

Making Machines See

Roberto Cipolla Department of Engineering

Research team http://www.eng.cam.ac.uk/~cipolla/people.html

Cognitive Systems Engineering

- Vision: What, Why and How?
- 3Rs of computer vision:
 - Reconstruction
 - Registration
 - Recognition

Registration?

Target detection and pose estimation

Registration

Reconstruction?

Recovery of 3D shape from images

Reconstruction

3D models

Recognition?

Recognition

semantic segmentation

Pedestrian detection

Traditional research in Computer vision developed for:

- Visual inspection
- Medical imaging
- Remote sensing
- Surveillance and biometrics
- Target detection and tracking

Computer vision has now found a place in consumer products

- Mobile phones and PDAs
- Games
- Cars
- Image and video search
- Internet and shopping

Smart erase on a mobile phone

How to make machines that see?

Why not study biology?

Perspective

Transformations

Machine Learning

Machine Learning

I. Reconstruction:

Recovery of accurate 3D shape from uncalibrated images

Cipolla and Blake 1992 Cipolla and Giblin 1999 Mendonca, Wong and Cipolla 1999-2005 Vogiatzis, Hernandez and Cipolla 2006-2007

Digital Pygmalion Project

Digital Pygmalion – the myth

Scanning technologies

- Laser range finders
 - Very accurate
 - Very expensive
 - Complicated to use

3D models

- We need a way to get them that is
 - practical
 - fast
 - non-intrusive
 - -low cost

Stereo vision

Automatic 3d modeller

- Camera motion
- Segmentation of object outline
- Multi-view volumetric stereo
- 3D segmentation

input images silhouettes isual hull 3D model

capture images of object on top of a coloured sheet

 calibrate cameras (i.e. estimate position, pose and focal length of camera in each photo) using pattern on sheet

 identify object of interest by using *fixation* constraint and simultaneous 3D

construct visuall hull (largest object that can fit inside silhouettes)

Photo-consistency

Photo-consistency

Finding the surface

3D segmentation

Gormley - input Images

Recovery of camera motion

Input images

Feature

extraction

Feature matching

Bundle adjustment

Probabilistic 3D segmentation Suniversity of CAMBRIDGE

Final installation

3D models

Multiview photometric stereo

Vogiatzis, Hernandez and Cipolla 2006 and 2008

Untextured objects

• Almost impossible to establish correspondence

Use shading cue

Changing lighting uncovers fine geometric detail

- Assumptions:
 - Single, distant light-source
 - Silhouettes can be extracted
 - No texture, single colour

Surface Evolution of 3D Mesh

Making physical copies

Deformable objects:

Real-time photometric stereo using colour lighting

Hernandez et al 2007

Photometric stereo with colour

 a method for reconstructing a textureless deforming object in 2.5d

Shape from colour

- observation: 1-1 mapping between colour and surface orientation
- get map of surface orientations from colour image
- integrate orientations to get depth map
- do this for colour video to get 2.5d reconstruction of deforming object!

Photometric stereo with colour

shape from colour

II. Registration:

Target detection and pose estimation

Image matching

Registration:

Where am I? What am I looking at?

Johansson and Cipolla 2002 Robertson and Cipolla 2004 Cipolla et al 2004

Where I am?

Determine pose from single image by matching

Register database view

First align database view to map

Localisation of query view

Image-based localisation

Image-based localisation

Image-based localisation

Registration:

Ageing infrastructure inspection

- Can appear very repetitive to the eye
- However, plenty of distinguished features can be extracted
- Very accurate matching is possible

Registration with concrete

Finding 2D shapes and applications to HCI

Stenger, Thayananthan, Torr and Cipolla 2003 Williams, Blake and Cipolla 2003 and 2006 Ramanan, Fitzgibbon and Cipolla 2006-2007

Matching shape templates

Matching shape templates

Oriented Chamfer Matching

Hand detection system

Tracking - 3D mouse

People and pose detection

People and pose detection

III. Object recognition and machine learning

Shotton, Blake and Cipolla 2005-2007 Kim, Kittler and Cipolla 2006 Wong and Cipolla 2007

Using interest points and visual words

Johnson and Cipolla

Image matching

Using contour and shape

Shotton, Blake and Cipolla 2005-2007

Learning and Adaptability

Object Model

Shape

Recognition in video

- What is vision and how to duplicate it?
- 3D shape: making digital copies of sculpture from photographs from multiple viewpoints
- Recognition of a painting/picture from a single photo using a mobile (camera) phone
- Detection of objects: hands, faces and people and use in novel man-machine interfaces

- Image registration and matching
- 3D shape from uncalibrated images.

• Object detection and tracking