auxiliary task is not necessary for the low
capacity network.

References
[1] M. Abadi and et. al. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. URL https://www.tensorflow.org/.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. TPAMI, 2017.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. DeepLab:
Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and
Fully Connected CRFs. arXiv:1606.00915 [cs], 2016.

[4] F. Chollet. Xception: Deep Learning with Depthwise Separable Convolutions.
arXiv:1610.02357 [cs], 2016.

[5] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding.
In CVPR, 2016.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation, 2013.

[7] S. Han, H. Mao, and W. J. Dally. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. In ICLR, 2016.

[8] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv:1704.04861 [cs], 2017.

[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized Neural
Networks. In NIPS. 2016.

[10] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs], 2015.

Citation
Citation
{Liu, Sun, Zhou, Huang, and Darrell} 2018

https://www.tensorflow.org/


POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK 11

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In CVPR, volume 2, pages 2169–
2178, 2006.

[12] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning Filters for Efficient
ConvNets. In ICLR, 2017.

[13] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network
pruning, 2018.

[14] A. Lucchi, Y. Li, X. B. Bosch, K. Smith, and P. Fua. Are spatial and global constraints
really necessary for segmentation? In ICCV, 2011.

[15] D. Mazzini. Guided Upsampling Network for Real-Time Semantic Segmentation. In
BMVC, 2018.

[16] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill, 2017.

[17] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet: A Deep Neural Network
Architecture for Real-Time Semantic Segmentation. arXiv:1606.02147 [cs], 2016.

[18] R.P.K. Poudel, U. Bonde, S. Liwicki, and C. Zach. ContextNet: Exploring context and
detail for semantic segmentation in real-time. In BMVC, 2018.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet Classi-
fication Using Binary Convolutional Neural Networks. In ECCV, 2016.

[20] E. Romera, J. M. Álvarez, L. M. Bergasa, and R. Arroyo. ERFNet: Efficient Residual
Factorized ConvNet for Real-Time Semantic Segmentation. IEEE Transactions on
Intelligent Transportation Systems, 2018.

[21] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomed-
ical Image Segmentation. In MICCAI, 2015.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 2015.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Inverted Residuals
and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmenta-
tion. arXiv:1801.04381 [cs], 2018.

[24] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic seg-
mentation. PAMI, 2016.

[25] L. Sifre. Rigid-motion scattering for image classification. PhD thesis, 2014.

[26] S. Wu, G. Li, F. Chen, and L. Shi. Training and Inference with Integers in Deep Neural
Networks. In ICLR, 2018.

[27] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. Bisenet: Bilateral segmentation
network for real-time semantic segmentation. In ECCV, 2018.



12 POUDEL, LIWICKI, CIPOLLA: FAST-SCNN: FAST SEGMENTATION NETWORK

[28] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks.
In ECCV, 2014.

[29] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid Scene Parsing Network. In CVPR,
2017.

[30] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia. ICNet for Real-Time Semantic Segmentation
on High-Resolution Images. In ECCV, 2018.


