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ABSTRACT

Recently, context-dependent (CD) deep neural network (DNN) hid-
den Markov models (HMMs) have been widely used as acoustic
models for speech recognition. However, the standard method to
build such models requires target training labels from a system using
HMMs with Gaussian mixture model output distributions (GMM-
HMMs). In this paper, we introduce a method for training state-
of-the-art CD-DNN-HMMs without relying on such a pre-existing
system. We achieve this in two steps: build a context-independent
(CI) DNN iteratively with word transcriptions, and then cluster the
equivalent output distributions of the untied CD-DNN HMM states
using the decision tree based state tying approach. Experiments have
been performed on the Wall Street Journal corpus and the resulting
system gave comparable word error rates (WER) to CD-DNNs built
based on GMM-HMM alignments and state-clustering.

1. INTRODUCTION

There has been a long-term interest in recognising speech with a hy-
brid system that estimates HMM state emission probabilities with
multi-layer perceptrons (MLPs) [1, 2]. However, it was only found
recently that an MLP with a large set of context-dependent targets
and many hidden layers, i.e., a context-dependent deep neural net-
work (CD-DNN), could significantly improve recognition perfor-
mance [3–5]. Although CD-DNNs have demonstrated favourable
performance in various speech recognition tasks [4–9], an existing
well-trained traditional GMM-HMM has to be used for two main as-
pects of training: state-to-frame alignments and defining a set of tied
context-dependent states [3, 4].

The state-to-frame alignments serve as the training labels for
CD-DNNs. Previous studies showed that shallow (single hidden
layer) MLPs could be trained with iteratively refined Viterbi align-
ments and state occupancies generated by hybrid system itself [2,
10]. However, since high quality labels are crucial in DNN training,
CD-DNNs are usually trained based on the alignments generated by
a well-trained GMM-HMM system [4, 5]. Meanwhile, DNN targets
are also derived from a decision-tree based tied-state GMM-HMM
system [11, 12] built on the same data [3, 4]. In the decision tree
approach, Gaussian distributed CD states are clustered based on the
maximum likelihood (ML) criterion [11].

In this paper, we propose a method to train CD-DNNs that is
independent of any existing system. The proposed method could be
divided into two parts: discriminative pre-training with integrated re-
alignment to first train context independent DNNs without relying on
previously generated alignments; and CD-DNN decision tree target
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clustering, which is a modification of the standard decision tree state
tying [11] based on explicitly estimating approximately equivalent
terms to CD-DNN output distributions. Experiments show the pro-
posed techniques yield comparable WER performance to CD-DNNs
that rely on GMM-HMMs.

Section 2 briefly reviews CD-DNNs and GMM-HMM based de-
cision tree state tying. The key components of the proposed method,
standalone training of CI-DNNs and DNN based decision tree tar-
get clustering are described in Section 3 and Section 4, respectively.
The experimental setup and results are presented in Section 5 and
Section 6 which is followed by conclusions.

2. A REVIEW OF CD-DNN-HMMS

2.1. DNN-HMM Hybrid Acoustic Models

A DNN is an MLP with many hidden layers. The DNN input vector
xt is formed from a stacked set of adjacent frames of the acoustic
feature vector, ot, for each frame.

In each hidden layer, the input to each unit is a weighted sum
of the outputs from the previous layer [13]. A unit transforms its
input with a hidden activation function, e.g., the sigmoid function.
In the output layer, let zt be the output vector of the last hidden
layer, called sigmoidal activations, and ak be the input to an output
unit k, we have

ak = wT
kzt + bk, (1)

where wk and bk are the weights and bias associated with unit k.
The ak are termed output activations, and normalised to be the pos-
terior probability for class Ck corresponding to the unit by using the
softmax output activation function, i.e.,

p(Ck|zt) =
eak∑
k
′ e

a
k
′ . (2)

To interface a DNN with HMMs, the p(Ck|xt) are converted to
the log-likelihood of xt generated by an HMM state sk by [4]

ln p(xt|sk) = ln p(sk|xt) + ln p(xt)− lnP (sk), (3)

where P (sk) = Tk/
∑

k
′ Tk

′ , Tk is the number of frames associated
with output sk. p(xt) is independent of the recognition result [5].

2.2. GMM-HMM based Decision Tree State Tying

It is well known that, when using CD models, the training data are
usually spread unevenly for each model [11]. For a CD-DNN, de-
spite the fact that the parameters in the hidden layers are shared,



those associated with some targets in the output layer may still suf-
fer from data insufficiency. Furthermore, the softmax function needs
to sum over all targets to normalise the output activations, which can
be slow when very many targets are involved. As a result, for DNNs,
the CD states need to be tied to form an adequate number of targets.

Decision-tree-based state tying clusters the CD states efficiently
by dealing with their distributions instead of true data samples, and
results in each tied-state being robustly estimated [11]. The decision
tree is a binary tree built upon a set of pre-defined binary phonetic
questions. At each non-leaf node, the states are classified into the
node’s children according to the answer to a question which is cho-
sen to maximise the log-likelihood increase from splitting the con-
text associated with the node. By assuming that the samples are (sin-
gle) Gaussian distributed, the log-likelihood of the frames O gener-
ated by a node Sn can be approximated as [11],

LSn(O) = −1

2
(D ln(2π) +D + ln |ΣSn |)

∑
s∈Sn

∑
t

γs(t), (4)

whereD is the dimension of the data, γs(t) = p(qt = s|O,Λ) is the
ML state occupancy of being in state s at frame t. The covariance
matrix ΣSn is computed efficiently by

(σSnij )2 =

∑
s∈Sn θ

s
ij(O2)∑

s∈Sn

∑
t γs(t)

− µSni µSnj (5)

µSni =

∑
s∈Sn θ

s
i (O)∑

s∈Sn

∑
t γs(t)

, (6)

where (σSnij )2 are the elements of ΣSn ; µs
i and (σs

ij)
2 are the ele-

ments of the means and the covariances of s; θsi (O) = µs
i

∑
t γs(t)

and θsi (O2) =
[
(σs

ij)
2 + µs

iµ
s
j

]∑
t γs(t) are the first- and second-

order statistics. During the clustering, the alignments are assumed to
be fixed, which makes

∑
t γs(t) constant.

3. PROPOSED TRAINING PROCEDURE FOR CI-DNNS

CD-DNN training depends on the availability of tied-state labels
for all frames, which are often acquired by forced alignment with
a high performance GMM-HMM system [4, 5]. To eliminate such
a reliance, DNN-HMMs should be able to align the reference tran-
scriptions themselves, and the CD states, either seen or unseen in
the training set, should be tied based on DNN-HMMs rather than
GMM-HMMs. In the following sections, approaches are discussed
to address these issues.

3.1. Initial Alignment Refinement

To train a CI-DNN-HMM, the CI state-level transcriptions are gen-
erated from the word transcriptions. This is done by expanding every
word to CI phones according to its first pronunciation in the dictio-
nary [14], and then replacing every CI phone with its HMM states.

In order to align the CI state transcriptions without relying on an
existing GMM-HMM system, an idea analogous to the flat start ini-
tialisation strategy used in GMM-HMM training [14] is employed,
i.e., every state in an utterance is assigned an equal duration in the
initial alignments. In this paper, the data are repeatedly realigned
based on the word transcriptions. We call these initial uniformly
segmented transcriptions flat initial alignments.

Since the states and frames are usually poorly aligned in the flat
initial alignments, the alignments are refined by the following steps:

1. train a 3-layer (1 hidden layer) MLP with flat initial align-
ments for 1 epoch using error back-propagation (EBP) [1];

2. use the current MLP to realign the training set;
3. use the realignments to train a new 3-layer MLP from scratch

for 1 epoch using EBP;
4. repeat step 2-4 for a number of iterations.

The above steps are similar to those used to obtain iterative Viterbi
alignments in [2]. A major difference is 3-layer MLPs are trained
from scratch in order to avoid the problem caused by bad initial
alignments [15]. After being refined, the alignments are used for
discriminative pre-training.

3.2. Discriminative Pre-training with Realignment

Instead of conventional layer-by-layer discriminative pre-training
[5, 16], discriminative pre-training with realignment is proposed to
build CI-DNNs. With this method, the data is realigned each time
a new hidden layer is trained with EBP, to refine the training labels
and to increase their match with the specific hidden layers. The steps
are:

1. train a 3-layer MLP with the initial alignments for 1 epoch,
and use the MLP to realign the data;

2. replace the current output layer with a hidden layer along with
a new output layer;

3. train the modified MLP with the latest alignments for 1 epoch;
4. use the MLP to realign the reference transcriptions;
5. repeat step 2-5 until the planned DNN structure is realised.
After pre-training, all DNN layers are jointly trained by EBP to

fine-tune the model parameters, which is called fine-tuning [5]. We
found that realigning the data and retraining new CI-DNN-HMMs
from scratch with conventional discriminative pre-training and fine-
tuning could further improve the performance. After these steps, the
required CI-DNN is trained.

4. CD-DNN TARGET CLUSTERING

4.1. Class-Conditional Distribution Interpretation

Since decision tree tying clusters the output probability density func-
tions of the states, to modify the algorithm for DNN-HMMs, the
equivalent class-conditional distributions from the DNN are needed.

The DNN output layer can be viewed as a single layer per-
ceptron (SLP) that estimates the posterior probabilities with a soft-
max function, based on the input sigmoidal activation vector zt.
Like the original GMM-HMM based algorithm [11], we assume the
class-conditional distributions p(zt|Ck) to be Gaussian. If all un-
tied Gaussian distributions have the same covariance matrix, i.e.,
p(zt|Ck) = N (zt;µk,Σ), from Bayes’ theorem [13], we have

p(Ck|zt) =
p(zt|Ck)P (Ck)∑
k
′ p(zt|Ck′ )P (Ck′ )

(7)

=
exp{µT

kΣ−1zt −
1

2
µT

kΣ−1µk + lnP (Ck)}∑
k
′ exp{µT

k
′ Σ−1zt −

1

2
µT

k
′ Σ−1µk

′ + lnP (Ck′ )}
. (8)

Eq. (7) has the same form as the posteriors generated by the SLP,
obtained by substituting Eq. (1) into Eq. (2). Consequently, the rela-
tionship between the means and variances of the Gaussian distribu-
tions and the parameters of the SLP can be obtained as

ηwT
k = µT

kΣ−1 (9)

η bk = −1

2
µT

kΣ−1µk + lnP (Ck), (10)



where η is any non-zero valued real number. Eq. (9) and Eq. (10)
can be used to generate an SLP from known distributions. Actually,
the output distributions could be more generally assumed to be any
member of a particular form of the exponential family [13].

Since the output densities are estimated based on z, the DNN-
HMM based method clusters in the space of z, Ωz, while the GMM-
HMM based decision tree state tying clusters in the space of the
original observations o, Ωo.

4.2. DNN-HMM based Decision Tree Target Clustering

With the CI-DNN-HMM system obtained in Section 3, the CD states
are clustered in the space of the sigmoidal activations zt generated
by the last hidden layer of the CI-DNN, ΩCI

z . The major steps of the
modified method are illustrated in Fig. 1, and other parts follow stan-
dard GMM-HMM based state tying, as introduced in Section 2.2.

Fig. 1. Steps of DNN-HMM based decision tree target clustering.

4.2.1. Distribution Estimation based on Hidden Activations

To obtain the input to the decision tree clustering, the output den-
sities for the untied states are required. The untied states together
with their training labels are obtained by expanding the CI states
with their surrounding phones, using the alignments generated by
the CI-DNN-HMMs. Then the parameters of the distributions, i.e.,
the mean vectors and the common covariance matrix, are estimated
based on the ML criterion.

µkd =

∑
zt∈Zk

ztd

Tk
(11)

(σij)
2 =

∑
k

∑
zt∈Zk

(zti − µki)(ztj − µkj)∑
k Tk

, (12)

where ztd, µkd, and (σij)
2 are the elements of zt, µk, and Σ; Zk is

the collection of zt whose labels are Ck.
Since Σ is usually a large full matrix, its determinant, which is

used to get the log-likelihood by Eq. (4), is hard to compute. There-
fore, we transform Σ to a diagonal matrix using a rotation, i.e., the
orthonormal matrix A whose columns are the eigenvectors of Σ
transforms the untied Gaussians to have a common diagonal covari-
ance matrix by p(z|Ck) = N (ATz; ATµk,A

TΣA). Furthermore,
to reduce the dimension of ATΣA and speed up the computation,
we can discard some columns of A that are associated with very
small eigenvalues.

4.2.2. Statistics Collection and Building CD-DNNs

After the parameters of the class-conditional distributions have been
determined, they are converted into an SLP with untied state targets
using Eq. (9) and Eq. (10). This SLP is then added in place of the
original output layers of the CI-DNN-HMM, and used to collect the
statistics

∑
t p(Ck|xt), which serves as the term of

∑
t γk(t) used in

Eq. (4)-(6). If the SLP is converted from diagonal Gaussians trans-
formed by A, then AT with a zero bias vector should be treated as
an extra layer with linear hidden activation function and interposed
between the SLP and the existing hidden layers, to make the SLP
take de-correlated inputs.

After clustering, the output layer with the newly clustered tar-
gets is added to the hidden layers of the CI-DNN-HMMs. The hid-
den layer weights are fixed and only the new output layer is trained.
After this step, the resulting CD-DNN-HMMs are used to realign the
training set, and fine-tuning applied according to the realignments.
The resulting CD-DNN-HMMs are the required models.

If we denote ΩCD
z as the space of the sigmoidal activations of

the final CD-DNN-HMMs, the DNN-HMM based target clustering
make predictions about the best targets of ΩCD

z in ΩCI
z . In contrast,

the GMM-HMM based state tying predicts CD state targets in Ωo.

5. EXPERIMENTAL SETUP

The proposed techniques were evaluated by training systems on
the Wall Street Journal (WSJ) training set (SI-284) and testing on
the 1994 H1-dev (Dev) as well as Nov’94 H1-eval (Eval) sets, The
LIMSI dictionary was used. A dictionary with 65k words, along
with a backoff trigram language model, was used for all experi-
ments. Detailed information about these can be found in [17]. The
acoustic feature vector for ML trained GMM-HMM systems and all
DNN-HMMs consist of 13d PLP coefficients with their ∆ and ∆∆,
processed by utterance level cepstral mean normalisation (CMN)
and global cepstral variance normalisation (CVN). Every HMM had
3 emitting states including the short pause model, whose states were
tied to those of the silence model.

The GMM-HMM systems were trained and decoded using HTK
[14, 17]. A triphone system with 1 Gaussian component per state
was used for decision tree state tying, which was re-estimated to an
ML trained GMM-HMM system with 5981 tied-states and 12 Gaus-
sian components per state except for the 3 silence states that had 24
Gaussian components per state. This system was further extended
to include ∆∆∆ features with 39d using heteroscedastic linear dis-
criminant analysis (HLDA) [18, 19], and discriminatively trained
based on the minimum phone error (MPE) criterion [20].

The DNNs and MLPs were trained with an extension of ICSI’s
QuickNet software [21]. A sigmoid hidden activation function, a
softmax output activation function, and the cross-entropy criterion
were used. The input vector had 351 dimensions, which was pro-
duced by concatenating the current frame with 4 frames in its left
and right contexts. Ten percent of the training set was selected as the
held-out set for cross-validation. Parameter updates were averaged
over a mini-batch with 800 frames and smoothed by adding a “mo-
mentum” term of 0.5 times the previous updates. A learning rate of
0.001 was used for pre-training. For fine-tuning, a learning rate of
0.002 was used for the first 6 epochs and 0.001 for the last 6 epochs.
All DNNs had 5 hidden layers with 1000 nodes per layer.



6. EXPERIMENTAL RESULTS

6.1. Baseline System Performance

CI-DNN-HMM (I1) and CD-DNN-HMM (D1) baseline systems
were built with conventional discriminative pre-training using the
labels derived from the alignments generated by an HLDA MPE
GMM-HMM system (G2). The triphone tied-state targets were
generated by GMM-HMM based decision tree tying approach. I1
was used to realign the data and another CI-DNN-HMM baseline
(I2) with the same configuration was trained from scratch based on
the realignments. The baseline performance is listed in Table 1.
GMM-HMMs results are also included as a comparison to previous
work [17, 22].

ID Type DNN WER%
Alignments Dev Eval

G1 ML GMM-HMMs — 9.1 9.5
G2 HLDA MPE GMM-HMMs 8.0 8.7
I1 CI-DNN-HMMs G2 10.5 12.0
I2 I1 10.7 13.7
D1 CD-DNN-HMMs G2 6.7 8.0

Table 1. Baseline system performance. The CI-DNN and CD-DNN
structures are 351× 10005 × 138 and 351× 10005 × 5981.

6.2. CI-DNN-HMM Standalone Training

The flat initial alignments were first refined for 20 iterations. Af-
terwards, several CI-DNN-HMM systems were trained with differ-
ent pre-training and conventional fine-tuning based on the align-
ments generated. One system (I3) was built using discriminative pre-
training with realignment, and another (I4) was later built with con-
ventional discriminative pre-training based on the alignments gen-
erated by I3. For comparison, one CI-DNN-HMM system (I5) was
trained with conventional discriminative pre-training, whose realign-
ments were used to build another set of CI-DNN-HMMs (I6) from
scratch. The performance is presented in Table 2.

Comparing I3 with I5 and I4 with I6, we can see the systems
with discriminative pre-training with realignment gave on average a
2.3% and 4.0% relative reduction in WER (on Dev and Eval com-
bined). Retraining the systems from scratch for more passes caused
the performance to fluctuate. As for I4 and I1, although I4 performed
more poorly than I1, its results were achieved without the informa-
tion from ∆∆∆ features, HLDA transforms, and CD modelling em-
bedded in the alignments. This conclusion is also be supported by
system I2. I2 suffered from an 8% averaged relative WER increase
compared to I1, since it excluded the above information.

ID Training Route WER%
Dev Eval

I3 Realigned 12.2 14.3
I4 Realigned+Conventional 11.7 13.8
I5 Conventional 12.2 15.0
I6 Conventional+Conventional 12.0 14.6

Table 2. Results of CI-DNN-HMMs with different pre-trainings.
“Training Route” shows the different pre-training methods for build-
ing the CI-DNN-HMM systems. “Realigned” means discriminative
pre-training with realignments.

6.3. DNN-HMM based Target Clustering

The difference between GMM-HMM and DNN-HMM based deci-
sion tree state tying is now investigated. The experiment started from
the best standalone CI-DNN-HMMs, I4. A total of 68,172 untied
triphone states occur in the alignments generated by I4, in contrast
to 68,034 untied states involved in GMM-HMM based state tying.
The SLP estimated using the I4 alignments gave a 35.3% context-
dependent frame classification accuracy on the combination of the
training and held out sets. We de-correlated the common covariance
matrix with a rotation and kept 300 dimensions (accounting for 96%
of the variance) with the largest eigenvalues in the transformed diag-
onal covariance matrix. 5,996 tied states were generated by DNN-
HMM based decision tree clustering. These clustered targets were
added to the I4 hidden layers. The effect of different clusterings
were examined by using EBP either through all layers or through
the output layer only, based on the training labels derived from I4
alignments. The results are given in Table 3.

From the results, D2 slightly outperformed G3 (1% average rel-
ative WER reduction), which indicates that the tied-states clustered
in ΩCI

z (of I4) match the existing I4 hidden layers better than those
clustered in Ωo. Meanwhile, if all layers were trained by EBP, D3
only outperformed G4 by 0.6% averaged relative WER. The perfor-
mance difference for G4 and D3 is reduced compared to that between
G3 and D2 due to the power of fine-tuning, which not only changes
the output layers weights but changes their input features zt as well.

Compared to the baseline CD-DNN-HMMs D1, the CD-DNN-
HMMs trained in a standalone fashion, D3, performed 1.5% poorer
on Dev but 2.5% better on Eval in terms of relative WER. As a result,
we accomplished the task of training a state-of-the-art CD-DNN-
HMM system without relying on any GMM-HMMs. In addition,
the proposed training procedure is quite efficient since training and
aligning the data with CI-DNN-HMMs can be much faster than with
CD-DNN-HMMs.

ID Clustering EBP Layers WER%
Dev Eval

G3 GMM-HMM Final Layer 7.6 9.0
G4 All Layers 6.8 7.9
D2 DNN-HMM Final Layer 7.7 8.7
D3 All Layers 6.8 7.8

Table 3. Comparisons between GMM-HMM and CD-DNN-HMM
based state tying. The hidden layers and alignments were from I4.
The structures of the GMM-HMM and DNN-HMM clustered CD-
DNNs are 351×10005×5981 and 351×10005×5996, separately.

7. CONCLUSIONS

A new CD-DNN training procedure has been presented, which un-
like the standard approach to DNN training does not rely on a pre-
existing speech recognition system. A CI-DNN is trained in an inter-
leaved fashion by updating the model parameters with the reference
labels and updating the labels by realigning the training set. After-
wards, a Gaussian distribution with a common covariance matrix is
estimated for every untied CD state based on the hidden activation
vectors generated by the last hidden layer of the CI-DNN, which are
clustered by decision tree state tying. These are the converted to
the output layer of a CD-DNN. Experiments on the standard SI-284
training setup for the Wall Street Journal corpus have shown that the
proposed training procedure gives state-of-the-art performance.
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