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Abstract

Hierarchical frameworks consisting of both coarse and
fine localization are often used as the standard pipeline
for large-scale visual localization. Despite their promis-
ing performance in simple environments, they still suffer
from low efficiency and accuracy in large-scale scenes, es-
pecially under challenging conditions. In this paper, we
propose an efficient and accurate large-scale localization
framework based on the recognition of buildings, which are
not only discriminative for coarse localization but also ro-
bust for fine localization. Specifically, we assign each build-
ing instance a global ID and perform pixel-wise recogni-
tion of these global instances in the localization process.
For coarse localization, we employ an efficient reference
search strategy to find candidates progressively from the
local map observing recognized instances instead of the
whole database. For fine localization, predicted labels are
further used for instance-wise feature detection and match-
ing, allowing our model to focus on fewer but more ro-
bust keypoints for establishing correspondences. The ex-
periments in long-term large-scale localization datasets in-
cluding Aachen and RobotCar-Seasons demonstrate that
our method outperforms previous approaches consistently
in terms of both efficiency and accuracy.

1. Introduction
Visual localization is a key technique of various appli-

cations, e.g., autonomous driving and robotics. Visual lo-
calization algorithms can be roughly categorized as image-
based [21,64], scene coordinate-based [4–7], and structure-
based [37, 40, 47, 56]. Image-based methods only yield
approximate poses [2, 15, 34, 43] and scene coordinate-
based models don’t perform well in large-scale scenes [23].
Structure-based systems consisting of coarse (finding refer-
ence images in the database via image retrieval [2, 15, 58])
and fine localization (establishing correspondences between
the query and reference images by keypoint matching [10,
27, 35]), are preferred in real applications.

In the pipeline of structure-based systems, both coarse
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Figure 1. Overview of our framework. For each query image,
we first perform pixel-wise global instance recognition, results of
which are then used to find references from areas observing recog-
nized instances instead of the whole database. Pixel-wise recog-
nition masks are also used for instance-wise feature detection and
matching to provide robust correspondences for fine localization.
Finally, 2D-2D matches between the query and reference images
are converted to 2D-3D matches for pose estimation.

and fine localization are formulated as finding the clos-
est candidates from a given set for the query data point,
e.g., image to image matches in coarse localization and
point to point matches in fine localization. Previous meth-
ods [10, 35, 37] employ exhaustive comparisons for all
query data with the rest in the database. This, however,
is computationally slow and suffers from low accuracy be-
cause of spurious wrong candidates, especially under chal-
lenging conditions, e.g., changes of illumination, season,
and weather. Some works [23, 47, 63] make use of se-
mantics to improve both coarse and fine localization sep-
arately. For coarse localization, they filter unstable ob-
jects like trees [46, 63] or transfer images from night to
day [1]. For fine localization, additional segmentation net-
works are incorporated to reject semantically inconsistent
matches [18, 22, 23, 45, 47, 56]. Despite their promising im-
provements, modeling coarse and fine localization as two
independent tasks, they ignore the fact that coarse local-
ization should provide reference images with enough valid



areas for establishing correspondences in fine localization
rather than the most similar images in the database. More-
over, most of which make explicit use of semantic la-
bels [23, 47, 56] are not robust to segmentation failures.

In this paper, we aim to design an efficient and accurate
large-scale localization system by modeling coarse and fine
localization as a coherent process. To this end, we lever-
age buildings to bridge the gap between the two processes.
Compared with other objects (e.g., trees and cars), which
are sensitive to appearance changes, buildings are able to
provide robust correspondences for fine localization. Be-
sides, buildings are also discriminative to represent a loca-
tion for coarse localization. We make use of the robustness
and discriminative ability of buildings in a coherent man-
ner and propose a recognition-based localization system.
Specifically, we first assign each building instance a global
ID. Next, for each image, we perform pixel-wise recogni-
tion of global building instances, results of which are then
utilized to find reference images from areas observing rec-
ognized instances rather than the whole map. Finally, pixel-
wise recognition masks are further used for local feature de-
tection and matching, allowing our model to extract fewer
but more robust keypoints and execute instance-wise match-
ing in a reduced space to increase the number of inliers.

Benefiting from the uniqueness of buildings and their ro-
bustness to appearance changes, in comparison to general
objects, our model can recognize more building instances
even under challenging conditions. To minimize the influ-
ence of potential recognition errors, we employ a progres-
sive search strategy to efficiently find references for coarse
localization and a robust instance-wise detection and match-
ing approach for fine localization. We also divide the pose
estimation process into two steps so that our model is able
to explore more potential locations at low cost in the first
step and perform a slower refinement to produce more ac-
curate poses in the second step. Fig. 1 shows an overview of
our framework. Contributions are summarized as follows:

• We propose a novel localization framework based on
global building instance recognition, which models
coarse and fine localization as a coherent process.

• We employ a progressive recognition-based reference
search strategy to efficiently find candidates from local
areas instead of the whole database.

• We leverage a robust instance-wise detection and
matching technique to obtain better accuracy with
fewer keypoints even under challenging conditions.

Results on long-term large-scale Aachen and RobotCar-
Seasons datasets [30, 41, 42] demonstrate that our model
outperforms previous approaches in terms of both efficiency
and accuracy. We organize the rest of this paper as follows.
In Sec. 2, we introduce related works on visual localization.

In Sec. 3, our framework is described in detail. We con-
duct extensive experiments in Sec. 4. The limitations and
conclusions are discussed in Sec. 5 and 6, respectively.

2. Related Works
In this section, we discuss works related to visual local-

ization and instance recognition.

2.1. Visual Localization

Visual localization. Visual localization systems can
be roughly categorized into three groups: image-based,
scene coordinate-based and structure-based. Image-based
approaches [2,15,58] estimate the pose of a query image by
finding the most similar one in the database. As images are
sparse in the database, only approximate poses can be ob-
tained. Image-based works can be extended by regressing
the pose directly with a neural network [21, 64]. However,
they perform closely to image retrieval methods [43]. In-
stead of predicting the pose directly, scene coordinate-based
methods [4–7] first predict 3D coordinates, then estimate
the pose with the perspective-n-point (PnP) [24] technique.
They report outstanding performance in small-scale scenes,
yet struggle to give comparable results in large-scale envi-
ronments [23]. Structure-based methods [9, 37, 40, 51] con-
sist of processes of mapping and localization. In the map-
ping process, structure from motion (SfM) techniques [44]
are used to build a sparse 3D map. In the localization pro-
cess [37], image retrieval [2, 15, 34] is first used to find ref-
erence images. Next, local keypoints are utilized to build
correspondences between the query and reference images,
which are then fed into the PnP module for pose estimation.

With an explicit 3D map, structured-based methods are
able to produce more accurate poses in large-scale scenes.
However, the global reference search of comparing a query
image with all in the database [2, 15, 34, 37] and exhaustive
feature detection and matching [10, 29, 35] are inefficient.
Besides, they suffer from low accuracy and robustness un-
der challenging conditions, e.g., day-night changes and sea-
sonal variations. These problems can be partially solved by
leveraging more powerful local features [3,11,29,35,60,61]
or matching networks [13, 14, 25, 36, 38, 49, 65, 67], while
their high computational [35, 38] and memory [25, 36, 49]
cost impair their efficiency in real applications.

Visual semantic localization. Another solution to afore-
mentioned problems is introducing high-level semantics.
For coarse localization, most of them learn image-level de-
scription by focusing on robust regions [18, 32, 46, 57, 63]
or perform domain transformation [1, 19]. While they
achieve better performance, their accuracy and efficiency
are still limited by the use of global reference search. For
fine localization, an additional segmentation network is
usually incorporated into the localization pipeline to pro-
vide semantic labels for filtering semantically-inconsistent



Figure 2. Examples of automatically generated global building
instances. Different colors indicate different global instances.

matches [23,47,56]. Despite their promising improvements,
they are vulnerable to segmentation errors especially under
challenging conditions.

Unlike these methods, for coarse localization, our
recognition-based framework finds references from areas
observing recognized global instances, making the global
search become local search, so as to obtain higher efficiency
and accuracy due to reduced searching space. For fine lo-
calization, the instance-wise feature detection and match-
ing enforce our model to focus on robust building instances,
leading to better performance with fewer keypoints. During
both the detection and matching processes, we take into ac-
count the potential recognition errors, allowing our model
to give robust results even when recognition fails.

2.2. Instance recognition

Recently, landmark recognition, as a sub-task of place
recognition, has become increasingly popular with a large
number of methods [52, 53, 57] and datasets [62] proposed.
Landmark recognition [53, 57, 62] differs with our global
building instance recognition in two aspects. First, land-
marks are defined on a whole building, while our global
building instances are defined on building facades to pro-
vide more precise locations, e.g., a building may have sev-
eral facades indicating different locations. Second, land-
mark recognition is an image-level classification task, while
our global instance recognition executes pixel-wise recog-
nition to provide pixel-wise labels for fine localization.

Some works also leverage the instances of buildings [6,
7] or clusters of general objects [26] to perform hierarchical
scene coordinate regression. In spite of their promising ac-
curacy in simple and small-scale scenarios, as other scene
coordinate-based methods [4, 5], they struggle to give com-
parable accuracy in large-scale environments and fail to deal
with classification errors caused by challenging conditions.

3. Localization by Recognition
In this section, we give details of the definition of global

building instances as well as the training and testing pro-
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Figure 3. Architecture of our network. Our network consists
of an encoder and three decoders for global instance recognition,
global feature learning, and local feature learning.

cesses of our network.

3.1. Global instance definition

Global building instances are obtained by assigning each
building facade a unique ID as long as it has obvious differ-
ences with neighbor ones in terms of textures, shapes, or
ornaments, as shown in Fig. 2. To increase the practicabil-
ity of our method, we propose an automatic global instance
annotation strategy to remove the need of costly manual la-
beling. The details of automatic annotation process are pro-
vided in the supplementary material.

3.2. Network and training details

As shown in Fig. 3, our network consists of four modules
responsible for feature extraction, global instance recogni-
tion, global feature learning, and local feature learning, re-
spectively. The shared encoder f extracts high-level fea-
tures X from the input image I ∈ R3×H×W , as X = f(I).
H and W are the height and width of the input image and
X = {X1, X2, X3, X4} is a set of predicted multi-scale
features with 2×, 4×, 8×, and 16× downsampling.

Global instance recognition. We utilize the aggrega-
tion component of PSPNet [66] to generate context features,
which are used as input of a segmentation head to produce
pixel-wise classification. The whole process is denoted as
fseg . To boost the performance on hard cases, we adopt
the cross entropy with online hard example mining (ohem)
fohemce [48] loss between predicted S ∈ RN×H×W =
fseg(X) and ground-truth labels Sgt (N is the number of
global instances):

Lseg = fohemce (fseg(X), Sgt). (1)

Global feature learning. Predicted global instance la-
bels offer us potential areas in the map where to search
references, but we still need an image-level representation
to find the most suitable reference image from candidates
observing the same labels. Therefore, we introduce an
additional pooling layer fg , transferring X4 features to a
global description xg . Benefiting from the recognition task,
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Figure 4. Pipeline of recognition-based localization. We first select and sort predicted instance labels according to their confidences.
Then, a progressive reference search technique incorporated geometric verification is adopted to find accurate coarse locations efficiently.
Finally, a further pose refinement step is executed to refine initially recovered pose by introducing more accurate reference images. Pre-
dicted instance labels are utilized for both feature detection and matching to enhance the accuracy of correspondences.

the feature X4 with instance information embedded, can
be used to generate the global feature without slow and
memory-consuming layers like VLAD [2, 15, 58].

We use the output of fg to optimize the rank of pos-
itive (with over 200 correspondences) and negative sam-
ples with the average precision (ap) loss [16]. To further
enhance the discriminative ability of xg , we take inspira-
tions from the landmark classification task [8] and decode
the instance information from xg with an additional fully-
connected layer fcls to predict binary vector of existing la-
bels xclsg ∈ {0, 1}N . The combined loss is defined as:

Lglobal = ωapap(xg) + ωclsBCE(fcls(xg), ycls). (2)

BCE is the binary cross entropy. ycls is the ground-truth
binary indication of existing labels. ωap and ωcls are two
parameters balancing the ap and classification losses.

Local feature learning. High-resolution feature X2 ∈
R128×H

4 ×W
4 is first fed into several convolutional layers to

get projected features Xlocal ∈ R128×H
4 ×W

4 , which is used
as the input of both the detector head fdet and descriptor
head fdesc for producing the score map C ∈ RH×W and
descriptor map D ∈ R128×H

4 ×W
4 , respectively.

The detector head is trained with the confidence map
Cspp predicted by Superpoint (SPP) [10] as supervision sig-
nals. SPP is trained with synthetic geometric shapes with
ground-truth corners, so it is very good at detecting corners.
For the descriptor, we adopt a triplet loss to minimize and
maximize the distance between positive and negative sam-
ples, respectively. The combined detection Ldet and de-
scription loss Ldesc is defined, as:

Llocal = ωdetBCE(C,Cspp)

+ ωdesc
1

Nl

∑
xl

tri(xl, x
p
l , x

n
l ,m). (3)

xl, x
p
l , and xnl are descriptors of the query, positive, and

negative samples. Nl is the number of local features. tri
is the triplet loss with margin m. ωdet and ωdesc are two
parameters balancing the detection and description losses.

3.3. Recognition-based localization

In Fig. 4, we give a full description of how our
recognition-based system works at test time.

Efficient progressive reference search. For each query
image, we predict the global instance label for each pixel
Sij . Considering the recognition uncertainty, for each pixel,
we keep top K predictions with the highest confidence to
get recognition mask M ∈ NK×H×W . A simple strategy
could be to find the closest reference images from images
observing all potential global instance labels in M . Al-
though this is able to reduce the search time partially by
filtering unrelated areas, it is still time-consuming and sen-
sitive to recognition errors.

Instead of extracting all potential global instances from
M directly, we make use of the confidence map P ∈
RK×H×W , which tells us the probability of labels observed
by the query image, and propose a progressive search strat-
egy. For all potential instances li extracted fromM , we first
calculate their confidence by averaging values of all corre-
sponding pixels in P . These instances are then sorted ac-
cording to their confidence from high to low to form a list
{l1, l2, ..., lNr

} (Nr is the number of recognized instances).
Finally, we search references by comparing the L2 distance
between global features of the query xqg and candidate im-
ages observing li in local areas. Geometric verification is
adopted between the query and the best reference image
Irefi to check if li is a correct instance label. If this step
fails, we try the next recognized instance li+1 until finding
the correct one and output the corresponding reference im-



age Irefini and recovered pose Tini = (Rini, tini) for further
refinement. More details are provided in the Fast two-step
pose estimation section.

Robust instance-wise feature detection and match-
ing. The pixel-wise prediction on building instances can
be further leveraged as priors for both feature detection and
matching. We perform a progressive detection and match-
ing strategy to take full advantage of global instance recog-
nition in a way which is robust to segmentation errors.

Given the predicted local feature score map C, we first
select keypoints with score value larger than threshold λ to
discard locally unreliable ones. Next, from selected key-
points, we retainNkpt keypoints {p1, p2, ..., pNkpt

} with la-
bels of {lp1, l

p
2 , ..., l

p
Nkpt
}. When recognized areas are unable

to provide sufficient keypoints due to viewpoint changes
and occlusions, we also select keypoints with the highest
scores from the background and assign them with label 0.
In the matching process, given two sets of keypoints ex-
tracted from the query and reference images, we first con-
duct instance-wise matching between those with the same
valid labels independently, resulting in more accurate cor-
respondences by reducing the distraction of other instances.
Since instance-wise matching is operated for subsets with
different labels individually, it can be executed in parallel
for a speed up. For unmatched keypoints and those with la-
bel of 0, we further perform exhaustive matching to improve
the robustness to recognition errors or occlusions.

In our instance-wise detection and matching processes,
we preferentially utilize the keypoints from correctly recog-
nized areas, enabling our system to obtain as many inliers as
possible, which is especially important when only a limited
number of keypoints can be used.

Fast two-step pose estimation. 2D-2D correspondences
between the query and reference images can be converted to
2D-3D matches between the query image and map, which
are then fed into the EPnP+RANSAC [12, 24] module for
pose estimation. Unlike HLoc [37] which performs exhaus-
tive matching between the query and all references images
and takes all matches as the input of EPnP+RANSAC for
pose estimation, we divide the pose estimation into two
steps: geometric verification and refinement. As men-
tioned in the progressive reference search process, geo-
metric verification operated on the query and a single refer-
ence image helps to obtain the correct reference image Irefini

and initially estimated pose Tini as well.
Owing to the limited number of views and correspon-

dences, pose Tini is not very accurate. To yield a more
precise pose estimate, we use inlier 3D points to find top
Np images {Iref1 , ..., IrefNp

} with the highest number of co-

visible points with Irefini . Then, we conduct instance-wise
matching between the query and newly gained set of refer-
ence images to get more matches. Tini plays the role of
an advanced matcher [25, 31, 36, 38, 59] to reject 2D-3D

matches with reprojection error larger than threshold η. The
two-step pose estimation is designed to obtain more accu-
rate poses with lower cost and is flexible to be applied to
other frameworks such as HLoc [37].

4. Experiments
We first give details of implementation as well as base-

lines and metrics, and datasets used for evaluation. Next,
we compare our model with previous state-of-the-art meth-
ods on the large-scale localization task in Sec. 4.1 and 4.2.
We discuss the running time and ablation study in Sec. 4.3
and 4.4, respectively. More implementation details, results,
and analysis can be found in the supplementary material.

Implementation. We adopt ResNet101 [17] and PSP-
Net [66] as the encoder and decoder for recognition, respec-
tively. In the training process, ωap, ωcls, ωdet, ωdesc are set
to 1.0, 2.0, 1.0, and 1.0. While in the localization process,
K, Nr, Np, and η are set to 10, 30, 50, and 20. We use only
4,096 kypoints (Nkpt) for all experiments.

Baselines and metrics. For coarse localization, we com-
pare our system with image retrieval methods [2, 15, 34] in
terms of efficiency. For fine localization, we compare it with
image-based [2, 15, 34] (R), classic structure-based [9, 40,
51] (C), and semantic-based methods [26, 47, 56, 63] (S).
We also compare it with state-of-the-art pipeline HLoc [37]
with different local features [10, 11, 28, 33, 35, 50, 61] (H)
and those with advanced or dense matching networks [13,
31, 38, 39, 49, 59, 67] (M). For fine localization, we adopt
the success ratio with different error thresholds (0.25m/2◦,
0.5m/5◦, 5m/10◦), as in [37, 41].

Datasets. We test our system on public large-scale local-
ization datasets including Aachen [42], Aachen v1.1 [42],
and RobotCar-Seasons (RoboCS) [30]. Aachen contains
4,328 reference and 922 (824 day, 98 night) query im-
ages captured with handheld cameras around the Aachen
city at different seasons with various illumination condi-
tions. Aachen v1.1 is extended from Aachen dataset by
adding 2,369 reference and 93 night query images. RoboCS
dataset was collected by a moving car running around the
Oxford at different seasons, illumination and weather con-
ditions. It has 26,121 reference and 11,934 query images
recorded by three mounted cameras (left, right, rear), while
only the rear camera is used. Since only day images are
available in the database and extreme changes of season,
weather, illumination, and dynamic objects exist in query
images, these datasets are challenging for both recogni-
tion and localization. Moreover, huge variations of view-
point in Aachen/Aachen v1.1 dataset and motion blur/over-
exposure in RoboCS dataset further increase the difficulty.

4.1. Reference search

We visualize the number of reference images and suc-
cess ratio of progressive reference search in Fig. 5. Bene-
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Group Method Day Night

H

SIFT [27] 72.2 / 78.4 / 81.7 19.4 / 23.0 / 27.2
SPP [10] 87.9 / 93.6 / 96.8 70.2 / 84.8 / 93.7
D2Net [11] 84.1 / 91.0 / 95.5 63.4 / 83.8 / 92.1
R2D2 [35] 88.8 / 95.3 / 97.8 72.3 / 88.5 / 94.2
ASLFeat [29] 88.0 / 95.4 / 98.2 70.7 / 84.3 / 94.2
CAPS + SIFT [27, 61] 82.4 / 91.3 / 95.9 61.3 / 83.8 / 95.3
LISRD + SPP [10, 33] 73.3 / 86.9 / 97.9
LLF + R2D2 [10, 50] 71.2 / 81.2 / 94.2

M
SPP + Superglue [10, 38] 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100.0
Patch2Pix [67] 86.4 / 93.0 / 97.5 72.3 / 88.5 / 97.9
LoFTER [49] 88.7 / 95.6 / 99.0 78.5 / 90.6 / 99.0

Ours 89.1 / 96.1 / 99.3 77.0 / 90.1 / 99.5

Table 1. Results on Aachen v1.1 dataset. The best and second
best results are highlighted with bold and red fonts.

fiting from global instance recognition, the average number
of images in a search is 80 for approximate 94% day and
77% night query images, which is 80 times smaller than
global search [2,15,34]. For each query image, we keep 30
predicted instance labels, allowing us to achieve 99% and
96% success ratio for day and night images, respectively.
Thanks to our progressive search strategy, the average num-
ber of search frames for day and night images are 202 and
650, which are 33 and 10 times fewer than global search.

Since retrieval-based methods conduct global search for
each query image, their complexity is O(n) (n is the num-
ber of images in the database). However, the complexity of
recognition-based search strategy is only NrecNobs (Nrec

and Nobs are the number of retained instances and observa-
tions for each global instance in the database). Such kind of
fast search is extremely important to real-time applications.

4.2. Fine localization

Results on Aachen dataset. Table 2 shows the re-
sults on Aachen dataset [42]. We can see that retrieval-
based approaches (R) only provide approximate poses and
Netvlad [2] is still state-of-the-art compared with more re-
cent AP-GEM [34] and Patch-Netvlad [15]. Classic meth-
ods [9, 40, 51] (C) offer promising accuracy on day images
but poor results on night images partially because they use
handcrafted features for fine localization, which are more
sensitive to illumination changes than learned features (H).
With the assistance of segmentation, semantic-based works

Group Method Day Night

R
Netvlad [2] 0.0 / 0.4 / 25.5 0.0 / 0.0 / 21.4
AP-GEM [34] 0.0 / 0.1 / 22.6 0.0 / 0.0 / 16.3
Patch-Netvlad [15] 0.0 / 0.1 / 20.0 0.0 / 0.0 / 21.4

C
AS [40] 85.3 / 92.2 / 97.9 39.8 / 49.0 / 64.3
CSL [51] 52.3 / 80.0 / 94.3 29.6 / 40.8 / 56.1
CPF [9] 76.7 / 88.6 / 95.8 33.7 / 48.0 / 62.2

S

SSM [47] 71.8 / 91.5 / 96.8 58.2 / 76.5 / 90.8
VLM [63] 62.4 / 71.8 / 79.9 35.7 / 44.9 / 54.1
SMC [56] 52.3 / 80.0 / 94.3 29.6 / 40.8 / 56.1
HSC-Net [26] 71.1 / 81.9 / 91.7 40.8 / 56.1 / 76.5

H

SIFT [27] 82.8 / 88.1 / 93.1 30.6 / 43.9 / 58.2
SPP [10] 80.5 / 87.4 / 94.2 42.9 / 62.2 / 76.5
D2Net [11] 84.8 / 92.6 / 97.5 84.7 / 90.8 / 96.9
R2D2 [35] 76.5 / 90.8 / 100.0
CAPS + SIFT [27, 61] 77.6 / 86.7 / 99.0
CAPS + SPP [10, 61] 82.7 / 87.8 / 100.0
LISRD + SPP [10, 33] 78.6 / 86.7 / 98.0
LLF + R2D2 [10, 50] 72.4 / 90.8 / 99.0
SOSNet + D2D [54, 55] 73.5 / 83.7 / 96.9
ContextDesc + SIFT [27, 28] 67.3 / 79.6 / 90.8

M

ASLFeat + OANet [29, 65] 77.6 / 89.8 / 100.0
ENCNet [36] 76.5 / 84.7 / 98.0
Dual-RCNet [25] 79.6 / 88.8 / 100.0
PDCNet [59] 80.6 / 87.8 / 100.0
DGCNet [31] 22.9 / 49.8 / 84.7 14.3 / 37.8 / 79.6
Pixloc [39] 84.7 / 94.2 / 98.8 81.6 / 93.9 / 100.0
AHM [13] 47.8 / 72.2 / 91.3 30.6 / 53.1 / 78.6
S2DNet [14] 84.5 / 90.3 / 95.3 74.5 / 82.7 / 94.9
Patch2Pix [67] 84.6 / 92.1 / 96.5 82.7 / 92.9 / 99.0
SPP + Superglue [10, 38] 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0

Ours 88.3 / 95.6 / 98.8 84.7 / 93.9 / 100.0

Table 2. Results on Aachen dataset. The best and second best
results are highlighted with bold and red fonts.

(S) yield better results for night images, but still worse than
learned features (H).

HLoc [37] with Netvlad [2] for coarse localization and
powerful local features for fine localization currently is the
standard pipeline (H), but our model outperforms all works
in group H. In group M, with advanced and dense matcher,
most methods report better accuracy than others groups
and SPP+Superglue achieves the state-of-the-art accuracy.
However, due to instance-wise detection and matching as
well as two-step pose estimation, our method gives very
close results to SPP+Superglue and outperforms all other
methods in groups C, S, H, and M.

As most methods in groups H and M only report results
on 98 night query images in Aachen dataset, we also show
their results on Aachen v1.1 containing more challenging
(191) night images. Table 1 demonstrates obvious perfor-
mance drop of all methods because of increased test sam-
ples. While compared with models in group H, our system
still gives much better performance especially on night im-
ages. Although some works in group M achieve close re-
sults to ours by utilizing advanced [38] or dense matching
models [49], they sacrifice the time [38] or memory [49]
efficiency, and require additional datasets for training.

Results on RoboCS dataset. We further test our ap-



Group Method Day Night
overcast-summer overcast-winter snow night night-rain

R
Netvlad [2] 5.8 / 28.5 / 96.3 2.8 / 26.7 / 93.3 7.2 / 24.5 / 92.2 0.5 / 3.2 / 37.0 0.9 / 5.7 / 43.2
AP-GEM [34] 3.9 / 16.6 / 82.3 2.8 / 18.2 / 85.4 5.5 / 15.5 / 82.2 0.5 / 0.7 / 21.7 0.0 / 1.4 / 28.2
Patch-Netvlad [15] 5.4 / 28.5 / 91.6 4.1 / 24.4 / 92.1 7.8 / 24.9 / 89.2 0.2 / 1.1 / 12.8 1.4 / 3.9 / 20.5

C
AS [40] 32.8 / 74.1 / 97.8 37.4 / 78.7 / 94.6 50.5 / 81.8 / 95.5 1.6 / 3.9 / 10.5 2.0 / 10.9 / 18.0
CSL [51] 34.1 / 71.1 / 93.5 39.5 / 75.9 / 92.3 53.2 / 83.6 / 92.4 0.2 / 0.9 / 5.3 0.9 / 4.3 / 9.1
CPF [9] 36.5 / 76.5 / 97.8 43.1 / 78.2 / 93.6 54.2 / 84.9 / 95.3 2.3 / 6.6 / 15.3 4.5 / 12.3 / 18.6

S

SSM [47] 44.1 / 79.3 / 99.8 48.5 / 81.5 / 96.2 60.3 / 85.7 / 96.1 10.0 / 23.7 / 45.4 14.5 / 33.2 / 47.5
VLM [63] 41.3 / 74.5 / 96.1 47.4 / 75.1 / 90.3 55.2 / 83.0 / 91.8 11.9 / 26.0 / 55.0 15.7 / 34.5 / 60.5
SMC [56] 39.5 / 75.6 / 92.4 39.5 / 72.3 / 85.1 56.4 / 85.7 / 98.0 6.2 / 18.5 / 44.3 8.0 / 26.4 / 46.4
DASGIL-FD [18] 6.0 / 31.1 / 84.7 5.1 / 27.2 / 85.9 10.6 / 29.4 / 76.9 1.6 / 4.8 / 19.9 1.8 / 4.3 / 21.6
ToDayGAN + D2Net [1, 11] 40.0 / 79.0 / 98.9 49.0 / 77.9 / 96.2 57.1 / 84.5 / 95.7 16.4 / 43.2 / 73.3 24.1 / 50.5 / 74.1

H

SIFT [27] 39.5 / 72.4 / 91.4 52.6 / 78.7 / 95.1 61.1 / 85.1 / 95.1 7.8 / 13.9 / 22.1 9.5 / 14.5 / 17.0
SPP [10] 43.4 / 78.2 / 99.4 54.1 / 80.3 / 96.2 62.8 / 85.5 / 96.9 16.9 / 41.6 / 71.5 22.0 / 45.0 / 68.0
D2Net [11] 40.4 / 77.3 / 98.3 51.8 / 78.5 / 96.2 60.5 / 84.5 / 94.9 18.0 / 39.7 / 53.9 22.7 / 40.5 / 56.1
R2D2 [35] 45.6 / 78.8 / 99.8 55.4 / 80.3 / 97.7 63.4 / 86.1 / 98.6 18.3 / 43.4 / 67.8 29.1 / 50.2 / 68.2
DIFL + FCL [19] 5.4 / 27.2 / 72.8 4.6 / 22.8 / 78.7 9.0 / 25.2 / 71.8 0.5 / 2.7 / 8.4 4.5 / 10.2 / 23.2

M
SPP + Superglue [10, 38] 45.1 / 79.0 / 100.0 54.6 / 80.0 / 96.2 62.0 / 84.9 / 98.6 24.2 / 62.6 / 87.4 42.3 / 69.3 / 90.2
Pixloc [39] 41.9 / 75.4 / 99.1 53.8 / 80.3 / 97.7 60.9 / 84.5 / 95.7 16.4 / 30.8 / 75.1 30.7 / 49.8 / 80.5
AHM [13] 37.8 / 74.3 / 96.8 42.1 / 76.2 / 96.2 51.9 / 83.6 / 95.7 16.2 / 55.3 / 93.6 28.4 / 68.4 / 95.5

Ours 45.4 / 79.0 / 100.0 54.6 / 80.5 / 97.9 63.0 / 86.5 / 98.6 24.9 / 62.3 / 86.1 47.5 / 73.4 / 90.0

Table 3. Results on RobotCar-Seasons dataset. The best and second best results are highlighted with bold and red fonts.

proach on RoboCS dataset [30] under different illumina-
tion, weather, and season conditions. Table 3 demonstrates
the results. Images in RoboCS were recorded by a moving
car without large variations of rotation, so most methods
give promising accuracy on day images in different season
and weather conditions (overcast-summer, overcast-winter,
snow). However, our system outperforms them. Besides,
almost all of them (C, S, H) fail to produce good results
on night images (night, night-rain). This problem is miti-
gated by semantic information, but the usage of semantic
labels for simple filtering are fragile to segmentation errors
on night images, so the performance of these methods (S)
is very poor. On the contrary, our robust strategy of using
instance labels produces state-of-the-art results, which are
even better than those in group M.

Influence of the number of keypoints. Since both the
time and memory efficiency are significant to real appli-
cations, we further evaluate the performance of different
methods on Aachen v1.1 dataset [42] in Fig. 6 by pro-
gressively reducing the number of keypoints used for map-
ping and localization from 4k to 1k. We compare our sys-
tem with R2D2 [2, 35, 37] (H) and SPP+Superglue [10, 38]
(M), which are the best methods without and with advanced
matcher. We also list results of SPP [10] (H) as reference.

Since both SPP and R2D2 detect keypoints exhaustively
from images, they fail to retain enough valid keypoints
when the number of keypoints is decreased, resulting in dra-
matic performance drop especially for night images. By
leveraging the global context of features, Superglue ad-
dresses this problem effectively. While instance-wise de-
tection enables our model to retain more robust keypoints at
low cost, which ameliorates the influence even more effec-
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Figure 6. Influence of the number of keypoints. We progres-
sively decrease the number of keypoint for both mapping and
localization from 4k to 1k. Results of R2D2 [35], SPP [10],
SPP+Superglue [10, 38], and our method are reported.

tively when only 1k keypoints are used.
Qualitative results. Fig. 7 shows the predicted and auto-

matically generated ground-truth segmentation masks of the
query and reference images and their matches. Our model
is able to correctly recognize global instances under differ-
ent viewpoints, illuminations, and seasons. As we adopt
the instance-wise detection and matching technique, most
matches are from the these robust areas, boosting the local-
ization accuracy. Due to heavy occlusions or huge view-
point changes, our network sometimes can only recognize
a small part of the instance, which is enough for finding the
correct reference image but might impair the robustness of
fine localization if filtering-based usage of labels is adopted.
Fortunately, our robust instance-based detection and match-
ing strategy handles this situation successfully. We provide
more results and analysis about the detection and matching
processes in the supplementary material.
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Figure 7. Qualitative results. We visualize recognition results, matches between the query and reference images with different viewpoints,
illumination and season conditions. More qualitative results of recognition, detection, and matching are in the supplementary material.

Model Input size Running time (ms)

Netvlad [2] 1024×1024 31.9
Ours (Recognition) 256×256 9.2

R2D2 [35] 1024×1024 72.4
SPP [10] 1024×1024 12.0
Ours (Local feature) 1024×1024 30.1
Superglue [38] 2k×2k 52.0
Superglue [38] 4k×4k 146.8

Table 4. Running time. We report the inference time of our recog-
nition and local feature modules in comparison with previous re-
trieval, local feature, and matching methods.

Inst. detection & matching Refinement Day Night

86.3 / 95.0 / 98.7 71.7 / 86.4 / 99.0
3 87.1 / 95.1 / 98.7 73.3 / 85.9 / 99.5
3 3 89.1 / 96.1 / 99.3 77.0 / 90.1 / 99.5

Table 5. Ablation study. We test the effectiveness of our instance-
wise detection and matching, and the two-step pose estimation on
the Aachen v1.1 dataset.

4.3. Time analysis

In this section, we give an analysis of running time. Con-
sidering the implementation variations of different methods
(C++/Python) and the complexity of localization process,
we test the time of modules which take up the majority of
time. Table 4 shows the average time of 1,000 measure-
ments on a RTX3090 GPU. We utilize low (256× 256) and
high (1024 × 1024) resolutions for recognition and local
feature extraction respectively to balance the efficiency and
accuracy. Our recognition module runs much faster than
Netvlad (image size of 1024 is used by methods in groups
H and M). Since R2D2 extracts features from images with
full size, it is much slower than ours (4× downsampling)
and SPP (8× downsampling). Superglue [38] is powerful
but slow even with only 2k keypoints as input. Although
R2D2 and SPP+Superglue achieve outstanding accuracy,
they have to sacrifice the efficiency, whereas, our system
maintains high accuracy and efficiency at the same time.

4.4. Ablation study

Finally, we verify the efficacy of each component in our
model by progressively adding the instance-wise detection
and matching as well as the second step for pose refine-
ment. Table 5 shows the results on Aachen v1.1 dataset.
When introducing the instance-wise detection and match-
ing, we can see improvement especially on night images.
Since we adopt explicit assignment of instance labels, the
usage of semantics is inevitably influenced by recognition
results. However, it is more important to efficiency espe-
cially when the number of keypoints is limited. A huge
improvement can be seen by incorporating the refinement
step because of more correct references and fewer outliers
(rejected by the initially estimated pose).

5. Limitations
Our framework is based on building instance recogni-

tion, so its performance is influenced by the distribution of
buildings in the map. For areas without buildings, we have
to perform global search to find reference images. Besides,
directly recognizing a large number of global instances in
large-scale scenes is memory-consuming, but hierarchical
recognition [20] has the potential to solve this problem.

6. Conclusion
In this paper, we propose an efficient and accurate local-

ization framework based on global building instance recog-
nition. Specifically, a recognition-based progressive refer-
ence search strategy is proposed to find candidates from lo-
cal areas rather than the whole database. Besides, robust
instance-wise feature detection and matching techniques
are introduced to enhance the localization robustness under
challenging conditions with recognition errors considered.
Moreover, a two-step pose estimation is adopted to make
our recognition-based framework work faster and yield
more accurate results at low cost. Experiments demonstrate
that our model outperforms previous methods in terms of
both accuracy and efficiency.
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