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Abstract

Multi-view depth estimation methods typically require
the computation of a multi-view cost-volume, which leads
to huge memory consumption and slow inference. Fur-
thermore, multi-view matching can fail for texture-less sur-
faces, reflective surfaces and moving objects. For such fail-
ure modes, single-view depth estimation methods are of-
ten more reliable. To this end, we propose MaGNet, a
novel framework for fusing single-view depth probability
with multi-view geometry, to improve the accuracy, robust-
ness and efficiency of multi-view depth estimation. For each
frame, MaGNet estimates a single-view depth probability
distribution, parameterized as a pixel-wise Gaussian. The
distribution estimated for the reference frame is then used
to sample per-pixel depth candidates. Such probabilistic
sampling enables the network to achieve higher accuracy
while evaluating fewer depth candidates. We also pro-
pose depth consistency weighting for the multi-view match-
ing score, to ensure that the multi-view depth is consis-
tent with the single-view predictions. The proposed method
achieves state-of-the-art performance on ScanNet [8], 7-
Scenes [38] and KITTI [15]. Qualitative evaluation demon-
strates that our method is more robust against challenging
artifacts such as texture-less/reflective surfaces and mov-
ing objects. Our code and model weights are available at
https://github.com/baegwangbin/MaGNet.

1. Introduction

Depth estimation is pivotal to 3D scene reconstruction
and understanding. Owing to the advances in deep convo-
lutional neural networks, many attempts have been made
to estimate the pixel-wise metric depth from RGB images.
Both single-view and multi-view methods have been pro-
posed. The two families of solutions rely on different cues
and therefore inherit different strengths and weaknesses.

Single-view methods [1,11–13,25,26,28,34,50,54] use
monocular cues, such as texture gradients and objects with

known size. A deep feature extractor (e.g. [18, 40]) is used
to encode such cues into a dense feature map, from which a
decoder regresses the per-pixel depth. With suitable super-
vision, single-view methods can learn the depth of weakly-
textured or reflective surfaces. However, their accuracy is
limited due to the inherent ambiguity of the problem.

Multi-view methods [6, 17, 27, 29, 30, 51], on the other
hand, use geometric cues. The key assumption adopted by
these methods is that if the estimated depth for a particular
pixel is correct, it will be projected to visually similar pixels
in the other images. While such hard-coded multi-view ge-
ometry reduces the ambiguity and leads to better accuracy,
there are several limitations: A large number of depth can-
didates should be evaluated in order for the correct depth
to be found; The multi-view consistency assumption is vio-
lated in the presence of occlusion and object motion; Lastly,
the multi-view matching becomes unreliable for texture-less
or reflective surfaces.

We argue that both monocular and geometric cues
should be exploited in order to complement the limitation of
one another. The ambiguity in single-view depth can be re-
duced by performing multi-view matching. The efficiency
of multi-view matching can be improved by sampling the
depth candidates near the single-view depth. The failure
cases of multi-view matching (e.g. on texture-less/reflective
surfaces) can be prevented by enforcing the consistency
with the single-view depth.

To this end, we introduce MaGNet (Monocular and
Geometric Network), a novel framework for fusing single-
view depth probability with multi-view geometry. MaGNet
uses a sequence of monocular images with known intrinsics
and camera poses as input. The forward pass consists of the
following steps: (1) The network estimates the single-view
depth probability distribution of each image, parameterized
as a pixel-wise Gaussian; (2) For each pixel in the reference
image, a small number of depth candidates are sampled
from the estimated depth probability distribution; (3) The
sampled candidates are projected to the neighboring views
and the matching scores are measured in terms of the dot
product between the feature vectors; (4) The matching score



Example 1: Texture-less surface

Example 2: Reflective surface

GT Depth Liu et al. / Depth Ours / DepthInput Image Liu et al. / Error Ours / Error Ours / Uncertainty

0𝑚 5𝑚0𝑚 0.5𝑚0𝑚 0.5𝑚

Figure 1. This figure shows examples of images that are challenging for the existing multi-view depth estimation methods, such as [27].
Multi-view matching can be unreliable if the scene contains texture-less or reflective surfaces, leading to inaccurate predictions (see yellow
boxes). On the contrary, we use single-view depth probability to constrain the search space for depth candidates and to encode the depth
consistency of each candidate in each view, resulting in more accurate and robust predictions.

computed for each neighboring view is multiplied by a bi-
nary depth consistency weight inferred from the single-view
depth probability estimated from that viewpoint; (5) Lastly,
the resulting thin cost-volume is used to obtain a more ac-
curate multi-view depth probability distribution. Steps (2-
5) can be repeated to yield a more accurate result. The final
output of our network is a map of per-pixel depth proba-
bility distribution, from which the expected value and the
associated uncertainty can be inferred.

Our contributions can be summarized as below.

• Probabilistic depth sampling. Most multi-view depth
estimation methods [19, 20, 27, 29, 30, 32, 44, 46, 48,
52, 53] use the same set of depth candidates (sam-
pled between some hand-picked limits dmin and dmax)
for all pixels. Even the methods with coarse-to-fine
depth search strategy [6, 17, 51] use uniformly sam-
pled candidates to obtain the initial coarse depth-map.
To achieve higher accuracy for lower computational
cost, we propose probabilistic depth sampling, where
per-pixel candidates are sampled from the single-view
depth probability distribution. While [20,27,29,30,46]
evaluate 64 uniformly sampled candidates, we only
sample 5 candidates (i.e. 92% thinner cost-volume).

• Depth consistency weighting for multi-view match-
ing. We use the single-view depth probability esti-
mated in each view to encode the depth consistency of
the candidates. By multiplying the multi-view match-
ing score with a binary depth consistency weight, we
improve the robustness and accuracy.

• Iterative refinement. The result of the probabilistic
depth sampling and consistency-weighted multi-view
matching is a thin cost-volume, which is used to update
the initial depth probability distribution. However, if

the initial single-view depth probability distribution is
inaccurate, none of the sampled depth candidates will
be near the true depth. To handle such failure mode, we
introduce iterative refinement where the updated distri-
bution is fed back to the probabilistic depth sampling
module. Ablation study shows that such iterative re-
finement leads to higher accuracy.

Experimental results show that MaGNet achieves state-
of-the-art performance on ScanNet [8], 7-Scenes [38] and
KITTI [15]. Qualitative evaluation shows that the network
is more robust against challenging artifacts such as reflec-
tive and texture-less surfaces (see Fig. 1).

2. Related Work
Monocular depth estimation. Despite the inherently ill-
posed nature of the problem, monocular depth estimation
has been studied extensively in literature. While early
learning-based approaches [35, 36] relied on hand-crafted
image features, recent approaches [1, 11–13, 25, 26, 28, 34,
50,54] predict depth from CNN features. Notable contribu-
tions have been made by recasting depth estimation as an
ordinal regression problem [13], introducing virtual normal
loss to enforce geometric constraints [54], or using vision
transformers [3, 9] to encode the global context [1, 34, 50].
Multi-view depth estimation. When given a sequence
of monocular images with known intrinsics and camera
poses, multi-view stereo (MVS) [14, 37] can be used to
estimate the per-pixel depth. Learning-based MVS meth-
ods [5, 6, 17, 19, 20, 32, 46, 48, 51–53, 55] sample per-pixel
depth candidates, project them to the neighboring views and
measure their matching scores (between CNN features) to
infer the per-pixel depth. State-of-the-art methods are gen-
erally evaluated on DTU [21] and Tanks and Temples [23].
Both datasets were captured in a controlled setup, where



the camera and the depth sensor were kept static or gimbal-
stabilized. On the contrary, datasets like ScanNet [8], 7-
Scenes [38] and KITTI [15] are captured by sensors at-
tached to a hand-held device or a moving vehicle. The im-
ages often contain motion blur, texture-less/reflective sur-
faces and moving objects, all of which make the multi-view
matching challenging. Methods like [24, 27, 29, 30, 41] fo-
cus on such datasets. They use surface normal as additional
supervisory signal [24, 30] or enforce the spatio-temporal
consistency between multiple frames [27, 29]. These meth-
ods will be the main competitors of our approach.
Coarse-to-fine depth sampling. Most multi-view depth es-
timation methods use the same set of depth candidates for
all pixels. To obtain high accuracy, the candidates should
be sampled densely (e.g. [32,48] use 256 candidates), lead-
ing to huge memory consumption and slow inference. To
overcome such limitation, recent MVS methods [6, 17, 51]
use coarse-to-fine strategy to construct a multi-scale cost-
volume. Firstly, the depth candidates are sampled uniformly
to obtain a coarse cost-volume. Then, the candidates for
higher resolution are sampled near the coarse depth-map.
While [17] halved the search space in each iteration, [6]
introduced uncertainty-based adaptive sampling, where the
per-pixel variance is inferred from the coarse cost-volume
to define the search space.
Probabilistic depth estimation. In order to deploy CNN-
based depth estimation methods in safety-critical applica-
tions, the networks should not only be accurate but also
be able to quantify the uncertainty in prediction. Two ma-
jor types of uncertainty are aleatoric and epistemic [22].
Aleatoric uncertainty (i.e. uncertainty in data) in depth is
commonly learned by estimating the probability distribu-
tion over possible depths. Both discrete and continuous so-
lutions have been proposed. Discrete solutions [2, 27, 49]
formulate depth estimation as classification over discretized
depths and hence suffer from the quantization error. Contin-
uous solutions [22] represent depth probability as a param-
eterized distribution (e.g. Gaussian) and train the network
by maximizing the likelihood of the ground truth. We take
a step further and demonstrate how the single-view depth
probability distributions estimated from different views can
be used to obtain a more accurate multi-view distribution.

3. Method
Our goal is to estimate a depth-map for the reference

frame It at time t. The input to the network is a local win-
dow of images Wt = {It−2∆t, It−∆t, It, It+∆t, It+2∆t}
with known intrinsics and camera poses. The proposed
pipeline, illustrated in Fig. 2, consists of three steps: For
each image, the network estimates the single-view depth
probability distribution and extracts features (Sec. 3.1); The
estimated single-view depth probability is fused with multi-
view geometry via probabilistic depth sampling and consis-

tency weighting (Sec. 3.2); Lastly, the resulting thin cost-
volume is used to estimate the multi-view depth probability
distribution (Sec. 3.3).

3.1. Single-View Depth Probability and Features

Single-view depth probability. For each image in Wt

which has the resolution of H ×W , D-Net estimates a map
of single-view depth probability distribution in reduced res-
olution of H/4×W/4. The distribution for each pixel (u, v)
in the input image It is parameterized as a Gaussian,

pu,v(d|It) =
1

σu,v(It)
√
2π

e
− 1

2

(
d−µu,v(It)

σu,v(It)

)2

, (1)

where µ and σ2 are the mean and the variance. Any exist-
ing depth estimation network can be used as D-Net. We use
a lightweight convolutional encoder-decoder with Efficient-
Net B5 [43] backbone. We use linear activation for µ, and
the modified ELU function [7], f(x) = ELU(x) + 1 for σ2

to ensure positive variance and smooth gradient. D-Net is
pre-trained and the weights are fixed when training the other
components of the pipeline. The training loss is the negative
log-likelihood (NLL) of the ground truth depth,

Lu,v(d
gt
u,v|It) =

1

2
log σ2

u,v(It) +

(
dgt
u,v − µu,v(It)

)2
2σ2

u,v(It)
.

(2)

Eq. 2 is an L2 loss with learned attenuation. The net-
work learns to estimate high σ2 when it is challenging to
reduce the error (dgt−µ)2. This generally happens near ob-
ject boundaries and for distant points [22]. On the contrary,
when the estimated σ2 is low, the correct depth is likely to
be near the estimated µ. We will explain in Sec. 3.2 how
such information can be exploited to improve the efficiency
and accuracy of multi-view matching.
Single-view features. For each image, F-Net extracts a fea-
ture map of resolution H/4 × W/4. We use the architec-
ture of [4] as in [27]. Following [10], the matching score
between two pixels is computed in terms of the dot prod-
uct between the feature vectors. For pixel (u, v) with depth
candidates {dk}Ns

k=1, the matching score can be written as

su,v,k(It) =
∑
i ̸=t

⟨fu,v(It), fuik,vik(Ii)⟩, (3)

where ⟨·, ·⟩ represents the dot product and (uik, vik) is the
projection of the 3D coordinates defined by (u, v, dk) on
the i-th image. By applying softmax, the cost-volume can
be transformed into a depth probability volume, pu,v,k =
softmaxksu,v,k, from which the expected per-pixel depth
can be inferred as d̂u,v =

∑
k pu,v,k · dk. F-Net is also pre-

trained by using uniformly sampled depth candidates {dk}
and minimizing the L1 loss between d̂u,v and dgt

u,v .
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Figure 2. This figure illustrates the proposed pipeline. For each image, D-Net estimates the single-view depth probability and F-Net extracts
features. D-Net output for the reference frame is used to sample per-pixel depth candidates, which are evaluated via the consistency-
weighted multi-view matching. From the obtained thin cost-volume, G-Net updates the mean and variance of the initial depth probability
distribution, which can be fed back to the depth sampling module to yield a more accurate prediction. (a) This figure illustrates how the
per-pixel prediction is updated. The curves and histograms represent the estimated depth probability distributions and the matching scores
of the sampled candidates, respectively. (b) This figure shows the update in the dense prediction (depth µ and uncertainty σ).

3.2. Fusing Single-View Depth Probability with
Multi-View Geometry

In this section, we explain how single-view depth proba-
bility can be fused with multi-view geometry. The compo-
nents described in this section have no learnable parameters.
Probabilistic depth sampling. The single-view depth
probability distribution estimated for the reference frame is
used to sample per-pixel depth candidates. Firstly, we de-
fine the search space [µu,v − βσu,v, µu,v + βσu,v] for each
pixel where β is a hyper-parameter. Then, we split the inter-
val into Ns bins such that each bin shares the same amount
of probability mass. This ensures that more candidates are
sampled near µu,v (i.e. the most likely depth value). The
mid-point of each bin is then selected as a depth candidate.
The k-th depth candidate, du,v,k, is thus defined as

du,v,k = µu,v + bkσu,v,

where bk =
1

2

[
Φ−1

(
k − 1

Ns
P ∗ +

1− P ∗

2

)
+Φ−1

(
k

Ns
P ∗ +

1− P ∗

2

)]
.

(4)

In Eq. 4, Φ−1(·) is the probit function and P ∗ =
erf(β/

√
2) is the probability mass covered by the inter-

val [µu,v ± βσu,v] (see supplementary material for detailed
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Figure 3. (left) Comparison between uniform sampling and the
proposed probabilistic sampling. The blue curve represents the
single-view depth probability distribution, and the red dots repre-
sent the sampled candidates. (right) Illustration of depth consis-
tency weighting. For pixel (ut, vt) in the reference frame It, a
depth candidate defines a 3D point (marked with ⋆). This point
is projected to the neighboring views and the depth probability in
each view is evaluated. For It−1, ⋆ is not within µ ± κσ due to
occlusion. The consistency weight becomes 0 in such case.

derivation). Note that the values of {bk} only depend on Ns

and β (i.e. they are not calculated per-pixel). Fig. 3-(left)
compares the proposed sampling against the uniform sam-
pling. As we only sample within the β-sigma confidence
interval, we can achieve higher accuracy while evaluating
fewer candidates. For the pixels with high uncertainty, the
spacing between the candidates increases so that a wider
range of candidates can be evaluated.



Depth consistency weighting. If a depth candidate is cor-
rect, this means that the corresponding 3D point is on the
surface of some scene element (e.g. objects). If this 3D
point is visible in some neighboring view, the corresponding
single-view depth probability (estimated from that view)
should be high. Assuming that this is true (i.e. assuming
our D-Net is accurate), the logically equivalent contraposi-
tive is ”if the single-view depth probability of a depth can-
didate estimated from a neighboring view is low, it means
either that the depth candidate is wrong or that it is not vis-
ible in that view (e.g. due to occlusion)”. The multi-view
matching score should not be computed for such case (see
Fig. 3-(right)). To this end, we introduce a binary weighting
for the multi-view matching score,

su,v,k(It) =
∑
i̸=t

wdc
uik,vik,dik

⟨fu,v(It), fuik,vik
(Ii)⟩

wdc
uik,vik,dik

= δ (puik,vik(dik|Ii) > pthres) .

(5)

In Eq. 5, wdc
uik,vik,dik

is 1 if the single-view depth proba-
bility puik,vik

(dik|Ii) evaluated from the i-th image is above
certain threshold pthres and is 0 otherwise. We call this
depth consistency weighting. Setting the right pthres is im-
portant. If it is too high, it will zero out too many depth
candidates, one of which can be the correct one. We set
pthres = exp(−κ2/2)/σuik,vik

√
2π so that the weight be-

comes 1 if dik is within the κ-sigma confidence interval.
This means that pthres is adaptive both per-pixel and per-
view. If D-Net is uncertain about the depth (i.e. high σ),
pthres becomes low, allowing more depth candidates to be
considered.

Depth consistency weighting discards the candidates
with low single-view depth probability. Such weighting
is useful especially when the multi-view matching is am-
biguous or unreliable. For example, if the pixel is within a
texture-less surface, a wide range of depth candidates will
lead to similar matching scores. If the scene contains reflec-
tive surfaces, the matching score will be computed between
the reflections, resulting in over-estimated depth. In both
cases, MaGNet can make robust prediction by favoring the
depth candidates with high single-view depth probability.

3.3. Estimating Multi-View Depth Probability Dis-
tribution

Updating single-view depth probability distribution.
The result of the probabilistic depth sampling and
consistency-weighted multi-view matching is a thin cost-
volume of size H/4×W/4×Ns, where Ns is the number
of depth candidates. Using this as an input, G-Net estimates
the multi-view depth probability distribution by updating
the mean and variance of the initial single-view distribu-
tion. Each element of the cost-volume, su,v,k, is a matching
score computed at pixel (u, v) for the k-th depth candidate,

µu,v+bkσu,v (see Eq. 4). Since the values of µu,v and σu,v

are not encoded in the input, it is difficult to directly regress
the updated mean and variance.

Instead, our G-Net estimates the normalized residual
∆µu,v/σu,v . For example, if the matching score is high for
the k′-th depth candidate, the network should predict bk′ , so
that the updated mean becomes µnew

u,v = µu,v+bk′σu,v . Sim-
ilarly, G-Net also estimates σnew

u,v/σu,v to update the vari-
ance. This gives us the updated, multi-view depth proba-
bility distribution N (µnew

u,v , σ
new
u,v ) for each pixel. Note that

the output of G-Net can be fed back to the sampling module
and the process can be repeated to refine the output.
Learned upsampling. The output of G-Net is a map
of multi-view depth probability distribution of resolution
H/4 × W/4. To recover the full resolution, we use the
learned upsampling layer introduced in [45]. The input to
the layer is the feature-map of D-Net (see supplementary
material for the network architecture). A light-weight CNN
estimates H/4×W/4× (4× 4× 9) mask and the full reso-
lution depth at each pixel is computed as the weighted sum
of the 3× 3 grid of its coarse resolution neighbors.
Iterative refinement and network training. The multi-
view matching process (i.e. probabilistic depth sampling →
consistency-weighted matching → update by G-Net) is re-
peated for Niter times, producing Niter predictions. For each
prediction, the NLL loss (Eq. 2) is computed, and their sum
is used to train G-Net and the upsampling layer. Follow-
ing [45], the i-th prediction is weighted by γNiter−i, where
0 < γ < 1, to put bigger emphasis on the final output.

Iterative refinement is beneficial in two regards. Firstly,
if one of the candidates achieves a high matching score, the
mean will be shifted towards that candidate and the variance
will be reduced, so that in the next iteration, the network
can perform a finer depth search near that candidate to find
a better candidate with a higher matching score. Iterative
update can also prevent the failure mode where the D-Net
prediction is inaccurate. For example, if the true depth is
not within the initial search space [µu,v − βσu,v, µu,v +
βσu,v], none of the sampled candidates will achieve a high
matching score. In such case, G-Net will learn to increase
the variance to attenuate the loss (Eq. 2), and the network
can perform a wider depth search in the next iteration.

4. Experimental Setup
Dataset and evaluation protocol. We train MaGNet on
ScanNet [8]. ScanNet contains 2.7M views from 1613
scans. We use the official data split to train and test the
model. To evaluate the generalization ability, we perform
a cross-dataset evaluation on the test split of the 7-Scenes
dataset [38] without fine-tuning. We also train and test our
method on KITTI [15], both using the Eigen split [12] and
the official split. For all evaluations, depth accuracy is mea-
sured using the metrics defined in [12].



Method Cap Train on ScanNet → Test on ScanNet Train on ScanNet → Test on 7-Scenes
abs rel abs diff rmse rmselog δ<1.25 abs rel abs diff rmse rmselog δ<1.25

MVDepthNet [46]

10m

0.1116 0.2087 0.3143 0.1500 88.04 0.1905 0.3304 0.4260 0.2221 71.93
DPSNet [20] 0.0986 0.1998 0.2840 0.1348 88.80 0.1675 0.2970 0.3905 0.2061 76.03
NAS [24] 0.0941 0.1928 0.2703 0.1269 90.09 0.1631 0.2885 0.3791 0.1997 77.12
CNM-Net [30] 0.1102 0.2129 0.3032 0.1482 86.88 0.1602 0.2751 0.3602 0.2030 76.81
DELTAS [41] 0.0915 0.1710 0.2390 0.1226 91.47 0.1548 0.2671 0.3541 0.1860 79.66
UCS-Net [6] 0.0845 0.1605 0.2335 0.1145 92.22 0.2113 0.3668 0.4683 0.2369 69.31
Long et al. [29] 0.0812 0.1505 0.2199 0.1104 93.13 0.1465 0.2528 0.3382 0.1967 80.36
Ours (D-Net) 0.1186 0.2070 0.2708 0.1461 85.46 0.1339 0.2209 0.2932 0.1677 83.08
Ours (full) 0.0810 0.1466 0.2098 0.1101 92.98 0.1257 0.2133 0.2957 0.1639 85.52
NeuralRGBD [27]

5m

0.1013 0.1657 0.2500 0.1315 91.60 0.2334 0.4060 0.5358 0.2516 68.03
Long et al. [29] 0.0805 0.1438 0.2029 0.1083 93.33 0.1465 0.2528 0.3382 0.1967 80.36
Ours (D-Net) 0.1177 0.1991 0.2526 0.1439 85.70 0.1339 0.2209 0.2932 0.1677 83.08
Ours (full) 0.0804 0.1409 0.1960 0.1084 93.13 0.1257 0.2133 0.2957 0.1639 85.52

Table 1. Quantitative evaluation on ScanNet [8] and 7-Scenes [38]. We follow the evaluation protocol of [29]. While the accuracy of
MaGNet on ScanNet is similar to that of [29], we show superior generalization ability, where we outperform other methods on all metrics.

Implementation details. MaGNet is implemented using
PyTorch [33]. We first train D-Net and F-Net (separately),
and fix their weights when training the remaining compo-
nents. We use AdamW optimizer [31] and schedule the
learning rate using 1cycle policy [42] with lrmax = 3.5 ×
10−4. The batch size is 16/4/8 for D-, F- and G-Net (plus
the upsampling layer), respectively. The number of epochs
is 5/2/2 for ScanNet [8] and 10/5/5 for KITTI [15]. For in-
door datasets, we use a local window of five images where
∆t is set to ten frames. For KITTI [15], we use three im-
ages and ∆t is set to two frames. The hyper-parameters are
{β, κ, γ} = {3.0, 5.0, 0.8} in all experiments. Ns and Niter
are 5 and 3, unless specified otherwise.

5. Experiments
5.1. Comparison with the State-of-the-Art

ScanNet and 7-Scenes. Tab. 1 shows that MaGNet
achieves state-of-the-art performance on both ScanNet [8]
and 7-Scenes [38]. While the accuracy on ScanNet is sim-
ilar to [29], our method shows superior generalization abil-
ity. State-of-the-art methods [27, 29, 30] operate on a huge
cost-volume covering the entire depth range (e.g. 0-10m).
In such case, the networks may learn the characteristics spe-
cific to the dataset (e.g. the depths of the pixels can in
general be small/large for certain dataset), leading to over-
fitting. On the contrary, MaGNet operates on a thin cost-
volume, where the per-pixel entries cover a small depth
range of µu,v ± βσu,v . The low dimensionality of the in-
put makes the network less prone to over-fitting. Quali-
tative comparison against [27] (Fig. 4) shows that MaG-
Net is more robust against challenging artifacts such as

Method Multi abs rel sq rel rmse rmselog δ<1.25

MonoDepth2 [16] × 0.106 0.806 4.630 0.193 87.6
FeatDepth [39] × 0.099 0.697 4.427 0.184 88.9
BTS [26] × 0.059 0.245 2.756 0.096 95.6
AdaBins [1] × 0.058 0.190 2.360 0.088 96.4
SC-GAN [47] ✓ 0.063 0.178 2.129 0.097 96.1
Ours (D-Net) × 0.061 0.209 2.422 0.092 96.0
Ours (full) ✓ 0.054 0.162 2.158 0.083 97.1
NeuralRGBD [27] ✓ 0.100 0.473 2.829 0.128 93.2
Ours (D-Net) × 0.063 0.254 2.471 0.102 95.8
Ours (full) ✓ 0.050 0.167 1.971 0.085 97.7

Table 2. Quantitative evaluation on KITTI [15]. The second col-
umn shows whether the method operates on a multi-view setup.
We used the Eigen split [12] except for the comparison against
[27], where we used the official split. Our method shows state-of-
the-art performance.

reflective/texture-less surfaces and moving objects. Note
that while [27] evaluates 64 depth candidates per pixel, we
only evaluate 15 (5 candidates × 3 iterations).
KITTI. Tab. 2 shows that MaGNet outperforms the state-
of-the-art methods on KITTI [15]. KITTI is a challeng-
ing dataset for multi-view depth estimation methods for two
reasons: (1) The images often contain moving objects, for
which multi-view consistency is violated; (2) The camera
generally moves in a forward direction, resulting in a small
baseline (i.e. less accurate multi-view matching). How-
ever, as MaGNet uses single-view depth to restrict the depth
search space and to enforce the depth consistency, it is more
robust against such artifacts, as can be seen in Fig. 4.
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Figure 4. Qualitative comparison against [27]. With the proposed fusion of single-view depth probability, MaGNet can make accurate
prediction for (a) reflective surfaces, (b) weakly-textured surfaces and (c) moving objects. The estimated uncertainty also correlates well
with the prediction error. See supplementary material for more examples.

5.2. Ablation Study

In this section, we perform ablation studies to confirm
the effectiveness of the proposed probabilistic depth sam-
pling, depth consistency weighting, and iterative refine-
ment. Note that the accuracy is reported on a smaller test
set of ScanNet [8] provided by [13].
Effectiveness of the proposed fusion of single-view depth
probability. We compare the accuracy of multi-view
matching with and without the proposed probabilistic sam-
pling and consistency weighting. To ensure a fair compari-
son, the accuracy is evaluated directly from the cost-volume
(by applying softmax and solving d̂u,v =

∑
k pu,v,k · dk).

Fig. 5 shows that both components lead to significant im-
provement in the accuracy. By fusing single-view depth
probability, it is possible to achieve higher accuracy while
evaluating fewer candidates. Note that the consistency
weighting alone can improve the accuracy (for Ns ≥ 19).
This suggests that the proposed weighting can be applied to
the existing multi-view depth estimation methods that op-
erate on uniformly sampled candidates. Qualitative com-
parison in Fig. 6 shows that the proposed fusion makes the
multi-view matching more robust against challenging arti-
facts, such as reflective and texture-less surfaces.
Iterative refinement. We also report the accuracy of the
full pipeline for different values of Ns (number of depth
candidates) and Niter (number of iterations) in Tab. 3. Since
the depth candidates are concentrated near the estimated
mean, the spacing between the candidates are small even
for low Ns. As a result, increasing Ns does not lead to
meaningful improvement in the accuracy. On the contrary,
repeating the multi-view matching process leads to signifi-
cant improvement. If the initial multi-view matching is suc-
cessful (i.e. one of the candidates achieves a high matching

Figure 5. Effectiveness of the proposed fusion of single-view
depth probability. US, PS and CW mean Uniform Sampling, Prob-
abilistic Sampling and Consistency Weighting. Our full model
(PS+CW) achieves higher accuracy while evaluating fewer can-
didates. Dashed line in each plot shows the accuracy of D-Net
(single-view). Our full model becomes equivalent to D-Net when
Ns = 1. Without the proposed sampling and weighting, the
RMSE cannot be lower than that of D-Net, even for large Ns.

Input Image GT Depth Without Fusion
9 Candidates

Without Fusion
64 Candidates

With Fusion
9 Candidates

Figure 6. The proposed fusion of single-view depth probability
makes the multi-view matching more robust against challenging
artifacts, such as reflective surfaces (top) and texture-less surfaces
(bottom).

score), the network can perform a finer search in the next
iteration. If it is unsuccessful, the variance increases and



Niter Ns abs rel sq rel rmse rmselog δ<1.25

1

5 0.097 0.035 0.217 0.121 90.75
7 0.096 0.035 0.217 0.121 90.81
9 0.096 0.035 0.217 0.121 90.81

11 0.095 0.034 0.216 0.120 90.94
1

5

0.097 0.035 0.217 0.121 90.75
2 0.090 0.032 0.209 0.115 92.15
3 0.087 0.031 0.207 0.113 92.61
4 0.087 0.030 0.206 0.113 92.73

Table 3. Accuracy for different values of Niter (number of itera-
tions) and Ns (number of depth candidates). It is better to repeat
the multi-view matching multiple times with small Ns than to per-
form a single matching with large Ns. The accuracy converges for
Niter ≥ 3.

the network can perform a wider search in the next itera-
tion. In summary, it is better to repeat the process multi-
ple times with small Ns than to perform a single iteration
with large Ns. The increase in the computational cost is
small as the multi-view matching is performed in low reso-
lution (H/4×W/4) and for a small number of samples. For
Ns = 5, each iteration takes 11.23ms on a single 2080Ti
GPU. The accuracy converges for Niter ≥ 3.
Comparison against cascade cost volume-based MVS.
Cascade cost volume-based MVS methods [6, 17, 51]
use coarse-to-fine depth sampling. UCS-Net [6] uses
uncertainty-based sampling and is thus similar to our
method. The difference is two-fold. Firstly, UCS-Net re-
quires 64 uniformly sampled candidates to estimate the ini-
tial coarse depth-map, whereas MaGNet only samples 5
candidates from the single-view depth probability distri-
bution. Secondly, UCS-Net performs the next multi-view
matching in a higher resolution, while MaGNet stays in
the coarse resolution, evaluating only 5×2 additional sam-
ples (i.e. more memory efficient). Tab. 4 compares the
two methods. We also train UCS-Net by replacing the
64 uniformly sampled initial candidates with 8 candidates
sampled from our D-Net prediction (”UCS-Net + PS”).
With the help of the proposed probabilistic sampling, UCS-
Net can achieve similar accuracy, while being significantly
faster and lighter (e.g. when trained on four 2080Ti GPUs,
the training speed increases from 17fps to 31fps and mem-
ory consumption reduces from 10.3GB/gpu to 5.5GB/gpu).
Our full model (with consistency weighting and iterative re-
finement) performs better than both variants of [6].
Limitations. MaGNet uses single-view depth probability
distributions to (1) sample depth candidates and (2) infer
their depth consistency. However, single-view depth, due
to its inherent ambiguity, can be inaccurate. This is why
we designed both components to be uncertainty-aware. We
also proposed iterative multi-view matching, where G-Net

Method Ns abs rel sq rel rmse rmselog δ<1.25

UCS-Net [6] (64, 32, 8) 0.091 0.156 0.229 0.120 91.49
UCS-Net + PS (8, 8, 8) 0.092 0.157 0.214 0.118 90.74
Ours (5×3, 0, 0) 0.082 0.143 0.202 0.110 92.78

Table 4. Comparison against cascade cost volume-based approach
[6]. Ns represents the number of samples in each resolution
(H/4 × W/4, H/2 × W/2, and H × W ). Unlike [6], MaG-
Net stays in the coarse resolution (H/4 × W/4). Replacing the
initial uniform sampling in coarse resolution with the proposed
probabilistic sampling (PS) results in similar accuracy, while sig-
nificantly reducing the training time and memory consumption.

updates the variance so that the depth sampling can be finer
or wider in the next iteration. As a result, MaGNet can han-
dle mild inaccuracy in single-view predictions. Neverthe-
less, the proposed pipeline can suffer in cross-domain eval-
uations. For example, if MaGNet is trained on ScanNet [8]
(indoor) and tested on KITTI [15] (outdoor), the sampling
range (i.e. µ± βσ) will not include the true depth, even af-
ter multiple updates by G-Net. This is mainly because it is
difficult for a single-view network to infer the metric scale
of the scene. A possible solution can be to train D-Net with
a scale-invariant loss [12], so that it can estimate the rela-
tive depth. Then, the scaling factor for each image can be
obtained by minimizing the reprojection error. This will be
addressed in our future work.

6. Conclusion

In this paper, we proposed a novel framework for fus-
ing single-view depth probability with multi-view geome-
try to improve the accuracy, efficiency and robustness of
multi-view depth estimation. Specifically, we introduced
probabilistic depth sampling where per-pixel depth candi-
dates are sampled from the single-view depth probability
distribution, and depth consistency weighting for the multi-
view matching score to ensure that the multi-view depth is
consistent with the single-view predictions. We also pro-
posed iterative multi-view matching, where a small number
of candidates are sampled from the current depth probabil-
ity distribution to update its mean and variance. The pro-
posed method shows state-of-the-art performance on Scan-
Net [8], 7-Scenes [38] and KITTI [15]. Ablation study il-
lustrates that the proposed fusion of single-view depth prob-
ability improves the accuracy, efficiency and robustness of
multi-view depth estimation.
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