
Parameterised Sigmoid and ReLU Hidden Activation Functions
for DNN Acoustic Modelling

C. Zhang & P. C. Woodland

Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ U.K.
{cz277,pcw}@eng.cam.ac.uk

Abstract
The form of hidden activation functions has been always an im-
portant issue in deep neural network (DNN) design. The most
common choices for acoustic modelling are the standard Sig-
moid and rectified linear unit (ReLU), which are normally used
with fixed function shapes and no adaptive parameters. Re-
cently, there have been several papers that have studied the use
of parameterised activation functions for both computer vision
and speaker adaptation tasks. In this paper, we investigate gen-
eralised forms of both Sigmoid and ReLU with learnable pa-
rameters, as well as their integration with the standard DNN
acoustic model training process. Experiments using conversa-
tional telephone speech (CTS) Mandarin data, result in an aver-
age of 3.4% and 2.0% relative word error rate (WER) reduction
with Sigmoid and ReLU parameterisations.

1. Introduction
Multi-layer perceptrons (MLPs) have become a widely used ar-
tificial neural network (ANN) model since the rediscovery of
the error back propagation (EBP) algorithm in the 1980s [1, 2].
However, it was commonly believed that training a DNN, an
MLP with many hidden layers, directly from random initialisa-
tions using EBP usually gives to a poor local optimum [3]. The
problem had not been addressed until a generative pre-training
approach was proposed to initialise the DNN with Sigmoid ac-
tivation functions layer by layer, by training a stacked set of
unsupervised RBMs [4]. Studies on image classification tasks
found one perspective to understand the difficulty in deep learn-
ing: the non zero mean value of the Sigmoid function drives the
top hidden layer of a random initialised DNN into saturation,
while other non-linear functions symmetric around zero with
sensible random initial values can enable DNNs to converge to
a good local optimum quickly without pre-training [3].

In 2010, a half-rectified non-linearity, the rectified linear
unit or ReLU, which is linear for positive values and zero other-
wise, was studied [5, 6] and applied to large vocabulary continu-
ous speech recognition (LVCSR) [7, 8]. Compared to Sigmoid,
ReLU can usually eliminate the necessity of pre-training and
make DNNs converge to sometimes more discriminative solu-
tions more quickly, while keeping the model sparse [5, 7, 8].
A further improvement of the ReLU is the leaky ReLU, which
scales the negative part by 0.01, to allow small non-zero gradi-
ents when a unit is saturated [9]. However, it results in no im-
provement in speech recognition [9, 10]. Although it was found

Chao Zhang is supported by Cambridge International Scholar-
ship from the Cambridge Commonwealth, European & International
Trust and by the EPSRC Programme Grant EP/I031022/1 (Natural
Speech Technology). Supporting data for this paper is available at the
http://www.repository.cam.ac.uk/handle/1810/248386 data repository.

that on LVCSR tasks with very large training sets, pre-training
for even Sigmoid DNNs is unnecessary [11], the above findings
still illustrated the importance of hidden activation functions.

Recently, there have been several studies on learning pa-
rameterised activation functions [12, 13, 14]. In [12], Hermite
polynomial activation functions with a number of coefficients
are learnt in a speaker independent (SI) ANN acoustic model,
and the coefficients are made speaker dependent (SD) by adapt-
ing to a particular speaker during testing. Similarly, [13] as-
sociates each hidden unit with a weight constraint by Sigmoid
functions, and the DNN is adapted by learning the hidden unit
contributions (LHUC). An advantage of LHUC is that it does
not rely on the choice of hidden activation functions. The para-
metric leaky ReLU1 (PLReLU) was proposed as a general acti-
vation function, and applied to a 22-layer convolutional neural
network for image classification [14]. The PLReLU has the co-
efficients of its negative part adaptively learned and allows an
automatic learning of rectification.

In this paper, we study the parameterised forms of the
most commonly used hidden activation functions – Sigmoid and
ReLU. Three parameters are used with the generalised Sigmoid:
the curve’s maximum value, the curve’s steepness, and a scaled
horizontal displacement. In this way, the parameterised Sig-
moid function can perform piecewise approximations to other
activation functions. Meanwhile, both positive and negative
parts of ReLU are separately associated with a linear scaling
factor, which allows unconstrained trade-off between the pos-
itive and negative activations. We investigate the effective-
ness and the role of these parameters in training standard DNN
acoustic models.

Section 2 briefly reviews the common DNN training algo-
rithm. The training method and properties of each parameter
are discussed in Section 3. The experimental setup is presented
in Section 4, followed by the experimental results in Section 5,
and conclusions are presented in Section 6.

2. A Review of DNNs
2.1. DNN-HMM Hybrid Acoustic Models

An MLP maps its input vector xt to an output vector through
the nodes in the hidden and output layers. xt is formed from a
stacked set of adjacent frames of the acoustic feature vector, ot,
for each frame.

A DNN is an MLP with many hidden layers. In each layer,
the input to each node j, aj , is defined as a weighted sum of the
outputs from its previous layer, yi, i.e.,

aj =
∑
i

wjiyi + bj , (1)

1The method was denoted the parametric ReLU (PReLU) in [14]

Copyright © 2015 ISCA September 6-10, 2015, Dresden, Germany

INTERSPEECH 2015

3224

where wji and bj are the weights and bias associated with node
j, and aj is also called the activation. Node j transforms its
input aj with an activation function fj(·),

yj = fj(aj).

If it is a hidden layer and fj(·) has no adaptive parameters, fj(·)
is a standard activation function, (e.g., Sigmoid or ReLU). Oth-
erwise fj(·) is a parameterised function with a set of learnable
parameters, Φj .

In the output layer, the inputs to node k, ak, are normalised
to be the posterior probability of its associated class Ck, using
the softmax function fk(·). To interface a DNN with HMMs,
the posterior probability p(Ck|xt) is converted to a scaled log-
likelihood of xt generated by sk, the HMM state relevant to Ck,
by

ln p(xt|sk) = ln(sk|xt) + ln p(xt)− lnP (sk),

where P (sk) = Tk/
∑′

k Tk′ , Tk is the number of frames la-
beled as sk, and p(xt) is independent of the HMM state.

2.2. Training DNNs with Error Backpropagation

When updating DNN parameters using stochastic gradient de-
scent (SGD) according to some objective function F , the first
step is to compute the derivatives of F with respect to every pa-
rameter, ϕi, which is associated with node i. If ϕi is a weight
or bias, then according to the chain rule,

∂F
∂ϕi

=
∂F
∂ai

∂ai
∂ϕi

, (2)

it relies on ∂F/∂ai. Again, applying the chain rule, we obtain

∂F
∂ai

=
∂yi
∂ai

∑
j

∂F
∂aj

∂aj
∂yi

=
∂fi(ai)

∂ai

∑
j

∂F
∂aj

wji, (3)

which is computed based on ∂F/∂aj propagated back from the
next layer. If ϕi ∈ Φi is a parameter of the activation function
fi(·), assume ϕi is not shared by different functions, then

∂F
∂ϕi

=
∂yi
∂ϕi

∑
j

∂F
∂aj

∂aj
∂yi

=
∂fi(ai)

∂ϕi

∑
j

∂F
∂aj

wji. (4)

If F is the cross entropy (CE) criterion, ∂FCE/∂ak = yk−
ŷk, where ŷk is the reference of Ck at time t. yk− ŷk acts as the
error backpropagated by Eqns. (2)–(4) to compute the gradients
for all parameters. Therefore, the algorithm is usually referred
to as error backpropagation (EBP) [2].

3. Parameterised Activation Functions
3.1. Parameterised Sigmoid Function

Functions from the Sigmoid family have been widely investi-
gated for many ASR tasks. For example, activation functions
for ANN models [15, 16], smoothed forms of 0-1 classification
error [17], and for making soft decisions on data selection ac-
cording to noise estimation error [18].

In this section, we study a generalised form of Sigmoid,

f(a) = η · 1

1 + e−γa+θ
, (5)

which is actually the logistic function, and η, γ, and θ are the
learnable parameters. We denote Eqn. (5) as defining the p-
Sigmoid(η, γ, θ).

3.1.1. Properties of the p-Sigmoid

In the p-Sigmoid function, η, γ, and θ have different effects on
the curve f(a).

• Among the three parameters, η can make the largest
change to the function by scaling f(a) linearly. |η| is
the maximum value of |f(a)|. Since we impose no con-
straint on the parameters, η can be any real number. If
η > 0, η indicates the contribution of the relevant hid-
den unit, which can be seen as a case of LHUC [13]; the
unit is disabled if η = 0. We enable the units to make
negative contributions by allowing η < 0.

• γ controls the steepness of the curve. When |γ| in-
creases, f(a) can arbitrarily approximate a step function.
When γ → 0, f(a) makes less difference to the input
around 0, and outputs constant values if γ = 0.

• θ applies a horizontal displacement to f(a). θ/γ is the
x-value of the midpoint of the p-Sigmoid, if γ is non-
zero.

It is well-known that the p-Sigmoid, or logistic function,
can be used for piecewise approximations to other functions.
Fig. 1 illustrates different shapes of p-Sigmoid for a ∈ [−5, 5],
by varying η, γ, and θ. p-Sigmoid(1, 30, 0) is similar to the
standard threshold activation function [2]. The illustrated frag-
ment of p-Sigmoid(4, 1, 2) has a similar shape as that of the
Soft ReLU activation function [5, 10]. p-Sigmoid(3,−2, 3) ap-
proximates ReLU, although the approximation is poor around
zero. Therefore, if all parameters are learnt properly, many p-
Sigmoid units can behave as several commonly used activation
functions. Therefore, we associate each hidden unit activation
function fi(ai) with a set of parameters, ηi, γi, and θi.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

1

2

3

p-Sigmoid(1, 1, 0)

p-Sigmoid(1, 30, 0)

p-Sigmoid(4, 1, 2)

p-Sigmoid(3, -2, 3)

p-Sigmoid(2, 2, 0) -1

f(a)

a

Figure 1: Piecewise approximation by p-Sigmoid functions.

Note that p-Sigmoid(2, 2, 0)−1.0 is the hyperbolic tangent
activation function [2], as drawn with the dashed line in Fig. 1.
However, we do not allow a learnable parameter of p-Sigmoid
to control the vertical shift since it can be acquired by changing
the biases of the next layer.

3225

3.1.2. Implementing p-Sigmoid

From Eqns. (2)–(4), it is necessary to compute the partial
derivatives of fi(·) with respect to its input activation ai, and
also to each of its parameters ηi, γi, and θi. For the p-Sigmoid,
the derivatives are computed by

∂fi(ai)

∂ai
=

{
0 if ηi = 0
γifi(ai)

(
1− η−1

i fi(ai)
)

if ηi 6= 0
, (6)

∂fi(ai)

∂ηi
=

{
(1 + e−γiai+θi)−1 if ηi = 0
η−1
i fi(ai) if ηi 6= 0

, (7)

∂fi(ai)

∂γi
=

{
0 if ηi = 0
aifi(ai)

(
1− η−1

i fi(ai)
)

if ηi 6= 0
, (8)

∂fi(ai)

∂θi
=

{
0 if ηi = 0
−fi(ai)

(
1− η−1

i fi(ai)
)

if ηi 6= 0
. (9)

From Eqns. (7) and (8), the input activation, ai, needs to be
used in computing the gradients. This is a different requirement
to the Sigmoid function, where ai does not need to be kept for
EBP, and it gives rise to extra cost for both computation and
storage. The computational cost is negligible if a GPU is used
in training. Furthermore, when γi is not involved in training,
we have found that using ∂fi(ai)/∂ηi = 0 for the ηi = 0 case
in Eqn. (7) makes only a little difference2, which can simplify
the implementation.

3.2. Parameterised ReLU Function

For the ReLU function with a hinge-like shape, the most
straightforward way to make it into a parameterised form is
to individually associate a scaling factor with either part of the
function. i.e., to enable the two ends of the hinge to rotate sep-
arately around the “pin”. We denote this function p-ReLU as,

f(a) =

{
α · a if a > 0
β · a if a 6 0

, (10)

where α, and β are real-valued scaling factors of the positive
and negative parts. The PLReLU proposed in [14] is a simpli-
fied form of p-ReLU(α, β), by fixing α = 1. Similarly, another
simplified form of interest is p-ReLU(α, 0).

In a similar way to the p-Sigmoid, the function parameters
depend on each hidden node i. Therefore, the derivatives of
p-ReLU with respect to a, αi, and βi for EBP are

∂fi(ai)

∂ai
=

{
αi if ai > 0
βi if ai 6 0

, (11)

∂fi(ai)

∂αi
=

{
ai if ai > 0
0 if ai 6 0

, (12)

∂fi(ai)

∂βi
=

{
0 if ai > 0
ai if ai 6 0

. (13)

Since the values of αi and βi are not constrained, the sign of
ai cannot be inferred from fi(ai). Therefore it is necessary
to keep ai for backpropagation which results in extra memory
usage. As for the p-Sigmoid case, for p-ReLU(αi, 0), ai does
not need to be kept by not updating the zero-valued αi.

Moreover, it may be argued, for unbounded activation func-
tions like ReLU, scaling its value with a factor with absolute
values bigger than 1 is unsafe. However, in our experiments, it
was not found to cause any issues. This indicates, that while

2Note that this approximation was not used in the experiments re-
ported in this paper.

scaling up ReLU outputs may cause gradient explosion [19], it
is also possible that the automatically learnt scaling factors can
prevent explosion occurring by scaling down ReLU outputs. In
addition, for p-ReLU functions, even if the gradient does get
too large, this issue can be fixed using simple gradient clipping
[20] and ReLU output value clipping methods.

4. Experimental Setup
The experiments presented below were conducted with systems
trained on 72 hours of Mandarin CTS data, denoted rt04train,
which contains 50 hours of LDC 2004 CTS Mandarin data, as
well as 22 hours from the LDC Call Home Mandarin and Call
Friend Mandarin data sets. The training set consists of 786 con-
versational sides, and was used in building the 2004 Cambridge
University HTK-based Mandarin system. Three test sets were
used: a 2 hour development set dev04 containing 24 conversa-
tions associated with rt04train; the 2003 NIST evaluation set,
eval03, which includes 1.1 hours of data from 12 conversations
from the Call Friend corpus; as well as 1997 NIST Hub5 Man-
darin evaluation set, eval97, which contains 1.5 hours of data
from 20 conversations.

The recognition word list contains 63k words, comprising
about 52k multi-character Chinese words, 5k single character
Chinese words, and an additional 5k frequent English words.
The base phone set contains 46 toneless phones or 124 to-
tal phones. Decoding was performed with a bigram langauge
model (LM) and the generated lattices were rescored with an
interpolated trigram back-off LM. Both LMs were trained us-
ing a total of 1 billion words of text data. All results presented
in Section 5 are with a trigram LM. More details about the dic-
tionary and LMs can be found in [21].

The acoustic feature vector uses 13d PLP coefficients with
their ∆, ∆∆, and ∆∆∆, normalised by vocal tract length nor-
malisation (VTLN) and projected to 39d using HLDA [22, 23].
VTLN was used in supervised and unsupervised modes on the
training and testing data, respectively. Pitch features extracted
by the Kaldi toolkit [24, 25], along with their ∆ and ∆∆ were
appended to the projected vector. The 42d augmented vector
was further normalised by cepstral mean and variance normal-
isation (CMN and CVN) at the speaker level, and then used
to build SD GMM-HMMs for CMLLR transform estimation.
After transformation by CMLLR, the feature vector was nor-
malised again to zero mean and unit variance. Finally, the cur-
rent frame of this 42d speaker normalised feature vector, was
concatenated with 4 frames to its left and right, respectively,
which formed the final 378d DNN input feature vector.

The DNN training alignments were generated by a Tandem
SAT system. The DNN output targets were derived from a tonal
triphone context-dependent GMM-HMM system with 6005 tied
states, clustered with the phonetic decision tree state tying ap-
proach [26]. More details about the tonal GMM-HMMs and the
Tandem SAT system can also be found in [21]. All DNNs had 5
hidden layers with 1000 nodes per layer and were trained based
on the CE criterion. Therefore, the structure for all DNNs used
as DNN-HMMs was 378× 10005 × 6005.

For the purpose of cross-validation, 10% of rt04train was
randomly selected at the speaker level and held out of train-
ing. Parameter updates were averaged over a mini-batch with
800 frames and smoothed by adding a “momentum” term of
0.5 times the previous updates. A modified NewBob algorithm
described in [27] was used as the learning rate scheduler. For
DNNs with Sigmoid and p-Sigmoid activation functions, the
initial learning rate η0 and minimum epoch number Nmin were

3226

set to 2.0 × 10−3 and 12. Discriminative pre-training [28, 15]
was used for sigmoidal DNNs, which trains the model for 1
epoch every time a new layer is stacked. For DNNs with ReLU
and p-ReLU functions, 5.0 × 10−4 and 8 were used as η0
and Nmin. The DNN, which produced the highest held-out set
frame classification accuracy in fine-tuning, was used as the fi-
nal model. All GMM-HMMs and DNN-HMMs acoustic model
training and decoding used HTK [29, 27].

5. Experimental Results
We investigated the use of p-Sigmoid and p-ReLU for stan-
dard DNN acoustic model training. All CD-DNN-HMMs were
constructed following the configurations described in Section 4.
The initial value of all ηi, γi, θi, αi, and βi were set to be 1.0,
1.0, 0.0, 1.0, and 0.25, if not explicitly defined. There are two
key things of interest: which activation function parameters to
select and how to train these parameters properly. For clarity,
we only present dev04 results in subsection 5.1.

5.1. How to train p-Sigmoid and p-ReLU Parameters

For the p-Sigmoid systems, care needs to be taken in training the
activation function parameters from the pre-training (PT) step,
since some parameters, e.g., ηi, can change the p-Sigmoid out-
puts rapidly and can affect the convergence of the other model
parameters. Starting to train p-Sigmoid parameters from the
fine-tuning (FT) step is preferred since all weights and biases
are already sensibly initialised. Therefore, we first compare
training ηi, γi, and θi individually in both PT and FT, and FT
only. The results are listed in Table 1.

ID Activation Function dev04
S1+ p-Sigmoid(ηi, 1, 0) 27.6
S2+ p-Sigmoid(1, γi, 0) 27.7
S3+ p-Sigmoid(1, 1, θi) 27.7
S1 p-Sigmoid(ηi, 1, 0) 27.1
S2 p-Sigmoid(1, γi, 0) 27.5
S3 p-Sigmoid(1, 1, θi) 27.4
S4 p-Sigmoid(ηi, γi, 0) 27.2
S5 p-Sigmoid(1, γi, θi) 27.2
S6 p-Sigmoid(ηi, 1, θi) 27.4
S7 p-Sigmoid(ηi, γi, θi) 27.3

Table 1: dev04 %WERs for the p-Sigmoid systems. + means the
activation function parameters were trained in both PT and FT.

Comparing S1+, S2+, and S3+ to S1, S2, and S3 respec-
tively, we can see all p-Sigmoid systems that start to learn their
parameters from FT outperformed their counterparts that learn
all the parameters together since PT. These results coincide with
our above mentioned inference. Meanwhile, we also tested this
idea with the p-ReLU systems. Since we did not use PT for
training ReLU DNNs, the p-ReLU parameters were kept fixed
in the first epoch to avoid them affecting the other parameters.
The resulted systems are R1− and R2−. From Table 2, it is
clear that training αi from the first epoch makes R1 outperform
R1−, while doing this for βi makes no impact on WERs. This
reveals two things: first, since ReLU DNNs have unbounded
activation functions, their parameters can be more robust to the
fluctuation of the activation function outputs, and it is not use-
ful to avoid the impact on the other parameters at the begining;
second, αi has more impact on training than βi, which supports

the negative rather than the positive part to be recified in ReLU.
In summary, it is found helpful to keep the p-Sigmoid pa-

rameters frozen at the begining of training, but uncessary or
even harmful for p-ReLU systems.

5.2. Which p-Sigmoid and p-ReLU Parameters to Train

DNN-HMMs with other choices of p-Sigmoid and p-ReLU
functions are shown in Table 2. From the results, none of the p-
Sigmoid and p-ReLU systems with multiple learnt parameters
has outperformed S1 and R1, which are the best two systems
with only the linear scaling factors estimated.

ID Activation Function dev04
R1 p-ReLU(αi, 0) 26.8
R2 p-ReLU(1, βi) 27.0
R3 p-ReLU(αi, βi) 27.1

R1− p-ReLU(αi, 0) 27.4
R2− p-ReLU(1, βi) 27.0

Table 2: dev04 %WER for the p-ReLU systems. − indicates the
activation function parameters were frozen in the 1st epoch.

Full results on the 3 testing sets are presented in Table 3.
S0 and R0 are the baseline systems with standard Sigmoid and
ReLU functions. Comparing S1 to S0, R1 to R0, p-Sigmoid and
p-ReLU resulted in on average 3.4% and 2.0% relative WER
reduction, by increasing only 0.06% parameters (6,000 among
10,394,005) in training, which illustrates the important role of
parameterised activation functions. Of course, an equivalent
model without any activation function parameters can be ob-
tained by replacing the p-Sigmoid(ηi, 1, 0) or p-ReLU(αi, 0)
with Sigmoid or ReLU, and scaling the relevant weights of the
next layer by ηi or αi. Furthermore, although on this task,
p-ReLU outperformed p-Sigmoid, the relative improvement is
smaller. This shows that the improvement from p-Sigmoid may
already contain some benefits from making the Sigmoid more
similar to ReLU using ηi, but more improvements were from
the extra flexibility to allow the contribution of each hidden unit
to be automatically and individually weighted.

ID Activation Function eval97 eval03 dev04
S0 Sigmoid 34.1 29.7 27.9
S1 p-Sigmoid(ηi, 1, 0) 32.9 28.6 27.1
R0 ReLU 33.3 29.1 27.6
R1 p-ReLU(αi, 0) 32.7 28.7 26.8

Table 3: %WER on all test sets.

6. Conclusions
In this paper, the use of general parameterised forms of Sigmoid
and ReLU activation functions was studied. It was found that
a linear scaling factor with no constraint imposed is the most
useful for both Sigmoid and ReLU. Experimental results on a
challenging CTS Mandarin task showed that DNNs trained with
parameterised Sigmoid and ReLU functions resulted in, respec-
tively, 3.4% and 2.0% relative reductions in WER. This reduc-
tion in WER requires an increase in the number of parameters
in training by only 0.06% and if the linear activation function
scalings are converted to scaling the following layer weights,
then no extra parameters in the final model are required.

3227

7. References
[1] D. E. Rumelhart, J. L. McClelland, and the PDP Re-

search Group, Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Volume 1:
Foundations. MIT Press, 1986.

[2] C. M. Bishop, Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[3] X. Glorot and Y. Bengio, “Understanding the¡ difficulty
of training deep feedforward neural networks,” Proc. In-
ternational conference on artificial intelligence and statis-
tics, 2010.

[4] G. E. Hinton and R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, Vol. 313,
no. 5786, pp. 504–507, Jul 2006.

[5] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rec-
tifier networks,” Proc. AISTATS’11, Ft. Lauderdale, FL,
USA, 2011.

[6] V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” Proc. ICML’10, Haifa,
Isreal, 2010,

[7] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang,
Q. V. Le, P. Nguyen, A. Senior, V. Vanhoucke, J. Dean
et al., “On rectified linear units for speech processing,”
Proc. ICASSP’13, Vancouver, Canada, 2013.

[8] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improv-
ing deep neural networks for LVCSR using rectified linear
units and dropout,” Proc. ICASSP’13, Vancouver, Canada,
2013.

[9] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier
nonlinearities improve neural network acoustic models,”
Proc. ICML’13, Atlanta, GA, USA, 2013.

[10] A. Senior and X. Lei, “Fine context, low-rank, soft-
plus deep neural networks for mobile speech recognition,”
Proc. ICASSP’14, Florence, Italy, 2014

[11] H. Liao, E. McDermott, and A. Senior, “Large scale deep
neural network acoustic modeling with semi-supervised
training data for YouTube video transcription,” Proc.
ASRU’13, Olomouc, Czech Republic, 2013.

[12] S. M. Siniscalchi, J.-Y. Li, and C.-H. Lee, “Hermi-
tian polynomial for speaker adaptation of connectionist
speech recognition systems,” IEEE Transactions on Au-
dio, Speech, and Language Processing, Vol. 21, No. 10,
pp. 2152–2161, 2013.

[13] P. Swietojanski and S. Renals, “Learning hidden unit con-
tributions for unsupervised speaker adaptation of neural
network acoustic models,” Proc. IWSLT’14, Lake Tahoe,
USA, 2014.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on im-
agenet classification,” arXiv preprint arXiv:1502.01852,
2015.

[15] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition,” IEEE Signal
Processing Magazine, pp. 2–17, Nov. 2012.

[16] H. A. Bourlard and N. Morgan, Connectionist Speech
Recognition: A Hybrid Approach. Kluwer Academic Pub-
lishers, 1993.

[17] B.-H. Juang, W. Chou, and C.-H. Lee, “Minimum classi-
fication error rate methods for speech recognition,” IEEE
Transactions on Speech and Audio Processing, Vol. 5,
No. 3, pp. 257–265, 1997.

[18] J. Barker, L. Josifovski, M. Cooke, and P. D. Green,
“Soft decisions in missing data techniques for robust auto-
matic speech recognition,” Proc. Interspeech’00, Beijing,
China, 2000.

[19] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-
term dependencies with gradient descent is difficult,”
IEEE Transactions on Neural Networks, Vol. 5, No. 2, pp.
157–166, 1994.

[20] T. Mikolov, “Statistical language models based on neural
networks,” Ph.D. dissertation, Ph. D. thesis, Brno Univer-
sity of Technology, 2012.

[21] X.-Y. Liu, F. Flego, L.-L. Wang, C. Zhang, M. J. F.
Gales, and P. C. Woodland, “The Cambridge Univer-
sity 2014 BOLT conversational telephone Mandarin Chi-
nese LVCSR system for speech translation,” Proc. Inter-
speech’15, Dresden, Germany, 2015.

[22] N. Kumar, “Investigation of silicon-auditory models and
generalization of linear discriminant analysis for im-
proved speech recognition,” Ph.D. dissertation, John Hop-
kins University, Baltimore, MD, USA, 1997.

[23] X.-Y. Liu, M. J. F. Gales, and P. C. Woodland, “Au-
tomatic complexity control for HLDA systems,” Proc.
ICASSP’03, Hong Kong, 2003.

[24] P. Ghahremani, B. BabaAli, D. Povey, K. Riedham-
mer, J. Trmal, and S. Khudanpur, “A pitch extraction al-
gorithm tuned for automatic speech recognition,” Proc.
ICASSP’14, Florence, Italy, 2014.

[25] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glem-
bek, N. Goel, M. Hannemann, P. Motlı́ček, Y.-M. Qian,
P. Schwarz, J. Silovský, G. Stemmer, and K. Veselý,
“The Kaldi speech recognition toolkit,” Proc. ASRU’11,
Waikoloa, HI, USA, 2011.

[26] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based
state tying for high accuracy acoustic modelling,” Proc.
Human Language Technology Workshop. Plainsboro, NJ,
USA. Morgan Kaufman Publishers Inc, 1994.

[27] C. Zhang and P. C. Woodland, “A general artificial neural
network extension for HTK,” Proc. Interspeech’15, Dres-
den, Germany, 2015.

[28] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineer-
ing in context-dependent deep neural networks for conver-
sational speech transcription,” Proc. ASRU’11, Waikoloa,
HI, USA, 2011.

[29] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain.,
D. Kershaw, X.-Y. Liu, G. Moore, J. J. Odell, D. Olla-
son, D. Povey, V. Valtchev, and P. C. Woodland, The HTK
book (for HTK version 3.4). Cambridge, UK: Cambridge
University Engineering Department, 2006.

3228

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by C. Zhang
	Also by Philip C. Woodland
