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Abstract

Within this paper a technique for model-based 3D hand tracking is presented. A
hand model is built from a set of truncated quadrics, approximating the anatomy
of a real hand with few parameters. Given that the projection of a quadric onto
the image plane is a conic, the contours can be generated efficiently. These model
contours are used as shape templates to evaluate possible matches in the current
frame. The evaluation is done within a hierarchical Bayesian filtering framework,
where the posterior distribution is computed efficiently using a tree of templates.
We demonstrate the effectiveness of the technique by using it for tracking 3D
articulated and non-rigid hand motion from monocular video sequences in front
of a cluttered background.

A Introduction

Hand tracking has great potential as a tool for better human-computer inter-
action. Tracking hands, in particular articulated finger motion, is a challenging
problem because the motion exhibits many degrees of freedom (DOF). Repre-
senting the hand pose by joint angles, the configuration space is 27 dimensional,
21 DOF for the joint angles and 6 for orientation and location. Given a kine-
matic hand model, one may attempt to use inverse kinematics to calculate the
joint angles [19], however this problem is ill-posed when using a single view. It
also requires exact feature localization, which is particularly difficult in the case
of self-occlusion.
Most successful methods have followed the approach of using a geometric hand
model, introduced by Rehg and Kanade [13] in the DigitEyes tracking system.
Their hand model is constructed from truncated cylinders. The axes of these
cylinders are projected into the image, and the distances to local edges are min-
imised using nonlinear optimisation. Heap and Hogg [9] use a deformable surface
mesh model, which is constructed via principal component analysis (PCA) from
example shapes obtained with an MRI scanner. This is essentially a 3D version
of active shape models, and shape variation is captured by only a few princi-
pal components. The motion is not based on a physical deformation model and
thus implausible finger motions can result. Wu et al. [20] model the articulated
hand motion from data captured using a data glove. The tracker is based on
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importance sampling, and hypotheses are generated by projecting a ’cardboard
model’ into the image. This model is constructed from planar patches, and thus
the system is view-dependent.
It is clear that the performance of a model-based tracker depends on the type of
the used model. However, there is a trade-off between accurate modelling, and
efficient rendering and comparison with the image data. In fact this is generally
true when modelling articulated objects for tracking, which is commonly done
in the context of human body tracking (see [11] for a survey). A number of
different models have been suggested in this context, using various primitives
such as boxes, cylinders, ellipsoids or super-quadrics.
The next section describes the geometric hand model used in this paper. Sec-
tion C reviews work on tree-based detection. A short introduction to Bayesian
filtering is given in D, and in section E we introduce filtering using a tree-based
estimator. Tracking results on video sequences of hand motion are shown in
section F.

B Modelling Hand Geometry

This section describes the construction of a hand model from truncated quadrics.
The advantage of this method is that the object surface can be approximated
with low complexity and that contours can be generated using tools from projec-
tive geometry. This hand model has previously been described in [15] but here
it is used in a different tracking framework.

B.1 Projective Geometry of Quadrics and Conics

A quadric is a second degree implicit surface in 3D space, and it can be rep-
resented in homogeneous coordinates by a symmetric 4 × 4 matrix Q [8]. The
surface is defined by all points X = [x, y, z, 1]T satisfying the equation

XTQX = 0. (1)

Different families of quadrics are obtained from matrices Q of different ranks.
Particular cases of interest are:

ellipsoids, represented by matrices Q with full rank;
cones and cylinders, represented by matrices Q with rank(Q) = 3;
a pair of planes π0 and π1, represented as Q = π0π

T
1 +π1π

T
0 with rank(Q) =

2.

Note that there are several other projective types of quadrics, such as hyper-
boloids or paraboloids, which like ellipsoids have a matrix of full rank. Under a
Euclidean transformation T =

[
R t

0T 1

]
the shape of a quadric is preserved, but

in the new coordinate system Q is represented by Q̂ = T−TQT−1.
A quadric has nine degrees of freedom, corresponding to the independent el-
ements of Q up to a scale factor. Given a number of point correspondences
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or outlines in multiple views, quadric surfaces can be reconstructed, as shown
by Cross and Zisserman [6]. It is also suggested that for many objects using a
piecewise quadric representation gives an accurate and compact surface repre-
sentation. In order to employ quadrics for modelling such general shapes, it is
necessary to truncate them. For any quadric Q the truncated quadric QΠ can
be obtained by finding points X satisfying:

XTQX = 0 and XTΠX ≥ 0, (2)

where Π is a matrix representing a pair of clipping planes (see figure 1a). The
image of a quadric Q =

[
A b

bT c

]
seen from a normalised projective camera P̃ =

[I | 0] is a conic C given by

C = cA− bbT, (3)

as shown in figure 1b. In order to obtain the image of a quadric Q in an arbitrary
projective camera P it is necessary to compute the transformation H such that
PH = [I | 0]. This normalising transformation is given by the matrix H =
[P†|p⊥], where P† is the pseudo inverse of P and p⊥ is the camera centre or the
null vector of P (see [5]).
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Fig. 1. Projection of a quadric. (a) A truncated quadric QΠ , here a truncated
ellipsoid, can be obtained by finding points on quadric Q which satisfy XTΠX ≥
0. (b) The projection of a quadric Q into the image plane is a conic C.

B.2 Description of the Hand Model

The hand model is built using a set of quadrics {Qi}q
i=1, representing the

anatomy of a human hand as shown in figure 2. We use a hierarchical model
with 27 degrees of freedom (DOF): 6 for the global hand position, 4 for the
pose of each finger and 5 for the pose of the thumb. Starting from the palm and
ending at the tips, the coordinate system of each quadric is defined relative to
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the previous one in the hierarchy. The palm is modelled using a truncated cylin-
der, its top closed by a half-ellipsoid. Each finger consists of three segments of
a cone, one for each phalanx. They are connected by hemispheres, representing
the joints. A default shape is first obtained by taking measurements from a real
hand. Given the image data, shape matching can be used to estimate a set of
shape parameters, including finger lengths and a width parameter [17].

(i) (ii)

Fig. 2. Geometric hand model. The hand model has 27 degrees of freedom is
constructed using truncated quadrics as building blocks. Depicted is (a) a front
view and (b) an exploded view.

B.3 Generation of the Contours

Each clipped quadric of the hand model is projected individually as described
in section B.1, generating a list of clipped conics. For each conic matrix C we
use eigen-decomposition to obtain a factorisation given by

C = T−TDT−1. (4)

The diagonal matrix D represents a conic aligned with the x- and y-axis and
centred at the origin. The matrix T is the Euclidean transformation that maps
this conic onto C. We can therefore draw C by drawing D and transforming the
points according to T. The drawing of D is carried out by different methods,
depending on its rank. For rank(D) = 3 we draw an ellipse, for rank(D) = 2 we
draw a pair of lines.
The next step is occlusion handling. Consider a point x on the conic C, obtained
by projecting the quadric Q, as shown in figure 1. The camera centre and x
define a 3D ray L. Each point X ∈ L is given by X(s) = [ x

s ], where s is a free
parameter determining the depth of the point in space, such that the point X(0)
is at infinity and X(∞) is at the camera centre. The point of intersection of the
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ray with the quadric Q is found by solving the equation

X(s)TQX(s) = 0 (5)

for s. Writing Q =
[

A b
bT c

]
, the unique solution of (5) is given by s0 = −bTx/c.

In order to check if X(s0) is visible, (5) is solved for each of the other quadrics
Qi of the hand-model. In the general case there are two solutions si

1 and si
2,

yielding the points where the ray intersects with quadric Qi . The point X(s0)
is visible if s0 ≥ si

j ∀i, j, in which case the point x is drawn. Figure 3 shows
examples of hand model projections.

(i) (ii)

(iii) (iv)

Fig. 3. Examples of model projections. (a)-(d) show different hand poses.
For each example the 3D hand model is shown on the left and its projection into
the image plane on the right. Note that self-occlusion is handled when generating
the contours.

B.4 Learning Natural Hand Articulation

Model-based trackers commonly use a 3D geometric model with an underlying
biomechanical deformation model [1, 2, 13]. Each finger can be modelled as a
kinematic chain with 4 DOF, and the thumb with 5 DOF. Thus articulated
hand motion lies in a 21 dimensional joint angle space. However, hand motion
is highly constrained as each joint can only move within certain limits. Further-
more the motion of different joints is correlated, for example, most people find
it difficult to bend the little finger while keeping the ring finger fully extended
at the same time. Thus hand articulation is expected to lie in a compact region
within the 21 dimensional angle space. We used a data glove to collect a large
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number of joint angles in order to capture natural hand articulation. Experi-
ments with 15 sets of joint angles captured from three different subjects, show
that in all cases 95 percent of the variance is captured by the first eight prin-
cipal components, in 10 cases within the first seven, which confirms the results
reported by Wu et al. in [20]. Figure 4 shows trajectories projected onto the
first three eigenvectors between a set of hand poses. As described in the next

(i) (ii)

Fig. 4. Paths in the configuration space found by PCA. (a) The figure
shows a trajectory of projected hand state vectors onto the first three principal
components. (b) The hand configurations corresponding to the four end points
in (a).

section, this lower dimensional eigen-space will be quantised into a set of discrete
states. Hand motion is then modelled by a first order Markov process between
these states. Given a large amount of training data, higher order models can be
learned.

C Tree-Based Detection

For real applications the problem of tracker initialisation, as well as the handling
of self-occlusion and cluttered backgrounds remain obstacles. Current state-of-
the-art systems often employ a version of particle filtering, allowing for multiple
hypotheses. The use of particle filters is primarily motivated by the need to
overcome ambiguous frames in a video sequence so that the tracker is able to
recover. Another way to overcome the problem of losing lock is to treat tracking
as object detection at each frame. Thus if the target is lost in one frame, this
does not affect any subsequent frame. Template based methods have yielded
good results for locating deformable objects in a scene with no prior knowledge,
e.g. for hands or pedestrians [2, 7, 14, 17]. These methods are made robust and
efficient by the use of distance transforms such as the chamfer or Hausdorff
distance between template and image [3, 10], which were originally developed
for matching a single template. A key suggestion was that multiple templates
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could be dealt with efficiently by building a template hierarchy and a coarse-
to-fine search [7, 12]. The idea is to group similar templates and represent them
with a single prototype template together with an estimate of the variance of
the error within the cluster, which is used to define a matching threshold. The
prototype is first compared to the image; only if the error is below the threshold
are the templates within the cluster compared to the image. This clustering is
done at various levels, resulting in a hierarchy, with the templates at the leaf
level covering the space of all possible templates.
If a parametric object model is available, another option to build the tree is
by partitioning the state space. Each level of the tree defines a partition with
increasing resolution, the leaves defining the finest partition. Such a tree is de-
picted schematically in figure 5(a), for a single rotation parameter. This tree
representation has the advantage that prior information is encoded efficiently,
as templates with large distance in parameter space are likely to be in different
sub-trees.
It may be argued that there is no need for a parametric model and that an
exemplar-based approach could be followed, as by Toyama and Blake in [18].
However, for models with many degrees of freedom the storage space for tem-
plates becomes excessive. The use of a parametric model allows the combination
of an on-line and off-line approach in the tree-based algorithm. Once the leaf level
is reached more child templates can be generated for further optimisation. Hier-
archical detection works well for locating a hand in images, and yet often there
are ambiguous situations that could be resolved by using temporal information.
The next section describes the Bayesian framework for filtering.

D Bayesian Filtering

Filtering is the problem of estimating the state (hidden variables) of a system
given a history of observations. Define, at time t, the state parameter vector as
θ t, and the data (observations) as Dt, with D1:t−1, being the set of data from
time 1 to t−1; and the data Dt are conditionally independent at each time step
given the θ t. In our specific application θ t is the state of the hand (set of joint
angles, location and orientation) and Dt is the image at time t (or some set of
features extracted from that image). Thus at time t the posterior distribution of
the state vector is given by the following recursive relation

p(θ t|D1:t) =
p(Dt|θ t)p(θ t|D1:t−1)

p(Dt|D1:t−1)
, (6)

where the normalising constant is

p(Dt|D1:t−1) =

∫
p(Dt|θ t)p(θ t|D1:t−1)dθ t. (7)

The term p(θ t|D1:t−1) in (6) is obtained from the Chapman-Kolmogorov equa-
tion:

p(θ t|D1:t−1) =

∫
p(θ t|θ t−1)p(θ t−1|D1:t−1)dθ t−1 (8)
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Fig. 5. Tree-based estimation of the posterior density. (a) Associated
with the nodes at each level is a non-overlapping set in the state space, defining
a partition of the state space (here rotation angle). The posterior distribution
for each node is evaluated using the centre of each set, depicted by a hand ro-
tated by a specific angle. Sub-trees of nodes with low posterior probability are
not further evaluated. (b) Corresponding posterior density (continuous) and the
piecewise constant approximation using tree-based estimation. The modes of the
distribution are approximated with higher precision at each level.

with the initial prior pdf p(θ 0|D0) assumed known. It can be seen that (6) and
(8) both involve integrals. Except for certain simple distributions these integrals
are intractable and so approximation methods must be used. As has been men-
tioned, Monte Carlo methods represent one way of evaluating these integrals.
Alternatively, hierarchical detection provides a very efficient way to evaluate the
likelihood p(Dt|θ t) in a deterministic manner, even when the state space is high
dimensional; as the number of templates in the tree increases exponentially with
the number of levels in the tree. This leads us to consider dividing up the state
space into non-overlapping sets, just as the templates in the tree cover the re-
gions of parameter space. Typically this methodology has been applied using an
evenly spaced grid and is thus exponentially expensive as the dimension of the
state space increases. In this paper we combine the tracking process with the
empirically successful process of tree-based detection as laid out in section C
resulting in an efficient deterministic filter.

E Filtering Using a Tree-Based Estimator

Our aim is to design an algorithm that can take advantage of the efficiency
of the tree-based search whilst also yielding a good approximation to Bayesian
filtering. We design a grid-based filter, in which a multi-resolution partition is
provided by the tree as given in Section C. Thus we will consider a grid defined
by the leaves of the tree. Because the distribution is characterised by being
almost zero in large regions of the state space with some isolated peaks, many of



144

the grid regions can be discarded as possessing negligible probability mass. The
tree-based search provides an efficient way to rapidly concentrate computation
on significant regions. At the lowest level of the tree the posterior distribution
will be assumed to be piecewise constant. This distribution will be mostly zero
for many of the leaves. At each tree level the regions with high posterior are
identified and explored in finer detail in the next level (Figure 5b). It is to be
expected that the higher levels will not yield accurate approximations to the
posterior. However, just as for the case of detection, the upper levels of the
tree can be used to discard inadequate hypotheses, for which the negative log
posterior of the set exceeds a threshold value. The thresholds at the higher levels
of the tree are set conservatively so as to not discard good hypotheses too soon.
The equations of Bayesian filtering (6)-(8), are recast to update these states. For
more details see [16].

E.1 Formulating the Likelihood

A key ingredient for any tracker is the likelihood function p(Dt|θ t), which relates
the observations Dt to the unknown state θ t. For hand tracking finding good
features and a likelihood function is challenging, as there are few features which
can be detected and tracked reliably. Colour values and edges contours appear
to be suitable and have been used frequently in the past [2, 20]. Thus the data

is taken to be composed of two sets of observations, those from edge data Dedge
t

and from colour data Dcol
t . The likelihood function is assumed to factor as

p(Dt|θ t) = p(Dedge
t |θ t) p(D

col
t |θ t). (9)

The likelihood term for edge contours p(Dedge
t |θ t) is based on the chamfer dis-

tance function [3, 4]. Given the set of projected model contour points U = {ui}n
i=1

and the set of Canny edge points V = {vj}m
j=1, a quadratic chamfer distance

function is given by

d2
cham(U ,V) =

1

n

n∑

i=1

d2(i,V), (10)

where d(i,V) = max(minvj∈V ||ui − vj ||, τ) is the thresholded distance between
the point, ui ∈ U , and its closest point in V . Using a threshold value τ makes
the matching more robust to outliers and missing edges. The chamfer distance
between two shapes can be computed efficiently using a distance transform,
where the template edge points are correlated with the distance transform of
the image edge map. Edge orientation is included by computing the distance
only for edges with similar orientation, in order to make the distance function
more robust [12]. We also exploit the fact that part of an edge normal on the
interior of the contour should be skin-coloured.

In constructing the colour likelihood function p(Dcol
t |θ t), we seek to explain all

the image pixel data given the proposed state. Given a state, the pixels in the
image I are partitioned into a set of object pixels O, and a set of background
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pixels B. Assuming pixel-wise independence, the likelihood can be factored as

p(Dcol
t |θ t) =

∏

k∈I
p(It(k)|θ t) =

∏

o∈O
p(It(o)|θ t)

∏

b∈B
p(It(b)|θ t), (11)

where It(k) is the intensity normalised rg-colour vector at pixel location k at
time t. The object colour distribution is modeled as a Gaussian distribution in
the normalised colour space, and a uniform distribution is assumed for the back-
ground. For efficiency, we evaluate only the edge likelihood term while traversing
the tree, and incorporate the colour likelihood only at the leaf level.

F Results

We demonstrate the effectiveness of our technique by tracking both hand motion
and finger articulation in cluttered scenes using a single camera. The results
reveal the ability of the tree-structure to handle ambiguity arising from self-
occlusion and 3D motion. In the first sequence (figure 6) we track the global 3D
motion of a pointing hand. The 3D rotations are limited to a hemisphere. At the
leaf level, the tree has the following resolutions: 15 degrees in two 3D rotations,
10 degrees in image rotation and 5 different scales. These 12,960 templates are
then combined with a search at 2-pixel resolution in the image translation space.
In the second example (figure 7) finger articulation is tracked while the hand
is making transitions between different types of gestures. The tree is built by
partitioning a lower dimensional eigen-space. Applying PCA to the data set
shows that more than 96 percent of the variance is captured within the first
four principal components, thus we partition the four dimensional eigen-space.
The number of nodes at the leaf level in this case is 9,163. In the third sequence
(figure 8) tracking is demonstrated for global hand motion together with finger
articulation. The manifolds in section B.4 are used to model the articulation.
The articulation parameters for the thumb and fingers are approximated by the
first 2 eigenvectors of the joint angle data set obtained from opening and closing
of the hand. For this sequence the range of global hand motion is restricted to
a smaller region, but it still has 6 DOF. In total 35,000 templates are used at
the leaf level. The tree evaluation takes approximately 2 to 5 seconds per frame
on a 1GHz Pentium IV machine. Note that in all cases the hand model was
automatically initialised by searching the complete tree in the first frame of the
sequence.

G Summary and Conclusion

Within this paper we have described a model-based hand tracking system which
overcomes some of the major obstacles which have limited the use of hand track-
ers in practical applications. These are the handling of self-occlusion, tracking
in cluttered backgrounds, and tracker initialisation.
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Fig. 6. Tracking a pointing hand in front of clutter. The images are
shown with projected contours superimposed (top) and corresponding 3D avatar
models (bottom), which are estimated using our tree-based algorithm. The hand is
translating and rotating. A 2D deformable template would have problems coping
with topological shape changes caused by self-occlusion.

Fig. 7. Tracking finger articulation. In this sequence a number of differ-
ent finger motions are tracked. The images are shown with projected contours
superimposed (top) and corresponding 3D avatar models (bottom), which are es-
timated using our tree-based filter. The nodes in the tree are found by hierarchical
clustering of training data in the parameter space, and dynamic information is
encoded as transition probabilities between the clusters.

Our algorithm uses a tree of templates, generated from a 3D geometric hand
model. The model is constructed from a set of truncated quadrics, and its con-
tours can be projected into the image plane while handling self-occlusion. Artic-
ulated hand motion is learned from training data collected using a data glove.
The likelihood cost function is based on the chamfer distance between projected
contours and edges in the image. Additionally, edge orientation and skin colour
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Fig. 8. Tracking a hand opening and closing with rigid body motion.
This sequence is challenging because the hand undergoes translation and rotation
while opening and closing the fingers. 6 DOF for rigid body motion plus 2 DOF

using manifolds for finger flexion and extension are tracked successfully with our
tree-based algorithm.

information is used, making the matching more robust in cluttered backgrounds.
The problem of tracker initialisation is solved by searching the tree in the first
frame without the use of any prior information. We have tested the tracking
method on a number of sequences including hand articulation and cluttered
backgrounds. Furthermore within these sequences the hand undergoes rotations
leading to significant topological changes in the projected contours. The tracker
performs well even in these circumstances.
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