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Abstract—We propose an attribute-based approach to accented speech
recognition based on automatic speech attribute transcription with high
efficiency detection of articulatory features. In order to utilize appropriate
and extensible phonetic and linguistic knowledge, conditional random
field (CRF) is designed to take frame-level inputs with binary feature
functions. The use of CRF with merely the state features to generate prob-
abilistic phone lattices is then utilized to solve the phoneunder-generation
problem. Finally an attribute discrimination module is incorporated to
handle a diversity of accent changes without retraining anymodel,
leading to flexible “plug ‘n’ play” modular design. The effectiveness
of the proposed approach is evaluated on three typical Chinese accents,
namely Guanhua, Yue and Wu. Our method yields a significant absolute
phone recognition accuracy improvement 5.04%, 4.68% and 6.06% for
the corresponding three accent types over a conventional monophone
HMM system. Compared to a context-dependent triphone HMM system,
we achieve comparable phone accuracies at only less than 20%of the
computation cost. In addition, our proposed method is equally applicable
to speaker-independent systems handling multiple accents.

I. I NTRODUCTION

Most state-of-the-art automatic speech recognition (ASR)systems
fail to perform well when the speaker has a regional accent different
from that of the standard language the systems were trained on.
Accent is a crucial bottleneck for an extensive usage of speech-
enabled applications across a large population in China since all
Chinese speakers share the same ideographic Chinese characters but
with different pronunciations due to regional accents. There are seven
major dialects in China: Guanhua, Yue, Wu, Xiang, Gan, Min, and
Kejia [1]. Linguists often regard each of them as a distinct language
[2]. Statistics indicate that about 80% of Putonghua (the standard
Chinese) speakers have regional accents, and 44% among themhave
heavy accents [3].

Conventional methods handle impact of accent by focusing on
pronunciation modelling for acoustic or phonetic accent changes at
different levels [2, 4–6]. Augmented pronunciation dictionary and
phone set extension are commonly used methods for modellingpho-
netic changes [4]. Maximum a posteriori (MAP) [7] and maximum
likelihood linear regression (MLLR) [8] are always appliedto adapt
the standard models to fit acoustic characteristics of certain accents
in order to cover acoustic changes [5]. State-level pronunciation
modelling and acoustic model reconstruction can be used to cover
accent variations without degrading the performance on standard or
other accented speech [2, 6]. However, it is known that the variations
within accent changes are often complicated covering both complete
and partial changes [2], a diversity of articulation changes and shifts
are important features for accent variations. Hence, a method of
incorporating articulation information is needed when attempting to

handle precise accent variations.
Recently, an automatic speech attribute transcription (ASAT)

paradigm was proposed to provide additional information toASR
through the integration of acoustic and phonetic knowledge[9, 10].
ASAT is a bottom-up approach based on a set of detected speech
attributes and contains three major components: (1) a bank of attribute
detectors to spot acoustic cues from continuous speech; (2)a multi-
level event merger that combines attributes into phone and other
higher-level units; and (3) an evidence verifier that validates the
recognition decisions [10].

Previous work showed that the ASAT strategy is able to take the
advantage of linguistic information described by featuresand rules
for robust model generation [11, 12]. Since accent variations have
proven at different levels, and articulated changes and shifts (e.g.,
aspirated, nasal, voiced, etc.) have great impact on the recognition
accuracy, the combination of articulatory features with detectors in
ASAT should have a strong ability to model the diversity of accent
changes, leading to improved recognition performance.

In this paper, we propose an ASAT-based approach to accented
speech recognition with high efficiency detection of articulatory fea-
tures. Compared to the conventional HMM-based ASR systems,the
use of articulatory features associated with context-dependent HMM
detectors can incorporate more linguistic knowledge, and is able to
capture a diversity of coarticulation effects within accented speech.
In order to utilize suitable and extensible phonetic and linguistic
knowledge, conditional random field (CRF) is designed as frame-
level input and with binary features. Meanwhile, we suggestthe use
of CRF with merely state features to generate probabilisticphone
lattice instead of the commonly used one-best phone hypothesis to
solve the phone under-generation problem. It achieves a good balance
of insertion and deletion in evidence verification, leadingto efficient
feature processing at high levels. The experimental results show that
our proposed approach achieves comparable recognition accuracy at a
much faster recognition speed when compared to triphone HMMASR
systems. Furthermore, we also propose an attribute discrimination
module that handles accent changes without retraining any model
in the system leading to improved flexibility of the system. Finally
our proposed approach covers more accent variations in different
accents, leading to an enhanced performance for multi-accent speech
recognition tasks.

The rest of the paper is organized as follows. In Section II, we
describe the speech attributes as well as three typical accents –
Guanhua, Yue and Wu in Chinese used in this paper. In Section III,
we introduce our proposed detection-based ASR using articulatory



TABLE I
PUTONGHUA PHONE L IST IN TERMS OFARTICULATORY FEATURES

Category Attribute Phone Set

Place

alveolar d l n t
bilabial b m p
dental c s z i1
labiodental f
palatal j q x a o e ei i u v
palato-alveolar ch r sh zh i2
retroflection er
velar g h k ng

Manner

affricative c ch j q z zh
fricative f h r s sh x
lateral l
nasal m n ng
stop b d g k p t
N/A ALL VOWELS

Aspirated
aspirated c ch k p q t
unaspirated b d g j z zh
N/A f h l m n r s sh x ng ALL VOWELS

Voicing voiced l m n r ng ALL VOWELS
unvoiced b c ch d f g h j k p q s sh t x z zh

Height

high i i1 i2 u v
low a
middle high o e
middle low ei er
N/A ALL CONSONANTS

FrontEnd

back o e u
central a er i2
front ei i v i1
N/A ALL CONSONANTS

Rounding
rounded o u v
unrounded a e ei er i i1 i2
N/A ALL CONSONANTS

features and other key modules of ASAT. In Section IV, experimental
results of using detection based ASAT with articulatory features
on three Chinese accents are presented. Finally we summarize our
findings in Section V.

II. ATTRIBUTES FORCHINESE ACCENTEDSPEECH

A. Articulatory Features in Putonghua

Chinese is a syllabic language, with each written Chinese character
pronounced as one of the 416 non-tonal syllables in Putonghua. A
syllable can be decomposed into an initial followed by a final. A
pair of initial or final usually corresponds to one to three phones.
Initials and finals are commonly used as sub-word units in Putonghua
ASR systems. On the other hand, as pointed out in [13], finer-
grained units instead of phonemes are more appropriate for modelling
pronunciation variations.

Articulatory features, as symbolic indicators used in acoustic
phonetics to characterize how phones are produced using related
articulators and the airflow from the lungs, can be used to formulate
linguistic knowledge for pronunciation changes caused by either re-
gional accent or coarticulation as context-dependent rules associated
with substitutions of different features. This enables theincorporation
of knowledge into modelling [1, 13, 14]. In this paper, 31 articu-
latory attributes are chosen, which belong to 7 categories listed in
Table I. Four attributes belonging to ‘Place’, ‘Manner’, ‘Aspirated’
and ‘Voicing’ correspond to minimal units to distinguish consonants,
and similarly, one ‘Place’ attribute together with three attributes
belonging to ‘Height’, ‘FrontEnd’ and ‘Rounding’ respectively are
minimal units to discriminate vowels [1]. It is remarkable that ‘Place’
for consonants and vowels have been defined differently in acoustic
phonetics [12], we combine the features of the two classes into one.

Detail for the set of attributes and the attribute-to-phoneconversion
rules in Putonghua are listed in Table I. All these mappings are based
on consensus in linguistics [1].

B. Guanhua, Yue and Wu Accents

Regional dialect speakers can hardly avoid the influence of their
language in the process of second language acquisition, defined
as negative transfer in linguistics, which results in difficulties in
terms of variations on phoneme inventories, syllable structures, tones,
grammar and vocabulary. In this paper, the first type of the variation is
emphasized, and we demonstrate why using ASAT with articulatory
features is an appropriate and potential recipe for handling accent
variations.

In order to evaluate the general effectiveness of our proposed
approach, three typical accents are selected in our study – Guanhua,
Yue and Wu. These entire three accents cover a speaking population
of hundreds of millions and they represent quite different pronun-
ciations in terms of phonology, lexical and syntactic structures [2],
for instance, linguists have shown only 60% of Yue is even close to
Putonghua [2]. Guanhua is the dialect that Putonghua is based on,
whose phoneme inventories are almost the same as Putonghua.In
contrast, Yue and Wu have different initials and finals individually.
For example: there are no palato-alveolar affricatives/fricatives ‘zh’,
‘ch’, ‘sh’ in Yue and Wu, therefore, ‘zh’, ‘ch’, ‘sh’ are often
pronounced as ‘z’, ‘c’, ‘s’ in these accents; Yue adopts velar nasal
‘ng’ as an additional final while it has no retroflection final ‘er’; Wu
initials have extra voiced consonants that are voiceless inPutonghua,
for instance the stop ‘d’ is voiceless in Putonghua and pronounced
as voiced in Wu is an interesting case in this point. As a result, these
differences may cause an initial/final be pronounced into a different
one when Yue and Wu people speak Putonghua.

Linguistic rules for Chinese accent changes can be naturally
explained with articulatory features, therefore, it provides us with
an intuitive idea that we can improve Chinese accented speech
recognition by covering confusing articulatory features instead of
phoneme changes.

III. D ETECTION-BASED ASR USING ARTICULATORY FEATURES

Figure 1 illustrates our proposed detection-based system for Chi-
nese accented speech recognition. Following the ASAT paradigm, this
system consists of three parts: (1) a bank of speech attribute detectors,
(2) an attribute-to-phone merger, and (3) an evidence verifier. Differ-
ent from previous studies where artificial neural networks (ANNs)
were used in [11, 12], we use triphone HMM detectors for high
efficiency detection. Instead of neural net features, we useCRF with
binary features for the ease of formulating acoustic phonetic rules
as state feature functions of CRF [11]. Our CRF has no transition

Fig. 1. A block diagram for the detection-based phone recognition system



TABLE II
EVALUATION OF GUANHUA ARTICULATORY ATTRIBUTE DETECTORS

Category Segment Correct% Frame Correct% (Guanhua)
Guanhua Yue T=0 T=1 T=2

Place 79.54 68.09 58.52 62.14 65.10
Manner 84.61 83.30 75.09 79.12 81.57

Aspirated 83.85 82.59 85.19 87.53 89.29
Voicing 88.26 88.20 77.38 81.52 84.01
Height 85.31 83.44 74.93 79.07 81.44

FrontEnd 85.59 83.30 78.03 82.10 84.41
Rounding 85.70 85.12 75.56 79.80 82.77

features. Furthermore output probabilistic phone lattices are used to
replace the conventional one-best hypotheses. Hence, we attempt to
address the phone over-deletion problems in CRF [11, 15].

A. Speech Event Detection

Both articulatory features and phones are used as attributes in
our system. We use context-dependent HMMs to detect articulatory
features since they are able to capture accent-related coarticulation
on articulatory features with high efficiency. Thus, we built a set of
triphone HMM detectors for every articulatory feature category, and
detectors are used for recognition rather than key word spotting to
guarantee that attributes of the same category will not be detected
together. Meanwhile, we used monophone HMMs to build phone
attribute detector.

In general, Yue and Wu are regarded as far different from
Guanhua and Putonghua. Traditional method automatically generated
numerous accent variations in terms of phoneme insertions,deletions
and substitutions [2, 4, 5]. Modelling for every phoneme change
individually to cover accent is a trivial and yet sophisticated task.
However, through the use of articulatory attribute detectors, we are
able to categorize the phoneme changes into a much smaller number
of confusing articulatory attributes as some acoustic phoneticians
suggested. We investigated the articulatory attribute confusion in Yue
accent as an example. The articulatory attribute detectorswhose
performances are listed in Table II were trained on 5 hours of
Guanhua data. We evaluated the detectors on both the Guanhuaand
Yue testing sets.

In Table II, “T = 0, 1, 2” means we consider the frames at detected
segment boundaries as be correctly detected if they are of the same
value as any frame in reference transcription to whom the time
difference is less equal than 0, 1 and 2 frames. We study frame-
level correctness due to the well-known noisy nature of the segment
boundaries.

Table II implies that Yue accent has impacts on the performance
of the detectors. We explored the confusion matrix of the Place
detector, and listed the correctness of its attributes in Table III. It is
clear that bilabial, labiodental and palatal show robustness across the
two languages while dental, palato-alveolar and retroflection showed
severely degraded performance on the Yue accent. By comparing the
confusion matrices of the two accents, we find: (1) the degradation of
palato-alveolar was mainly caused by its confusion with dental that
coincides with the rule we have mentioned that Yue speakers tend
to mispronounce ‘zh’, ‘ch’, ‘sh’ as ‘z’, ‘c’, ‘s’; (2) most ofthe error
samples of retroflection in Yue were misrecognized as eitherpalatal
or deleted, since the absence of retroflection vowel ‘er’ in Yue causes
the Yue speakers to pronounce ‘er’ as its closest vowel ‘e’ ordeleted
when ‘er’ is used as the coda of a syllable; (3) more dental aredeleted
in the Yue testing set, and we find more deletions of ‘z’, ‘c’ and ‘s’
in HMM phone recognition on the same testing set. Hence, accent

TABLE III
CORRECTNESS OF‘PLACE’ ATTRIBUTES BY GUANHUA DETECTOR

Attribute of
Place Category

Segment Correct%
Guanhua Yue

bilabial 81.8 79.0
labiodental 92.2 90.9
dental 82.3 76.7
alveolar 75.4 72.3
palato-alveolar 79.3 71.0
palatal 80.7 80.2
velar 80.9 77.3
retroflection 90.8 66.1

variations can be represented in a brief and fundamental wayin ASR
in terms of articulatory attribute confusions.

B. Event Merger

The role of an attribute-to-phone mapping merger is to combine
the detected event streams using different weights into a probabilistic
phone lattice and deliver it to the evidence verifier. For example, in
our study, we expect the retroflection vowel ‘er’ to be pronounced as
the palatal vowel ‘e’ by Yue speakers. Therefore, the mergershould
be able to explore such changes from the underlying data according
to linguistic rules and learn proper weights for how often and in what
context this change happens. A powerful and widely used toolfor
such purpose is conditional random fields [16].

CRF is an undirected graph model as illustrated in Part (A)
of Figure 2. It is capable of integrating redundant input sequence
~x = {x1, x2, . . . , xT } into its most probable label sequence~y =
{y1, y2, . . . , yT } in terms of conditional probabilityP (~y|~x) [17]. As
an event merger,~x is the detected event streams grouped by frames,
~y can be the one-best phone hypothesis. CRF can be presented more
formally as,

P (~y|~x) =
1

Z(~x)

T
∏

t=1

exp

{

K
∑

k=1

λkfk(yt, yt−1, ~x)

}

, (1)

wheref(yt, yt−1, ~x) is called a feature function, andλ is its weight.
f(yt, yt−1, ~x) and λ can be any real number, since the probability
meaning ofP (~y|~x) is guaranteed by partition functionZ(~x), which
is obtained by summing on every hypothesis~y

′

. Z(~x) is defined as:

Z(~x) =
∑

~y
′

T
∏

t=1

exp

{

K
∑

k=1

λkfk(y
′

t, y
′

t−1, ~x)

}

. (2)

Therefore, learning is to find proper weights from the training data
for every feature functions maximizing the conditional probability,
while decoding is to find the one-best sequence based on the weighted
feature functions and the input observations. Detail of training and
decoding of CRF can be found in [17].

Fig. 2. Graphical representation for CRF and Logistic Regression



One of the key issues in CRF is the design of the feature functions,
f(yt, yt−1, ~x), which can be classified into two categories: state and
transition feature functions. A state feature function represents a state
that some event happens when the output label is a particularvalue.
For example, the feature function for ‘er’ to be pronounced as a
palatal vowel would be

s(y, ~x, t) =

{

1, if yt = ‘er’ and palatal(xt) = true

0, otherwise
. (3)

Transition functions are often defined in a similar manner inASR
that counts for transitions between two labels whose valuesmatch
the definition of the function [11, 15].

In previous work that uses CRF to combine detected events
[11, 15], both state and transition features are used. Sincethe state
features devastatingly reveal that the current frame is of adifferent
label from the previous state and it causes transition features to
overwhelmingly point out that the state have changed, numerous dele-
tion errors (several times more than insertions) would be unalterably
generated, and is detrimental to system performance [11]. Therefore,
our CRF mergers do not use transition functions, and it outputs a
probabilistic phone lattice instead of the one-best phone sequence
hypothesis, so that the system is able to generate balanced inserted
and deleted phones in the evidence verifier. Our state feature functions
are described as follows:

1) Presence Features:These features describe the presence of
each attribute at current frame.

2) Distinction Features:These features are knowledge-motivated
and are employed to present the existence of possible combinations of
attributes belonging to ‘Place’, ‘Manner’, ‘Aspirated’ and ‘Voicing’,
and possible combinations of the attributes for ‘Place’, ‘Height’,
‘FrontEnd’ and ‘Rounding’ at the current frame.

3) Window Features:Every presence feature and every distinction
feature at the previous two and the next two frames. Window Features
are engaged since we have shown in Table III that values at the
surrounding frames do help correcting the detections.

It is remarkable that our usage of CRF without transition features
can be regarded as Logistic Regression as has been discussedin detail
in [17]. Graphical representation of Logistic Regression is illustrated
in Part (B) of Figure 2.

C. Evidence Verifier

Our evidence verifier is similar to [12]. We build a 3-state, left-
to-right HMM model for each phone, whose emission probabilities
are phone probabilities generated by the event merger. Hence the
evidence verification can be accomplished by various decoding tech-
niques. In this study, we build context-independent free grammar
decoding network that every phone has the same entrance probability.
We use the Viterbi algorithm to search over the network and generate
the one-best hypothesis. We can obtain a hypothesized phonestring
with balanced insertion and deletion errors by setting a suitable word
penalty score.

IV. RECOGNITIONEXPERIMENTS

The 863 regional accent speech corpus [18] was used in all
experiments to evaluate the effectiveness of our proposed approach.
This database is the largest and most commonly used for Chinese
accented speech recognition tasks [4, 19]. All data were sampled at
16kHz with a 16-bit precision.

Table IV shows the detailed information of speakers, data dura-
tions, and the total phone counts used in all experiments. The HMM

TABLE IV
DATA SETS SEPARATION IN EXPERIMENTS

Data ID Duration Phone
Number

Speaker
Number

Utterance
Number Type

TrainG 4.2h 102,646 60 2,144
GuanhuaTestG 2.9h 70,397 20 1,274

TrainY 5.1h 105,167 60 2,317 Yue
TestY 2.8h 70,297 20 1,309
TrainW 5.1h 108,315 60 2,611 WuTestW 2.9h 68,173 20 1,283

TABLE V
DETAILS OF TRIPHONEDETECTORS

Train Set TrainG TrainY TrainW
Attribute State Number State Number State Number
Aspirated 48 46 47
FrontEnd 183 185 182
Height 179 176 176
Manner 147 140 148
Place 230 233 228
Rounding 104 109 106
Voicing 22 22 23

topology is three-states, left-to-right without skips. All triphone
HMMs for detectors and the baseline systems were built usingHTK
decision tree based state-tying [20]. The acoustic features were 39-
dim vectors with13MFCC, 13∆MFCC and13∆∆MFCC. CRF
and SVM were trained by CRF++ and LIBSVM toolkit, respectively
[21, 22]. All systems were evaluated with free grammar phone
recognition rather than syllable or short phrase recognition due to
the fact that we evaluated the absolute performance improvement
through modelling of accent variations. It is shown in TableIV that
each phone has 3,193 samples on average for training. We believe it
is sufficient for reliable acoustic model generation.

A. Accent-Based Articulatory Attribute Detectors

We built seven triphone articulatory attribute detectors with 6 Gaus-
sian components per state and one 16 Gaussian components perstate
context-independent phone detector for each accent individually. We
listed detail of triphone HMMs detectors in Table V. We constructed
a CRF attribute-to-phone merger for each accent. CRF for Guanhua,
Yue and Wu accents have 260,370, 272,245 and 272,745 features,
respectively. Table VI gives the comparisons between our systems
and the HMM baseline systems. Triphone HMM system for Guanhua,
Yue and Wu accent has 514, 572 and 574 tied-states, respectively.
Each system in Table VI was evaluated on the testing set of thesame
accent that the system was trained on.

It is known that redundant deletions compared to insertionsin using
transition features were often generated in previous CRF studies and
therefore led to severe performance degradations. Such effects bring
additional difficulties for high-level processing, e.g., modelling for
pronunciation variations of syllable structures [13]. On the other hand,
from Table VI, we can see that our proposed method is able to achieve
a good balance of insertion and deletion errors due to the fact that
no overwhelming evidences that indicate the label has to retain the
same labels generated by transition feature functions, imposed on
the phone lattice. Meanwhile, the HMM topology as well as suitable
word penalty scores used in the evidence verifier help to balance the
inserted and deleted phones.

In addition, our systems perform significantly better than context-
independent HMMs that reveals CRF with linguistics-derived binary
features is able to capture the underlying distinctions of phonetically



TABLE VI
COMPARISONS OFSYSTEMSTRAINED AND TESTED ON THESAME

ACCENT

System Accent Phone
Correct%

Phone
Accuracy% Time (s)

Our
Systems

Guanhua 73.25 64.48 4,524
Yue 71.66 63.06 4,191
Wu 72.41 63.59 4,578

Mono-
phone
HMMs

Guanhua 68.77 59.44 351
Yue 67.54 58.38 336
Wu 67.23 57.53 333

Tri-
phone
HMMs

Guanhua 74.34 66.17 23,802
Yue 72.57 64.79 25,161
Wu 73.38 64.71 26,871

TABLE VII
EVALUATION OF GUANHUA SYSTEM ON YUE AND WU ACCENT

System Guanhua Guanhua + Yue ADM
Testing Set TestY TestW TestY
Phone Correct% 66.22 63.92 68.16
Phone Accuracy% 52.15 51.18 59.21

similar phones in terms of the articulatory events providedby the
detectors. Meanwhile, our systems perform a 1.51% absolutephone
accuracy reduction but 5.71 times faster than triphone HMM systems
on average. Our systems can be further improved by incorporating
more acoustics and phonetics-motivated features, which wewill study
in the future.

B. Accent Related Attribute Discrimination Module Integration

A comparison of Table VI to Table VII shows that Yue and Wu
accent variations severely degrade the system trained on Guanhua.
In such scenario, we propose integrating an accent-relatedattribute
discrimination module to the system to cover accent changeswithout
retraining any model of the system. Such module aims at reducing the
confusion between certain articulatory features that causes phoneme
variations.

For a specified confusing articulatory attribute, a supportvector
machine was trained with samples of such features in the Yue accent.
SVM is an ideal binary classifier in terms of minimum structural
risk, and has been successfully used in ASR [23]. When testing
on the Yue accent data, we use the SVM to reclassify the frames
of the detected events that correspond to the confusing articulatory
attributes, then replace those events with the reclassification result,
and deliver them to CRF as usual. We built a module for palato-
alveolar/dental confusion using samples from TrainY. We use the
radial basis function kernel in SVM [23]. The inputs to SVM are
also13MFCC, 13∆MFCC and13∆∆MFCC. The correspond-
ding phone recognition results are listed in Table VII.

With the accent related attribute discrimination module, the accu-
racy of palato-alveolar and dental increased from 71.0% and76.7% to
83.0% and 92.1%, correspondingly. The absolute phone accuracy of
the Guanhua system was significantly improved by 7.06%, which
shows the effectiveness of the proposed attribute discrimination
module that is trained with only 6.49% of the samples in the TrainY
set (118,751 among 1,830,778 samples). Such module can be used
for “plug ‘n’ play” since we can employ or not employ a module for
any accent and attribute in a system without retraining any model,
which enhances the system flexibility and is easy for studying specific
accent changes.

By analyzing the phone confusion matrix, we found a batch of
accent changes related to palato-alveolar/dental confusion have been

TABLE VIII
COMPARISIONS OFMULTI -ACCENTROBUST SYSTEM

System Accent Phone
Correct%

Phone
Accuracy% Time (s)

Our Multi-
accent
System

Guanhua 73.83 65.39 13,128
Yue 73.75 66.49 13,384
Wu 73.13 67.09 12,740

Triphone
HMMs

Guanhua 74.49 65.40 45,208
Yue 74.79 66.34 46,740
Wu 73.70 65.87 43,008

reduced, for example, ‘zh’ to ‘z’, ‘ch’ to ‘s’ and ‘sh’ to ‘s’,which
change the most in accent variations and are the most difficult to be
correctly recognized in the Yue accent found by acoustic phoneticians
[1]. Meanwhile, the correctness of some vowels not directlyrelated
to the palato-alveolar/dental confusion has also been improved by
reducing their deletion errors. These results indicate that, according to
underlying data, CRF integrates the detected events following but not
limited by designated linguistic knowledge. Improvementsof some
phones are illustrated in detail in Figure 3.

C. A Robust Multi-Accent System

Next we presented a method of building a robust multi-accentASR
system. As we have discussed, detectors are influenced by regular
accent variations when detecting on a different accent. Intuitively,
detectors trained on different accents display different regularities on
the same accent, and it is possible to extract patterns for multi-accent
changes from the evidences provided by these detectors. Therefore,
we used the Guanhua, Yue and Wu detectors simultaneously in one
system, and integrate the detected events in parallel by CRF. We use
features elaborated in Section III as well as the features shown in the
following:

Interactive Feature:such features are combinations of attributes
belonging to the same category relevant to different accents, at the
current, the previous two and the next two frames.

Consequently, we employed detectors in Table V together with
context-independent phone detectors for each accent. A CRFmerger
with 788,448 features was constructed. We compare our system with
a triphone HMM system trained on all data from TrainG, TrainY
and TrainW. The baseline triphone system was trained on the same
data set and has 1,203 tied-states, with each state having 6 Gaussian
components. The comparisons are listed in Table VIII.

It is shown in Table VIII that our system obtains a comparable

Fig. 3. Comparisons of phone correctness of Guanhua system tested on Yue
accent with/without using Yue accent attribute discrimination module



phone accuracy at 3.44 times faster than the triphone HMM system
on average, without retraining the detectors.

V. CONCLUSION

We presented an approach to accented speech recognition using
detection based automatic speech attribute transcription(ASAT) with
articulatory features. First we used conditional random fields to
combine detected events with frame-level input and binary feature
function to appropriately utilize articulatory and phonetic knowledge
with good scalability. Next we used merely state features inCRF
and make recognition decision in the evidence verifier to solve the
problem that CRF under-generate phones. We then proposed an
accent-related attribute discrimination module to handlea diversity
of accent changes as well as to increase the flexibility of the
system since no model need to be retrained when using this module.
Experimental results showed that our proposed method outperforms
the conventional monophone HMM system by 5.04%, 4.68% and
6.06% absolute phone accuracy improvement on Guanhua, Yue and
Wu, respectively. Compared to the triphone HMM systems, our
approach achieves a comparable phone accuracy at speed of 5.71
times faster. Furthermore, we demonstrated our system is able to
cover flexible multi-accent variations in a single system.
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