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Abstract

Autonomous vehicles commonly rely on highly detailed

birds-eye-view maps of their environment, which capture

both static elements of the scene such as road layout as

well as dynamic elements such as other cars and pedestri-

ans. Generating these map representations on the fly is a

complex multi-stage process which incorporates many im-

portant vision-based elements, including ground plane esti-

mation, road segmentation and 3D object detection. In this

work we present a simple, unified approach for estimating

maps directly from monocular images using a single end-

to-end deep learning architecture. For the maps themselves

we adopt a semantic Bayesian occupancy grid framework,

allowing us to trivially accumulate information over multi-

ple cameras and timesteps. We demonstrate the effective-

ness of our approach by evaluating against several chal-

lenging baselines on the NuScenes and Argoverse datasets,

and show that we are able to achieve a relative improve-

ment of 9.1% and 22.3% respectively compared to the best-

performing existing method. 1

1. Introduction

Autonomous vehicles and other robotic platforms re-

quire a rich, succinct and detailed representation of their

environment which captures both the geometry and layout

of the static world as well as the pose and dimensions of

other dynamic agents. Such representations often provide

the foundation for all decision making, including path plan-

ning, collision avoidance and navigation. Rather than cap-

turing the full 3D world in its entirety, one popular solu-

tion is to represent the world in the form of a birds-eye-

view (BEV) map, which provide a compact way to cap-

ture the spatial configuration of the scene. Such maps are

convenient in that they are simple to visualise and process,

exploiting the fact that in many scenarios the essential in-

1Source code and dataset splits will be made available at github.

com/tom-roddick/mono-semantic-maps.
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Figure 1. An example prediction from our algorithm. Given a set

of surround-view images, we predict a full 360◦ birds-eye-view

semantic map, which captures both static elements like road and

sidewalk as well as dynamic actors such as cars and pedestrians.

formation for navigation is largely confined to the ground

plane.

Construction of birds-eye-view maps is however at

present a complex multistage processing pipeline, involv-

ing the composition of multiple fundamental machine vi-

sion tasks: structure from motion, ground plane estimation,

road segmentation, lane detection, 3D object detection, and

many more. Intuitively, all these tasks are related: knowing

the layout of the road ought to inform us about where in the

image we should look for cars; and similarly a car emerg-

ing from behind a building may indicate the presence of a

hidden side road beyond. There seems to be a clear impe-

tus towards replacing this complicated pipeline with a sim-
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ple end-to-end approach which is able to reason holistically

about the world and predict the desired map representation

directly from sensor observations. In this work we focus on

the particularly challenging scenario of BEV map estima-

tion from monocular images alone. Given the high cost and

limited resolution of LiDAR and radar sensors, the ability to

build maps from image sensors alone is likely to be crucial

to the development of robust autonomous vehicles.

Whilst a number of map representations are possible,

we choose to represent the world using a probabilistic oc-

cupancy grid framework. Occupancy grid maps [10] are

widely used in robotics, and allow us to trivially incorpo-

rate information over multiple sensors and timesteps. Un-

like other map representations, their grid-based structure

also makes them highly agreeable to processing by convo-

lutional neural networks, allowing us to take advantage of

powerful developments from the deep learning literature. In

this work we extend the traditional definition of occupancy

grids to that of a semantic occupancy grid [17], which en-

codes the presence or absence of an object category at each

grid location. Our objective is then to predict the probabil-

ity that each semantic class is present at each location in our

birds-eye-view map.

The contributions of this paper are as follows:

1. We propose a novel dense transformer layer which

maps image-based feature maps into the birds-eye-

view space.

2. We design a deep convolutional neural network archi-

tecture, which includes a pyramid of transformers op-

erating at multiple image scales, to predict accurate

birds-eye-view maps from monocular images.

3. We evaluate our approach on two large-scale au-

tonomous driving datasets, and show that we are able

to considerably improve upon the performance of lead-

ing works in the literature.

We also qualitatively demonstrate how a Bayesian semantic

occupancy grid framework can be used to accumulate map

predictions across multiple cameras and timesteps to build

a complete model of a scene. The method is fast enough

to be used in real time applications, processing 23.2 frames

per second on a single GeForce RTX 2080 Ti graphics card.

2. Related Work

Map representations for autonomous driving High def-

inition birds-eye-view maps have been shown to be an ex-

tremely powerful representation across a range of different

driving tasks. In 3D object detection, [27] use ground height

prior information from maps to improve the quality of input

LiDAR point clouds. [18] correlate visual observations with

sparse HD map features to perform highly accurate locali-

sation. Birds-eye-view maps are particularly valuable in the

context of prediction and planning given their metric nature:

[9] and [4] render the local environment as a rasterised top-

view map representation, incorporating road geometry, lane

direction, and traffic agents, and use this representation to

predict future vehicle trajectories. A similar representation

is used by [2] as input to their imitation learning pipeline,

allowing an autonomous agent to drive itself by recursively

predicting its future state. [12] augment their camera-based

end-to-end driving model with a rendered map view from

a commercial GPS route planner and show that this signifi-

cantly improves driving performance.

Top-down representations from images A number of

prior works have tackled the difficult problem of predict-

ing birds-eye-view representations directly from monocular

images. A common approach is to use inverse perspective

mapping (IPM) to map front-view image onto the ground

plane via a homography [1, 15]. [28] use a GAN to refine

the resulting predictions. Other works focus on the birds-

eye-view object detection task, learning a to map 2D bound-

ing box detections to the top-down view[20, 26], or pre-

dicting 3D bounding boxes directly in the birds-eye-view

space [22].

Relatively few works however have tackled the more

specific problem of generating semantic maps from images.

Some use the IPM approach mentioned above to map a se-

mantic segmentation of the image plane into the birds-eye-

view space [8, 23], an approach which works well for es-

timating local road layout but which fails for objects such

as cars and pedestrians which lie above the ground plane.

[13] take advantage of RGB-D images to learn an implicit

map representation which can be used for later localisation.

The VED method of [17] uses a variational encoder-decoder

network to predict a semantic occupancy grid directly from

an image. The use of a fully-connected bottleneck layer in

the network however means that much of the spatial context

in the network is lost, leading to an output which is fairly

coarse and is unable to capture small objects such as pedes-

trians. [21] adopt a similar approach, predicting a birds-

eye-view semantic segmentation from a stack of surround

view images, via a fully-connected view-transformer mod-

ule. [24] propose to use an in-painting CNN to infer the

semantic labels and depth of the scene behind foreground

objects, and generate a birds-eye-view by projecting the re-

sulting semantic point cloud onto the ground plane.

Unfortunately, given the lack of available ground truth

data, many of the above methods are forced to rely on

weak supervision from stereo [17], weakly-aligned map la-

bels [24] or synth-to-real domain transfer [24, 21]. Training

on real data is crucial to performance in safety critical sys-

tems, and we believe we are the first to do so using a directly

supervised approach.
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Figure 2. Architecture diagram showing an overview of our approach. (1) A ResNet-50 backbone network extracts image features at

multiple resolutions. (2) A feature pyramid augments the high-resolution features with spatial context from lower pyramid layers. (3) A

stack of dense transformer layers map the image-based features into the birds-eye-view. (4) The topdown network processes the birds-eye-

view features and predicts the final semantic occupancy probabilities.

3. Semantic occupancy grid prediction

In this work we represent the state of the world as a birds-

eye-view semantic occupancy grid map. Occupancy grid

maps [10] are a type of discrete random field where each

spatial location xi has an associated state mi, which may

be either occupied (mi = 1), or free (mi = 0). In practice,

the true state of the world is unknown, so we treat mi as a

random variable, and estimate the probability of occupancy

p(mi|z1:t), conditioned on a set of observations zt. The oc-

cupancy grid formulation may be further extended to that of

a semantic occupancy grid, where instead of generic cell oc-

cupancy, the state mc
i represents the presence or absence of

an object of class c in a given grid cell. These occupancies

are non-exclusive: for example road, crossing and vehicle

classes may conceivably coexist at the same location.

Traditionally in occupancy grid mapping, the occupancy

probabilities p(mi|zt) are estimated using an inverse sen-

sor model, often a simple hand-engineered function which

maps from range sensor readings to occupancy probabilities

based on sensor characteristics. In our application, observa-

tions take the form of images and cell occupancies capture

high-level semantic knowledge of the scene. We therefore

propose to train a deep CNN-based inverse sensor model

p(mc
i |zt) = fθ(zt, xi) which learns to predict occupancy

probabilities from a single monocular input image.

Our objective is therefore to predict a set of multiclass bi-

nary labels at each location on a 2D birds-eye-view image.

This scenario bears many similarities to the widely-studied

computer vision problem of semantic segmentation. What

makes this task particularly challenging however is the fact

that the input and output representations exist within en-

tirely different coordinate systems: the former in the per-

spective image space, and the latter in the orthographic

birds-eye-view space. We therefore propose a simple trans-

former layer, which makes use of both camera geometry and

fully-connected reasoning to map features from the image

to the birds-eye-view space.

We incorporate this dense transformer layer as part of

our deep Pyramid Occupancy Network (PyrOccNet). The

pyramid occupancy network consists of four main stages. A

backbone feature extractor generates multiscale semantic

and geometric features from the image. This is then passed

to an FPN [16]-inspired feature pyramid which upsamples

low-resolution feature-maps to provide context to features

at higher resolutions. A stack of dense transformer lay-

ers together map the image-based features into the birds-

eye view, which are processed by the topdown network to

predict the final semantic occupancy grid probabilities. An

overview of the approach is shown in Figure 2.

3.1. Losses

We train our network using a combination of two loss

functions. The binary cross entropy loss encourages the pre-

dicted semantic occupancy probabilities p(mc
i |zt) to match

the ground truth occupancies m̂c
i . Given that our datasets

includes many small objects such as pedestrians, cyclists

and traffic cones, we make use of a balanced variant of this

loss, which up-weights occupied cells belonging to class c

by a constant factor αc:

Lxent = αcm̂c
i log p(m

c
i |zt)+(1−αc)(1−m̂c

i ) log (1− p(mc
i |zt))

(1)

Neural networks are however renowned for routinely

predicting high probabilities even in situations where they

are highly uncertain. To encourage the networks to predict

high uncertainty in regions which are known to be ambigu-

ous, we introduce a second loss, which maximises the en-

tropy of the predictions, encouraging them to fall close to

0.5:

Luncert = 1− p(mc
i |zt) log2 p(m

c
i |zt) (2)

We apply this maximum entropy loss only to grid cells
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which are not visible to the network, either because they fall

outside field of view of the image, or because they are com-

pletely occluded (see Section 4.2 for details). We ignore the

cross entropy loss in these regions. The overall loss is given

by the sum of the two loss functions:

Ltotal = Lxent + λLuncert (3)

where λ = 0.001 is a constant weighting factor.

3.2. Temporal and sensor data fusion

The Bayesian occupancy grid formulation provides a

natural way of combining information over multiple obser-

vations and multiple timesteps using a Bayesian filtering ap-

proach [25]. Consider an image observation zt taken by a

camera with extrinsic matrix Mt. We begin by converting

our occupancy probabilities p(mc
i |zt) into a log-odds repre-

sentation

lci,t = log
p(mc

i |zt)

1− p(mc
i |zt)

(4)

which conveniently is equivalent to the network’s pre-

sigmoid output activations. The combined log-odds occu-

pancies over observations 1 to t is then given by

lci,1:t = lci,1:t−1 + lci,t − lc0 (5)

from which the occupancy probabilities after fusion can be

recovered by applying the standard sigmoid function

p(mc
i |z1:t) =

1

1 + exp
(

−lci,1:t
) (6)

The log-odds value lc0 represents the prior probability of oc-

cupancy for class c:

lc0 =
p(mc

i )

1− p(mc
i )

(7)

To obtain the occupancy probabilities in the global co-

ordinate system, we resample the output from our network,

which predicts occupancies in the local camera-frame co-

ordinate system, into the global frame using the extrinsics

matrix Mt, i.e. p(mi|zt) = fθ(zt,M
−1
t xi). This approach

is used in Section 5.4 both to combine sensory information

from a set of surround view cameras, and also to fuse occu-

pancy grids over a 20s duration sequence of observations.

3.3. Dense transformer layer

One of the fundamental challenges of the occupancy grid

prediction task is that the input and output exist in two en-

tirely disparate coordinate systems: the perspective image

space and the orthographic birds-eye-view space. To over-

come this problem, we introduce a simple transformation

layer, which is depicted in Figure 3. Our objective is to

convert from an image plane feature map with C channels,

H
W

W W

Z

C

C

CB
Z

X

Image features
Bottleneck

features
Polar BEV
features

Birds-eye-view
features

Collapse along 
height axis

Expand along 
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Figure 3. Our dense transformer layer first condenses the image-

based features along the vertical dimension, whilst retaining the

horizontal dimension. We then predict a set of features along the

depth axis in a polar coordinate system, which are then resampled

to Cartesian coordinates.

height H and width W , to a feature map on the birds-eye-

view plane with C channels, depth Z and width X .

The dense transformer layer is inspired by the observa-

tion that while the network needs a lot of vertical context to

map features to the birds-eye-view (due to occlusion, lack

of depth information, and the unknown ground topology), in

the horizontal direction the relationship between BEV loca-

tions and image locations can be established using simple

camera geometry. Therefore, in order to retain the maxi-

mum amount of spatial information, we collapse the verti-

cal dimension and channel dimensions of the image feature

map to a bottleneck of size B, but preserve the horizontal

dimension W . We then apply a 1D convolution along the

horizontal axis and reshape the resulting feature map to give

a tensor of dimensions C × Z × W . However this feature

map, which is still in image-space coordinates, actually cor-

responds to a trapezoid in the orthographic birds-eye-view

space due to perspective, and so the final step is to resample

into a Cartesian frame using the known camera focal length

f and horizontal offset u0.

3.4. Multiscale transformer pyramid

The resampling step described in Section 3.3 involves,

for a row of grid cells a distance z away from the camera,

sampling the polar feature map at intervals of

∆u =
f∆x

sz
(8)

where ∆x is the grid resolution and s is the downsampling

factor of input feature map with respect to the image. The

use of a constant factor for s however is problematic: fea-

tures corresponding to grid cells far from the camera will be

blurred whilst those close to the camera will be undersam-

pled and aliasing can occur. We therefore propose to apply

multiple transformers, acting on a pyramid of feature maps

with downsampling factors sk = 2k+3, k ∈ {0, ..., 4}. The

kth transformer generates features for a subset of depth val-

ues, ranging from zk to zk−1, where zk is given by

zk =
f∆x

sk
. (9)
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Table 1. Depth intervals for each layer of the feature pyramid.

k 0 1 2 3 4

sk 8 16 32 64 128

zk (m) 39.0 19.5 9.0 4.5 1.0

ResNet layer conv3 conv4 conv5 conv6 conv7

Values of zk for a typical camera and grid setting are given

in Table 1. The final birds-eye-view feature map is then

constructed by concatenating the outputs of each individual

transformer along the depth axis.

One downside of this approach is that at high resolutions

the height of the feature maps Hk can become very large,

which leads to an excessive number of parameters in the

corresponding dense transformer layer. In practice however,

we can crop the feature maps to a height

Hk = f
ymax − ymin

skzk
(10)

corresponding to a fixed vertical range between ymin and

ymax in the world space. This means that the heights of the

cropped feature maps stay roughly constant across scales.

The feature maps are taken from the outputs of each

residual stage in our backbone network, from conv3 to

conv7. To ensure that the high resolution feature maps still

encompass a large spatial context, we add upsampling lay-

ers from lower resolutions in the style of [16].

4. Experimental Setup

4.1. Datasets

We evaluate our approach against two large-scale au-

tonomous driving datasets. The NuScenes dataset [3] con-

sists of 1000 short video sequences captured from four loca-

tions in Boston and Singapore. It includes images captured

from six calibrated surround-view cameras, 3D bounding

box annotations for 23 object categories and rich semantic

map annotations which include vectorised representations

of lanes, traffic lights, sidewalks and more. From these we

select a subset of four map categories which can feasibly be

estimated from images, along with ten object categories.

The Argoverse 3D dataset [5] is comprised of 65 train-

ing and 24 validation sequences captured in two cities, Mi-

ami and Pittsburg, using a range of sensors including seven

surround-view cameras. Like NuScenes, the Argoverse

dataset provides both 3D object annotations from 15 object

categories, as well as semantic map information including

road mask, lane geometry and ground height. From these

we choose 7 object categories which contain sufficient train-

ing examples, along with the driveable road mask.

As both NuScenes and Argoverse are predominantly ob-

ject detection rather than map prediction datasets, the de-

fault dataset splits contain multiple road segments which

appear in both the training and validation splits. We there-

fore redistribute the train/val sequences to remove any over-

lapping segments, taking care to ensure a balanced distribu-

tion over locations, objects and weather conditions.

4.2. Data generation

The NuScenes and Argoverse datasets provide ground

truth annotations in the form of vectorised city-level map

labels and 3D object bounding boxes. We convert these into

ground truth occupancy maps by first mapping all vector an-

notations into the coordinate system of the tth sample using

the camera extrinsic matrix Mt provided by the datasets.

We then rasterise each annotation to a binary image in the

birds-eye-view, which lies on a grid extending 50m in front

of the given camera and 25m to either side, at a resolution of

25cm per pixel. For the case of object annotations, we first

project the 3D bounding box onto the xz-plane to obtain a

2D polygon. The result of this process is a stack of binary

images, which represent the ground truth occupancies for

each semantic category c as observed from camera t.

The resulting labels however represent a close to impos-

sible task for the network, since some grid cell locations lie

outside the camera field of view (FoV) or are completely oc-

cluded by other objects. We therefore generate an additional

binary mask indicating whether each grid cell is visible. A

cell is treated as visible if it is within the FoV and has at

least one LiDAR ray passing through it (i.e. not blocked by

a closer object).

4.3. Baselines

Published methods In order to demonstrate the effective-

ness of our approach, we compare against two previously

published works: the Variational Encoder-Decoder (VED)

of Lu et al. [17], and the View Parsing Network (VPN) of

Pan et al. [21]. These networks presume different input and

output dimensions, so we make minor architectural changes

which we detail in Section A of the supplementary material.

Inverse Perspective Mapping (IPM) We present a sim-

ple baseline inspired by other works [8, 23] of mapping an

image-based semantic segmentation to the ground plane via

a homography. The image-level segmentation is computed

using a state-of-the-art DeepLabv3 [6] network, pretrained

on Cityscapes [7], which shares many classes in common

with both NuScenes and Argoverse. The ground planes are

obtained either by fitting a plane to LiDAR points in the

case of NuScenes, or using the precomputed ground heights

provided by Argoverse. Note that this information would

not be available to a real monocular system at test time,

making this baseline additionally competitive.

Depth-based unprojection Another intuitive solution to

this problem would be to use a monocular depth estimator
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Table 2. Intersection over Union scores (%) on the Argoverse dataset. CS Mean is the average over classes present in the Cityscapes dataset,

indicated by *. Letters beside the method represent the presence of each component in our ablation study: D - dense transformer layer, P -

transformer pyramid, T - topdown network.

Method Drivable* Vehicle* Pedest.* Large veh. Bicycle* Bus* Trailer Motorcy.* Mean CS Mean

IPM 43.7 7.5 1.5 - 0.4 7.4 - 0.8 - 10.2

Depth Unproj. 33.0 12.7 3.3 - 1.1 20.6 - 1.6 - 12.1

VED [17] 62.9 14.0 1.0 3.9 0.0 12.3 1.3 0.0 11.9 15.0

VPN [21] 64.9 23.9 6.2 9.7 0.9 3.0 0.4 1.9 13.9 16.8

Ours - baseline 58.5 23.4 3.9 5.2 0.5 11.0 0.4 1.9 13.1 16.5

Ours - D 63.8 27.9 4.8 8.8 1.0 11.0 0.0 3.4 15.1 18.7

Ours - D+P 65.9 30.7 7.3 10.2 1.7 9.3 1.7 2.2 16.1 19.5

Ours - D+P+T 65.4 31.4 7.4 11.1 3.6 11.0 0.7 5.7 17.0 20.8

to generate a 3D point cloud from the image, and then drop

the z-axis to transfer image-based semantic labels onto the

ground plane. As an upper-bound on the performance of

this type of approach, we use ground truth depth computed

by densifying LiDAR points using the algorithm adopted

in the NYU depth dataset [19, 14]. We use the same

DeepLabv3 to predict image level labels as before.

4.4. Architecture and training details

For the backbone and feature pyramid components of our

network, we use a pretrained FPN network [16], which in-

corporates a ResNet-50 [11] front-end. The topdown net-

work consists of a stack of 8 residual blocks, including a

transposed convolution layer which upsamples the birds-

eye-view features from a resolution of 0.5m to 0.25m per

pixel. For the balanced loss weighting αc, we use the square

root of the inverse class frequency, as we found that using

inverse frequency directly leads to a tendancy to overpre-

dict on small classes. The uncertainty loss weighting λ is

taken as 0.001. We train all networks until convergence us-

ing SGD with a learning rate of 0.1, batch size 12 and a

momentum of 0.9.

4.5. Evaluation

Our primary evaluation metric is the Intersection over

Union (IoU) score, which we compute by binarising the

predictions according to a Bayesian decision boundary

(p(mc
i |zt) > 0.5). To account for the arbitrary nature of

this threshold, we also provide precision-recall curves as

part of the supplementary material. Non-visible grid cells

(see Section 4.2) are ignored during evaluation.

5. Results

5.1. Ablation study

Before comparing against other methods, we validate our

choice of architecture by performing an ablation study on

the Argoverse dataset. We begin from a simple baseline,

consisting of the backbone network, an inverse perspec-

tive mapping to geometrically map features to the birds-

eye-view, and a sigmoid layer to predict final occupancy

probabilities. We then incrementally reintroduce each of

the key components of our approach: the dense trans-

former layer (D), transformer pyramid (P), and topdown

network (T).

The results of this ablation study are shown in the sec-

ond half of Table 2. Each successive component improves

the performance by a consistent factor of roughly 1% mean

IoU, with the addition of the dense transformer having a

particularly pronounced effect on the results, which we ar-

gue is one of the key novelties of our approach. The top-

down network provides no advantage for large classes such

as driveable area, but significantly improves performance

for small, rare classes such as motorbike and bicycle.

5.2. Comparison to other methods

In addition to the ablation experiments described above,

we evaluate our final architecture to a number of baseline

methods described in Section 4.3. It can be seen from

Table 2 that we outperform all previous approaches by a

significant margin. The two prior works, VPN and VED,

achieve a comparable IoU on the drivable area class (rep-

resenting the road surface), but across the smaller classes

such as vehicle, pedestrian etc., we are able to obtain con-

siderably better results. We suggest that this improvement

is explained by the fact that our dense transformer layer

preserves more spatial information compared to the fully

connected bottlenecks of [17] and [21]. This hypothesis is

supported by the qualitative results illustrated in Figure 4,

which show that our method is much more able to resolve

fine details such as the separation between individual cars

(rows 1 and 2) or crowds of pedestrians (row 3). Both

VPN and in particular VED on the other hand are only

capable of making relatively coarse predictions and often

miss important features, such as the car in row 3. The IPM

baseline achieves reasonably good performance on the driv-
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Image Ground truth IPM Depth Unproj. VED [17] VPN [21] Ours

Figure 4. Qualitative results on the Argoverse dataset. For each grid location i, we visualise the class with the largest index c which has

occupancy probability p(mc

i |zt) > 0.5. Black regions (outside field of view or no lidar returns) are ignored during evaluation. See Figure 1

for a complete class legend.

Image Ground truth IPM Depth Unproj. VED [17] VPN [21] Ours
Figure 5. Qualitative results on the NuScenes dataset. See Figure 1 for a complete class legend.
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Table 3. Intersection over Union scores (%) on the NuScenes dataset. CS mean is the average over classes present in the Cityscapes dataset,

which are indicated by *.

Method D
riv

ab
le

*

Ped
. cr

os
si
ng

W
al

kw
ay

*

C
ar

pa
rk

C
ar

*
Tru

ck

B
us

*
Tra

ile
r

C
on

st
r.

ve
h.

Ped
es

tri
an

*

M
ot

or
cy

cl
e*

B
ic
yc

le
*

Tra
f.

C
on

e

B
ar

rie
r

M
ea

n

C
S

M
ea

n

IPM 40.1 - 14.0 - 4.9 - 3.0 - - 0.6 0.8 0.2 - - - 9.1

Depth Unproj. 27.1 - 14.1 - 11.3 - 6.7 - - 2.2 2.8 1.3 - - - 9.4

VED [17] 54.7 12.0 20.7 13.5 8.8 0.2 0.0 7.4 0.0 0.0 0.0 0.0 0.0 4.0 8.7 12.0

VPN [21] 58.0 27.3 29.4 12.9 25.5 17.3 20.0 16.6 4.9 7.1 5.6 4.4 4.6 10.8 17.5 21.4

Ours 60.4 28.0 31.0 18.4 24.7 16.8 20.8 16.6 12.3 8.2 7.0 9.4 5.7 8.1 19.1 23.1

able area class but fails across all other classes because the

predictions are elongated along the camera rays, as can be

seen from Figure 4. The success of the depth unprojection

method meanwhile is limited by the inherent sparsity of the

lidar point clouds beyond a range of about 25m.

5.3. Evaluation on the NuScenes dataset

Having justified our approach on the relatively small

Agoverse dataset, we move to the more challenging eval-

uation scenario of the NuScenes dataset. We report quan-

titative results in Table 3, and visualise our predictions in

Figure 5. Despite the greater diversity of this dataset, we

are able to outperform the next-best approach, the VPN

method of [21], by a relative factor of 9.1%. As with Ar-

goverse, our method is consistently able to capture finer de-

tails in the scene, such as the shape of the bus in row 2 and

the geometry of the crossroads in row 3. On this dataset,

the VED method completely breaks down for the cases of

small (pedestrian, cyclist, etc.) or infrequently occurring

(construction vehicle, bus) classes.

5.4. Temporal and sensor fusion

Predicting BEV maps from a single viewpoint as dis-

cussed in Section 5.3 and Section 5.2 is typically insuffi-

cient for driving purposes; in general we want to build a

complete picture of our environment taking into account

multiple sensors and historical information. In Figure 1

we show an example of how the occupancy grids from

six surround-view cameras can be combined using the

Bayesian fusion scheme described in Section 3.2. We as-

sume a prior probability of p(mc
i ) = 0.5 for all classes.

For static elements of the scene, such as road, sidewalk

etc., we can go a step further by combining predictions over

multiple timesteps to build a complete model of the geom-

etry of a given scene. Figure 6 shows several examples

of accumulating occupancy probabilities over 20s long se-

quences from the NuScenes dataset. The network is able to

utilise information from multiple views to resolve ambigui-

ties, resulting in a smoother overall prediction.

Figure 6. Scene-level occupancy grid maps generated by accumu-

lating occupancy probabilities over 20s sequences. White lines

indicate the ego-vehicle trajectory. Note that only static classes

(drivable, crossing, walkway, carpark) are visualised.

6. Conclusions

We have proposed a novel method for predicting birds-

eye-view maps directly from monocular images. Our ap-

proach improves on the state-of-the-art by incorporating

dense transformer layers, which make use of camera ge-

ometry to warp image-based features to the birds-eye-view,

as part of a multiscale transformer pyramid. As well as pre-

dicting maps from a single image, our method is able to

effortlessly combine information across multiple views to

build an exhaustive model of the surrounding environment.

We believe that this work provides a broad framework for

future work into other tasks which operate in the birds-eye-

view, such as lane instance detection and future prediction.
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