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Abstract

State-of-the-art face recognition models show impressive
accuracy, achieving over 99.8% on Labeled Faces in the
Wild (LFW) dataset. Such models are trained on large-scale
datasets that contain millions of real human face images
collected from the internet. Web-crawled face images are
severely biased (in terms of race, lighting, make-up, etc)
and often contain label noise. More importantly, the face
images are collected without explicit consent, raising ethi-
cal concerns. To avoid such problems, we introduce a large-
scale synthetic dataset for face recognition, obtained by
rendering digital faces using a computer graphics pipeline'.
We first demonstrate that aggressive data augmentation can
significantly reduce the synthetic-to-real domain gap. Hav-
ing full control over the rendering pipeline, we also study
how each attribute (e.g., variation in facial pose, acces-
sories and textures) affects the accuracy. Compared to Syn-
Face, a recent method trained on GAN-generated synthetic
faces, we reduce the error rate on LFW by 52.5% (accu-
racy from 91.93% to 96.17%). By fine-tuning the network
on a smaller number of real face images that could reason-
ably be obtained with consent, we achieve accuracy that is
comparable to the methods trained on millions of real face
images.

1. Introduction

Learning-based face recognition models [29, 23, 33, 35,
8, 15, 24, 18] use Deep Neural Networks (DNNs) to encode
the given face image into an embedding vector of fixed di-
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mension (e.g., 512). These embeddings can then be used for
various tasks, such as face identification (who is this person)
and verification (are they the same person). To learn diverse,
discriminative embeddings, the training dataset should con-
tain a large number of unique identities. To learn robust
embeddings, i.e., which are not sensitive to the changes
in pose, expression, accessories, camera and lighting, the
dataset should also contain a sufficient number of images
per identity with these variations.

Publicly available face recognition datasets satisfy both.
MSIMV2 [8] contains 5.8M images of 85K identities
(approx. 68 images per ID). Recently released Web-
Face260M [43] contains 260M images of 4M identities (ap-
prox. 65 images per ID). While such datasets have driven
recent advances in face recognition models, there are sev-
eral problems associated with them.

(1) Ethical issues. Large-scale face recognition datasets
are often criticized for ethical issues including privacy vi-
olation and the lack of informed consent. For example,
datasets like [39, 12, 8, 43] are obtained by crawling web
images of celebrities without consent. To increase the num-
ber of identities, some datasets exploited the term “celebri-
ties” to include anyone with online presence. Datasets like
[17,26] collected face images of the general public (includ-
ing children) from Flickr [3]. Projects like MegaPixels [4]
are exposing the ethical problems of such web-crawled face
recognition datasets. Following severe criticism, public ac-
cess to several datasets has been removed [2].

(2) Label noise. Web images collected by searching the
names of celebrities often contain label errors. For example,
the Labeled Faces in the Wild (LFW) dataset [14] contains
several known errors including: (1) mislabeled images; (2)
distinct persons with the same name labeled as the same per-
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Figure 1. Examples of synthetic face images in our dataset. Our dataset captures a wide variety of facial geometry, pose, textures, expres-
sions, accessories and environments.

son; and (3) the same person that goes by different names
labeled as different persons.

(3) Data bias. Face recognition models are generally
trained and tested on celebrity faces, many of which
are taken with strong lighting and make-up. Celebrity
faces also have imbalanced racial distribution (e.g., 84.5%
of the faces in CASIA-WebFace [39] are Caucasian
faces [34]), leading to poor recognition accuracy for the
under-represented racial groups [34].

In order to circumvent all these issues that affect the ex-
isting real face datasets, we introduce a new large-scale face
recognition dataset consisting only of photo-realistic digital
face images rendered using a computer graphics pipeline
and make this dataset available to the community. Specifi-
cally, we build upon the face generation pipeline introduced
by Wood et al. [36], tailoring the amount of variability for
each attribute (e.g., pose and accessories) for our recogni-
tion task, and generate 1.22M images with 110K unique
identities. Each identity is generated by randomizing the
facial geometry and texture as well as the hair style. The
generated face is then rendered with different poses, ex-
pressions, hair color, hair thickness and density, accessories
(including clothes, make-ups, glasses, and head/face wear),
cameras and environments, to encourage the network to
learn a robust embedding. Figure 1 shows examples of syn-
thetic face images in this new dataset. We generated 1.22M
images, but in practice the number of identities and images
you can generate with synthetics pipeline is only limited by
the cost of generating and storing these images.

Digital synthetic faces can solve the aforementioned
problems associated with the real face datasets. Firstly, the
generated faces are free of label noise. Secondly, the bias in
lighting, make-up and skin color can be reduced as we have
full control over those attributes. Most importantly, the face
generation pipeline does not rely on any privacy-sensitive
data obtained without consent.

This is a critical difference from the GAN-generated syn-
thetic faces; face GANS rely (either directly or indirectly) on
large-scale real face datasets to train some components of
their pipeline, leaving unresolved ethical problems. For ex-

ample, a recent method called SynFace [28] was trained on
synthetic faces generated using DiscoFaceGAN [9]. While
the generated face images are free of label noise, millions
of real face images were used for training DiscoFaceGAN.
The GANs may also inherit any bias that exists in the real
face images used to train them. For our dataset, only 511
face scans, obtained with consent, were used to build a
parametric model of face geometry and texture library [36].
From this limited source data, we can generate infinite num-
ber of identities, making our approach easily scalable.
Our contributions can be summarized as below:

* We release a new large-scale synthetic dataset for face
recognition that is free from privacy violations and lack
of consent. To the best of our knowledge, our dataset,
containing 1.22M images of 110K identities, is the largest
public synthetic dataset for face recognition.

* Compared to SynFace [28], which is trained on GAN-
generated faces, we reduce the error rate on LFW by
52.5% (accuracy from 91.93% to 96.17%). For five popu-
lar benchmarks [14, 30, 41, 25, 42], the average error rate
is reduced by 46.0% (accuracy from 74.75% to 86.37%).

* We demonstrate how the proposed synthetic dataset can
be used in conjunction with a small number of real face
images to substantially improve the accuracy. This sim-
ulates a scenario where a small number of curated (i.e.,
no label noise and reduced bias) real face images are col-
lected with consent. By fine-tuning our network with only
120K real face images (i.e., 2% of the commonly-used
MS1MV?2 dataset [8]), we achieve 99.33% accuracy on
LFW and 93.61% on average across the five benchmarks,
which is comparable to the methods trained on millions
of real face images.

* Having full control over the rendering pipeline, we per-
form extensive experiments to study how each attribute
(e.g., variation in facial pose, accessories and textures)
affects the face recognition accuracy.
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2. Related Work

Face recognition datasets with real face images. Major
tech companies can utilize private data to train their face
recognition models. Google used 100M-200M images of
8M identities to train FaceNet [29], and Facebook used
500M images of 10M identities [31]. It is challenging to
construct datasets of comparable size using face images that
are publicly available. Public datasets generally rely on
celebrity images [14, 39, 12, 43] or web images that are
posted with Creative Commons license [17, 26]. As dis-
cussed in section 1, such datasets have ethical issues and
suffer from label noise and data bias.

Synthetic faces generated using deep generative models.
Deep generative models such as GANs [11] can produce
photo-realistic images and have been used to generate syn-
thetic data to train face recognition [32, 28]. While tradi-
tional generators (e.g., [16]) generate a face image from a
single latent vector that changes both the identity and its
appearance, DiscoFaceGAN [9] learned disentangled la-
tent representations for identity, pose, expression and illu-
mination. SynFace [28] used DiscoFaceGAN to generate
a synthetic dataset for face recognition, consisting of 10K
identities and 500K images. SynFace achieved 91.93% ac-
curacy on LFW dataset [14], and by mixing the synthetic
dataset with 2K real identities (20 images each), the accu-
racy was pushed up to 97.23%. However, their performance
is poor for large-pose-variation datasets (e.g., 75.03% on
CFP-FP [30] and 70.43% on CPLFW [41]). This is mainly
because it is challenging to train a 2D GAN to produce im-
ages that preserve 3D geometric consistency [10].
Synthetic faces generated using 3D parametric models.
Classical 3D parametric face models such as morphable
models [5] explicitly model the identity independently from
other parameters which makes them well suited for generat-
ing face recognition datasets. However, previous results ob-
tained with this kind of synthetic images have shown limited
performance [20, 19] unless combined with a large number
of real images. This can be due to the lack of realism and
variability in the models that have been used to generate the
faces. Wood et al. [36] introduced a pipeline for generating
and rendering diverse and photo-realistic 3D face models. A
generative face model, learned from the 3D scans of 511 in-
dividuals, is used to generate a random 3D face. The face is
then combined with artist-created assets (e.g., texture, hair,
accessories) and is rendered under a random environment
(simulated with HDRIs - high dynamic range images). The
rendered synthetic face images (and the corresponding auto-
generated ground truth annotations) were used to learn var-
ious face analysis tasks such as face parsing [36], landmark
localization [36, 37] and face reconstruction [37], demon-
strating state-of-the-art performance. In this paper, we aim
to demonstrate that such photo-realistic rendered synthetic
faces can be used to tackle face recognition.

Accessory #1 Accessory #2 Accessory #3 Aécessory #4

Figure 2. Each row shows the same identity rendered with differ-
ent accessory setups. Accessories include clothes, glasses, make-
up (e.g., eyeshadow and eyeliner), face-wear and head-wear. The
color, density and thickness of facial and head hair are also ran-
domized. The hair style is modified only when the sampled acces-
sory conflicts with the original hair style.

Randomize
Color
Density
Thickness

Randomize
Color
Density
Thickness
+ Style

Figure 3. Randomizing the hair style makes the problem unnec-
essarily difficult (see the bottom row), as most people maintain
similar hair styles. Therefore, we only randomize the color, den-
sity and thickness of the hair as shown in the top row (the hair is
also randomly flipped horizontally).

3. Digital Faces for Face Recognition

This section explains how the proposed dataset is gen-
erated. We first explain how digital faces are controlled,
rendered and aligned to create the dataset (subsection 3.1).
After providing the dataset statistics (subsection 3.2), we
introduce the data augmentation details which help in min-
imizing the synthetic-to-real domain-gap (subsection 3.3).

3.1. Face Rendering

We build upon the face generation and rendering pipeline
introduced by Wood et al. [36]. In this section, we explain
the modifications we made to the original pipeline to create
a large-scale dataset for face recognition.

We define identity as a unique combination of facial ge-
ometry, texture (albedo and displacement), eye color and
hair style. For each identity, we render a number of im-

3528



Neutral View

Figure 4. Examples of images rendered for the same identity and
accessory setup. The same face can look very different depending
on the pose, expression, environment (lighting and background)
and camera, encouraging the network to learn robust embedding.

ages where all other parameters are varied to encourage the
network to learn robust embeddings. While hair style can
change for an individual, most people maintain similar hair
style (for both facial and head hair) which makes hair style
an important cue for the person’s identity. Consequently,
for the same identity, we randomize only the color, density
and thickness of the hair (see Figure 3 for examples), and
the hair style is only changed when the added head-wear is
not compatible with the original hair style to avoid intersec-
tion (e.g., third image of top row in Figure 2). For sampling
facial geometry, texture and eye color we follow [36].

For a given identity, we sample different accessories in-
cluding clothing, make-up, glasses, face-wear (e.g., face
masks) and head-wear (e.g., hats). After selecting the cloth-
ing randomly from the digital wardrobe, other accessories
are added with probability p = {0.15,0.15,0.01,0.15} re-
spectively. We also add hands and secondary faces with a
small probability (p = 0.01) to simulate the case when (1)
the face is occluded by hands and when (2) there are multi-
ple faces in the image. Figure 2 shows examples of the sam-
pled identities rendered with different sets of accessories.

For each accessory setup, we vary the pose, expres-
sion, camera and environment (lighting and background)
to render multiple images. The camera is rotated around
the face, both horizontally and vertically. Horizontal an-
gle is sampled from a truncated zero-mean normal distri-
bution with support fpei € [—90°,90°]. The variance is
set such that the probability density p(fhoi = 90°) equals
to 1073 X p(fhori = 0°). Vertical angle is sampled from
a similar truncated normal distribution with support Oye; €
[_3007 300] and p(avert = 300) = ]-0_3 X p(everl = OO)~
This allows us to render a wide range of poses while mak-
ing sure that frontal views are rendered more often. Lastly,
the face is randomly translated within the viewing frustum
to add additional perspective distortion. For pose, expres-
sion, and environment sampling, we follow [36]. Figure 4
shows the impact of varying the pose, expression, environ-
ment and camera for the same identity and accessory setup.
Face alignment. The input to the face embedding network
should be an aligned crop around the face. Instead of de-

Aligned Tmage

Figure 5. For synthetic faces, it is trivial to extract the locations
of ground-truth facial landmarks (e.g., eyes, nose-tip and mouth
corners) and align the crop around the face. This enables robust
face alignment, even when some of the landmarks are not visible.

tecting facial landmarks using pre-trained DNNs (such as
MTCNN [40] and RetinaFace [7]), we align the faces using
the ground truth landmarks (see Figure 5), which enable ro-
bust alignment even when some landmarks are not visible.

Limitations. The face generation pipeline [36] we build
upon has a number of limitations resulting in domain-gap
to real face images. Particularly relevant to face recognition
is that we cannot generate the same person at different ages.
While we simulate aging to some extent by randomizing
the color, density and thickness of the hair (as hair typically
becomes grayer, sparser and thinner during aging), more
work should be done to faithfully simulate aging. Lack of
coverage (e.g., no jewelry and tattoos) may also mean that
the distribution of the synthetic data does not match reality.

3.2. Dataset Statistics

The proposed dataset consists of two parts. The first
part contains 720K images with 10K identities. For each
identity, 4 different sets of accessories are sampled and
18 images are rendered for each set (i.e., 72 images-per-
identity). Since many views of the same face are avail-
able, the network can learn embedding that is robust to the
changes in accessories, camera, pose, expression, and en-
vironment. The second part contains S00K images with
100K identities. For each identity, only one set of acces-
sories is sampled and only 5 images are rendered. This part
was added to substantially increase the total number of iden-
tities with small rendering cost. Ensuring sufficient number
of identities is important since the network should learn to
distinguish between similar-looking faces of different iden-
tities. We show in the experiments that mixing the two parts
leads to better accuracy than using one of them (Table 3).

3.3. Data Augmentation

The quality of in-the-wild face images can vary signifi-
cantly. Certain parts of the face may be occluded, and the
images are subject to distortion and noise that are specific to
each camera. As our synthetic faces are rendered with con-
trolled quality using a perfect pinhole camera, aggressive
data augmentation is needed to reduce the synthetic-to-real
domain-gap. We first apply random horizontal flipping and
cropping, following [18]. Then, we apply two sets of aug-
mentations - appearance and warping. Figure 6 shows train-
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Figure 6. Synthetic face images at different stages of data augmen-
tation. Aggressive augmentation helps to simulate effects such as
motion blur and distortion common in real-world images and thus
improve the robustness of DNNS trained on synthetic images.

ing images with these augmentations. Note that we apply
the data augmentation on-the-fly during training, i.e., each
epoch sees different random augmentations. For each type
of augmentation, we indicate its probability p to be applied
on a sample image.

Appearance augmentation. We apply random Gaussian
blur (p = 0.05) and Gaussian noise (p = 0.035). By
applying the Gaussian blur along a random direction us-
ing an anisotropic covariance, we also simulate motion blur
(p = 0.05). Brightness, contrast, hue and saturation are
randomized with p = {0.15,0.3,0.1,0.1}. Images are con-
verted into grayscale with p = 0.01. Lastly, the image
quality is randomized by downsampling-and-upsampling
(p = 0.01) and JPEG compression (p = 0.05).

Warping augmentation. Warping is performed by ran-
domly shifting the four corners of the image. Firstly, the
aspect ratio is randomized with p = 0.1. Then, all images
undergo random scaling, rotation and shift. Lastly, the four
corners are shifted differently for additional distortion.

4. Experimental Setup

Implementation details. Synthetic faces are rendered us-
ing Cycles renderer [1], with 256 samples per pixel. The
rendering of the full dataset took approximately 10 days,
using 300 NVIDIA M60 GPUs. The images are rendered at
256 x 256 resolution, and the aligned crop around the face is
resized into 112 x112. We use ResNet-50 [13] backbone for
the experiments in subsection 5.1, 5.2 and 5.3. For compar-
ison against the state-of-the-art methods in subsection 5.4,
we use their encoder architecture to ensure fair comparison.
For all experiments, the networks are implemented with Py-
Torch [27] and are trained for 40 epochs using SGD. The
batch size is set to 256 and the networks are trained on four
NVIDIA P100 GPUs. We follow the learning rate schedul-
ing of [28], and use the training loss from [18]. Note that all

networks are trained from scratch (not pre-trained on, e.g.,
ImageNet [6]), to make sure that no real images are used.
Evaluation protocol. Following state-of-the-art meth-
ods [15, 21, 24, 22, 18], we report the face verification
accuracy on five benchmark datasets - LFW [14], CFP-
FP [30], CPLFW [41], AgeDB [25] and CALFW [42].
LFW contains 6,000 pairs of in-the-wild face images. CFP-
FP and CPLFW have larger pose variation (CFP-FP specif-
ically compares frontal views to profile views). AgeDB and
CALFW have larger age variation.

5. Experiments

We run a series of experiments to demonstrate the use-
fulness of the proposed dataset. Subsection 5.1 compares
different data augmentations. In subsection 5.2, we train
the network on various different subsets of the full dataset
to understand how each attribute sampling in rendering af-
fects the accuracy. In subsection 5.3, we show that our syn-
thetic faces can be used in conjunction with a small number
of real faces to substantially improve the accuracy. Lastly,
we provide comparison against the state-of-the-art methods
in subsection 5.4.

5.1. Data Augmentation

In subsection 3.3, we introduced appearance and warp-
ing augmentations. As shown in Table 1, both lead to sig-
nificant improvement across all datasets. We also compare
against the augmentation used by AdaFace [18], which in-
cludes horizontal flipping, cropping and mild color augmen-
tation. For our synthetic face images which are free of im-
perfection, more aggressive data augmentation is needed to
reduce the domain-gap. Notice that the warping augmen-
tation improves the performance especially for the large-
pose-variation datasets (CFP-FP and CPLFW).

5.2. Dataset Composition

Having full control over the rendering pipeline, we can
create a dataset with desired statistics to study how each
attribute affects the face recognition accuracy. The results
are provided in Table 2.

Accessory sampling. For 10K synthetic identities, we sam-
pled 4 accessory setups and rendered 18 images for each
setup (i.e., 720K images in total). These 18 images have
variations in pose, expression, camera, and environment
(see Figure 4). From this, we can create a subset of 180K
images by selecting 18 images per ID with fixed accessory.
Similarly, we can select 18 images randomly so that images
with different accessories are used during training. When
randomizing the accessories, we also randomized the color,
thickness and density of the hair to simulate aging (Fig-
ure 3). As a result, the accuracy is improved especially
for the large-age-variation datasets (AgeDB and CALFW).
For CFP-FP and CPLFW, which has smaller age gap (i.e.,

3530



Experiment ‘ Method

| LFW CFP-FP CPLFW AgeDB CALFW | Avg

No augmentation

Data augmentation
& Ours (appearance)

Ours (appearance + warping)

Augmentation from AdaFace [18] | 90.12

88.07 7099  66.73 6092  69.23 |71.19

76.41 7133 67.17 7413 |75.83
9432 80.00 7483 7582  76.92 |80.38
9455 84.86 77.08 7697 7720 |82.13

Table 1. The proposed aggressive data augmentation significantly improves the accuracy across all datasets.

Experiment | Method | LFW CFP-FP CPLFW AgeDB CALFW | Avg
Accessory samplin Fix accessory 93.50 82.16 7575 73.05 73.83 |79.66
¥ samphng Randomize accessory 9423 8204 7518 7643 7722 |81.02
Minimize horizontal angle | 93.42  67.19 6648 7678  77.22 |76.22

Pose sampling Minimize vertical angle 93.67 81.13 74.57  76.57 76.68 | 80.52
Random pose 94.23 82.04 7518 7643 7722 |81.02

50 89.63 75.04 69.72 69.47  70.10 |74.79

Texture sampling 100 90.83 74.84 7030 70.62  70.57 |75.43
(# textures to select from) | 150 90.03 73.01 69.63  71.48 70.27 | 74.89
200 89.82 7337 69.37 7145 7050 |74.90

Table 2. Dataset composition experiments to study how the sampling of each attribute affects the accuracy.
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Figure 7. Left: 40 textures selected randomly from the texture li-
brary. The library covers diverse skin color and age. Right top
row: various identities (facial geometry and hair style) sampled
with the same texture. Right bottom row: same identity with the
same texture under different environments (taken from [36]). With
large variations in geometry, hair style and environments, rich ap-
pearance variation could be achieved with limited textures.

positive pairs capture the identity at similar age), fixing the
accessory and hair leads to slightly better accuracy.

Pose sampling. Similar to the accessory sampling, we
can select 18 images for each of the 10K identities by se-
lecting the ones with the smallest horizontal/vertical an-
gles. Then, we can compare them against the 18 images
selected randomly. For the randomly selected images, the
standard deviation in horizontal and vertical angles were
(Choris Overt) = (24.13°,9.20°). For the images with the
smallest horizontal/vertical angles, they were (4.71°,8.06°)
and (22.02°,1.72°) respectively. As shown in Row 3-5 in
Table 2, increasing the variation in horizontal and vertical
angles improved the accuracy especially for the large-pose-
variation datasets (CFP-FP and CPLFW). For AgeDB and
CALFW, which consists mainly of frontal faces, the accu-
racy was similar.

Texture sampling. While we can create infinite number of
unique facial geometries, the texture is sampled from a li-

brary built from 208 scans of real human faces (obtained
with consent). Since we generated 110K identities in to-
tal, many of them share the same texture. To see how the
number of textures affects the accuracy, we created a dataset
of 1200 identities with N textures, by generating 1200/N
identities for each texture. As shown in Row 6-9 of Table 2,
increasing the number of textures did not lead to a mean-
ingful improvement in the accuracy. This is contrary to the
intuition that small number of textures and lack of texture
generative model are limitations of synthetic data for face
recognition. We believe that the appearance variability is
a combination of geometry, texture, hair, accessories, en-
vironment and image quality. In Figure 7, we show that
(1) the texture library already covers diverse skin color and
age, (2) an arbitrary number of unique identities can be gen-
erated with the same texture, and (3) skin appearance is
greatly affected by the environment. Also, the image qual-
ity for face recognition task is in general limited due to low
resolution and data augmentation. Thus, the contribution of
texture variation is likely less important than that of geom-
etry and environment.

Balance between # IDs and # images/ID. Ensuring large
number of IDs is important for learning diverse discrimina-
tive embedding. On the other hand, large number of images
per ID (referred to as images/ID) is needed for learning ro-
bust embedding (that is not affected by the changes in pose,
accessories, expressions, camera and environment). Mixing
the two datasets with different number of images/ID can be
considered as an efficient way of getting the best of both.
This also simulates the long-tailed distribution of real face
datasets (i.e., most identities have small number of images).
The result in Table 3 shows that mixing the two datasets
leads to better accuracy than using one of them.
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Figure 8. Comparison between training with our synthetic data only (black dashed line), with small amount of real data only (red line),
with the mixture of the two (blue line), and pre-training on synthetics and fine-tuning with the real data (black line). The number of real
identities varies from 200 to 2000, and 20 images are sampled for each identity. When only a small number of real face images are available
(e.g., due to ethical issues), the proposed synthetic dataset can substantially improve the accuracy.

#1Ds x #images/ID|LFW CFP-FP CPLFW AgeDB CALFW| Avg

10K x 50+0 x5 [94.38 84.07 7653 7593 76.72 |[81.53
8K x 50+ 20K x 5|94.80 84.79 7752 7647 77.65 |82.24
6K x 50 +40K x 59522 8524 77.15 77.52 7832 |82.69
4K x 50+ 60K x 59545 8483 77.70 77.68 79.10 |82.95
2K x 50+ 80K x 5|94.82 84.09 77.75 77.55 78.37 |[82.51
0 x50+ 100K x 5 |94.45 8334 7677 7633 7728 |81.64

Table 3. Number of IDs and number of images/ID should both be
high to learn diverse and robust embedding. Mixing two datasets
with large/small number of images/ID can be an efficient way of
satisfying both. The overall accuracy becomes higher than relying
on one of the two datasets.

5.3. Mixing with Real Faces

The main problems associated with large-scale real face
datasets are ethical issues, label noise and data bias. In this
study, we assume a scenario where a small number of real
face images are collected with consent. For small number
of images, it would also be possible to remove (or reduce)
the label noise and data bias.

For synthetic data, we used 10K identities with 72 im-
ages per identity. For real face images, we varied the num-
ber of identities from 200 to 2000, with 20 images sampled
for each identity (the identities and images were sampled
randomly from CASIA-WebFace [39]).

We first tried training only on the synthetic data. Sec-
ondly, we tried training only on the real data. Then, we ex-
plored two different strategies for using both real and syn-
thetic images: (1) dataset mixing and (2) pre-training on
synthetic data and fine-tuning on the real data. For fine-
tuning, we reduced the learning rate by 1/10 for the predic-
tion head, and 1/100 for the encoder to avoid catastrophic
forgetting. The results are provided in Figure 8.

When the network is trained only on a small number of

real face images, the accuracy is worse than the network
trained only on our synthetic dataset. Both dataset mixing
and pre-training can lead to significantly higher accuracy,
especially for the large-pose-variation datasets (CFP-FP and
CPLFW). Compared to dataset mixing, pre-training on syn-
thetics followed by fine-tuning on real images led to better
accuracy. This can be due to the imbalance between the
number of images (we use 720K synthetic images, and a lot
fewer real images).

5.4. Comparison to the State-of-the-Art

Comparison to SynFace. SynFace [28] is the current
state-of-the-art for face recognition model trained on syn-
thetic faces. They used DiscoFaceGAN [9] to generate
500K synthetic faces (10K identities & 50 images/ID). To
ensure a fair comparison, we trained the same encoder
(LResNet50E-IR) with same number of images. We also
trained using our full dataset (1.22M images). The re-
sults are provided in Row 1-3 of Table 4. In the second
scenario, we additionally used 40K real face images from
CASIA-WebFace [39]. While SynFace mixed their syn-
thetic dataset with the real faces, we instead adopted the
two-stage method of pre-training and fine-tuning as dis-
cussed in subsection 5.3. The results are provided in Row
4-6 of Table 4.

For both scenarios, we significantly outperform SynFace
across all datasets. This suggests that our rendered synthetic
faces are better than GAN-generated faces for learning face
recognition. While GANs like [9] can generate realistic face
images, the data they generate is not ideal for face recogni-
tion, due to following reasons: (1) Identity change. While
[9] is encouraged to preserve the identity when changing
other latent variables, there is no guarantee that the identity
will be preserved during data generation. (2) Geometric in-
consistency. As pointed out by [10], the images generated
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# Synthetic images # Real images +
Method (#1Ds x #imgs/ID) (#1Ds x # imgs/ID) LFW CFP-FP CPLFW AgeDB CALFW | Avg Avg

SynFace [28] 500K (10K % 50) 0 91.93 75.03 7043  61.63 7473 |74.75 79.13
Ours 500K (10K x50) 0 9540 8740  78.87 7697  78.62 |83.45 87.22
Ours 1.22M (10K x 72+100K x 5) 0 9582 88.77 81.62 79.72  80.70 |85.32 88.74
SynFace [28] 500K (10K % 50) 40K (2Kx20) ]97.23 87.68 8032 81.42 8508 |86.35 88.41
Ours 500K (10K x50) 40K (2Kx20) ]99.05 94.01 87.27  89.77  90.08 |92.04 93.44
Ours 1.22M (10K x724+100Kx5) | 40K (2Kx20) [99.17 94.63 88.10 90.50  90.97 |92.67 93.97

Table 4. Comparison to SynFace using the same encoder architecture (LResNetSOE-IR [28]). For both scenarios - training only on synthetic
faces & using a small number of real faces - we significantly outperform SynFace across all datasets. Avg' shows average of LFW, CFP-FP
and CPLFW, excluding the large-age-variation datasets.

Method ‘ # Synthetic images ‘ # Real images ‘ LFW CFP-FP CPLFW AgeDB CALFW ‘ Avg  Avgt

Ours (SX best) 1.22M 0 96.17  89.81 8223  81.10 8255 |86.37 89.40
Ours (SX+Real best) 1.22M 120K 99.33 9593 8947 9155 91.78 |93.61 9491
SV-AM-Softmax [35] 99.50 95.10  89.48  95.68 9438 |94.83 94.69
SphereFace [23] 99.67 96.84 9127  97.05 9558 |96.08 95.93
CosFace [33] 0 58M 99.78 9826  92.18 98.17 96.18 |96.91 96.74
ArcFace [8] ’ 99.81 9840 9272 98.05 9596 |96.99 96.98
MagFace [24] 99.83 9846 9287 98.17 96.15 |97.10 97.05
AdaFace [18] 99.82 9849 93,53 98.05 96.08 |97.19 97.28

Table 5. Comparison to the state-of-the-art methods trained on real face images (MSIMV?2 [8]). We use the same backbone (ResNet100)
for fair comparison. By only using 120K real face images (2% of MS1MV?2 [8]), we achieve accuracy that is comparable to the methods
trained on millions of real face images. Since we do not model aging explicitly, our accuracy is worse for large-age-variation datasets
(AgeDB and CALFW). Avg' shows average of LEW, CFP-FP and CPLFW, and on these, we outperform [35] and are similar to [23].

by [9] for same identity and different poses lack 3D consis-
tency. (3) Lack of accessory change. [9] cannot random-
ize accessories. (4) Unresolved ethical concerns. Training
the GAN model itself requires large-scale real face dataset.
For example, 70K images are used to train [9]. To learn to
preserve identity, they also used a perceptual loss based on
[38], which is trained on 3M real face images.

In Row 2 and 3 of Table 4, we increase our synthet-
ics dataset size from 500K to 1.22M, and achieve better
accuracy. This indicates that the accuracy may not have
converged yet and could be improved further by generating
more synthetic data.

Comparison to methods trained on real faces. Lastly, we
compare the accuracy against the methods that are trained
on real face images. In Table 5, we provide the accuracy
of six methods that use ResNet100 as the embedding net-
work and MS1MV?2 [8] as the training data. We trained
the same architecture on our synthetic dataset (Row 1). We
also tried fine-tuning the network on a small number of
real face images (Row 2). When trained only with the pro-
posed synthetic dataset, the network can achieve 96.17% on
LFW. For LFW, CFP-FP and CPLFW (excluding the high-
age-variation datasets), the average accuracy is 89.40%.
By fine-tuning the network on just 120K images (2.0% of
MS1MV?2), the accuracy becomes comparable to the meth-
ods trained on MSIMV2 (e.g., average accuracy on LFW,
CFP-FP and CPLFW becomes higher than that of SV-AM-

Softmax [35]).

The performance of our method on AgeDB [25] and
CALFW [42] has a significantly larger gap than for the
other datasets evaluated. This is expected given the lack
of aging simulation in our synthetic data. We suspect that
other causes of domain-gap, as described at the end of sub-
section 3.1, are the primary reason for the remaining per-
formance gap for other evaluation datasets. Reducing this
domain-gap remains an area of ongoing work for our syn-
thetic data and is likely to result in improved performance
for all downstream tasks, including face recognition. We
leave this as future work.

6. Conclusion

In this paper, we introduced a new large-scale synthetic
dataset for face recognition by rendering digital faces using
a graphics pipeline. We ran extensive experiments to study
how data augmentation and various other attributes affect
the accuracy. We demonstrated that our synthetic faces are
significantly better than the GAN-generated faces for learn-
ing face recognition. With a small number of real face im-
ages, we achieve accuracy that is comparable to the methods
trained on millions of web-crawled face images. We hope
this dataset would be a meaningful step towards develop-
ing socially responsible face recognition models that do not
depend on privacy-sensitive data obtained without consent.
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